
CS6303 – COMPUTER ARCHITECTURE 

LESSION NOTES 

UNIT I       OVERVIEW & INSTRUCTIONS 

8 GREAT IDEAS 

1. Design for Moore's Law 

The one constant for computer designers is rapid change, which is driven largely by 
Moore's Law. It states that integrated circuit resources double every 18–24 months. Moore's Law 
resulted from a 1965 prediction of such growth in IC capacity made by Gordon Moore, one of the 
founders of Intel. As computer designs can take years, the resources available per chip can easily double 
or quadruple between the start and finish of the project. Like a skeet shooter, computer architects must 
anticipate where the technology will be when the design finishes rather than design for where it starts. 
We use an "up and to the right" Moore's Law graph to represent designing for rapid change. 

 

2. Use Abstraction to Simplify Design 

Both computer architects and programmers had to invent techniques to make 
themselves more productive, for otherwise design time would lengthen as dramatically as resources 
grew by Moore's Law. A major productivity technique for hardware and soft ware is to use abstractions 
to represent the design at different levels of representation; lower-level details are hidden to off er a 
simpler model at higher levels. We'll use the abstract painting icon to represent this second great idea. 

 

 



 

3. Make the common case fast 

Making the common case fast will tend to enhance performance better than 
optimizing the rare case. Ironically, the common case is oft en simpler than the rare case and hence is 
oft en easier to enhance. This common sense advice implies that you know what the common case is, 
which is only possible with careful experimentation and measurement. We use a sports car as the icon 
for making the common case fast, as the most common trip has one or two passengers, and it's surely 
easier to make a fast sports car than a fast minivan. 

4. Performance via parallelism 

Since the dawn of computing, computer architects have offered designs that get 
more performance by performing operations in parallel. We'll see many examples of parallelism in this 
book. We use multiple jet engines of a plane as our icon for parallel performance.  

5. Performance via pipelining 

A particular pattern of parallelism is so prevalent in computer architecture that it merits 
its own name: pipelining. For example, before fire engines, a "bucket brigade" would respond to a fire, 
which many cowboy movies show in response to a dastardly act by the villain. Th e townsfolk form a 
human chain to carry a water source to fi re, as they could much more quickly move buckets up the 
chain instead of individuals running back and forth. Our pipeline icon is a sequence of pipes, with each 
section representing one stage of the pipeline. 

6. Performance via prediction 

Following the saying that it can be better to ask for forgiveness than to ask for permission, the next 
great idea is prediction. In some cases it can be faster on average to guess and start working rather than 
wait until you know for sure, assuming that the mechanism to recover from a misprediction is not too 



expensive and your prediction is relatively accurate. We use the fortune-teller's crystal ball as our 
prediction icon. 

7. Hierarchy of memories 

Programmers want memory to be fast, large, and cheap, as memory speed often shapes 
performance, capacity limits the size of problems that can be solved, and the cost of memory today is 
often the majority of computer cost. Architects have found that they can address these conflicting 
demands with a hierarchy of memories, with the fastest, smallest, and most expensive memory per bit 
at the top of the hierarchy and the slowest, largest, and cheapest per bit at the bottom. Caches give the 
programmer the illusion that main memory is nearly as fast as the top of the hierarchy and nearly as big 
and cheap as the bottom of the hierarchy. We use a layered triangle icon to represent the memory 
hierarchy. The shape indicates speed, cost, and size: the closer to the top, the faster and more expensive 
per bit the memory; the wider the base of the layer, the bigger the memory. 

8. Dependability via redundancy 

Computers not only need to be fast; they need to be dependable. Since any 
physical device can fail, we make systems dependable by including redundant components that can take 
over when a failure occurs and to help detect failures. We use the tractor-trailer as our icon, since the 
dual tires on each side of its rear axels allow the truck to continue driving even when one tire fails. 
(Presumably, the truck driver heads immediately to a repair facility so the fl at tire can be fixed, thereby 
restoring redundancy!) 

COMPONENTS OF COMPUTER SYSTEM 

Th e fi ve classic components of a computer are input, output, memory, datapath, and control, with the 
last two sometimes combined and called the processor. Figure 1.5 shows the standard  rganization of a 
computer. Th is organization is independent of hardware technology: you can place every piece of every 
computer, past and present, into one of these fi ve categories. 



 
Through the Looking Glass 

The most fascinating I/O device is probably the graphics display. Most personal mobile devices 
use liquid crystal displays (LCDs) to get a thin, low-power display. Th e LCD is not the source of light; 
instead, it controls the transmission of light. A typical LCD includes rod-shaped molecules in a liquid that 
form a twisting helix that bends light entering the display, from either a light source behind the display 
or less oft en from refl ected light. Th e rods straighten out when a current is applied and no longer bend 
the light. Since the liquid crystal material is between two screens polarized at 90 degrees, the light 
cannot pass through unless it is bent. 

Today, most LCD displays use an active matrix that has a tiny transistor switch at each pixel to 
precisely control current and make sharper images. A red-green-blue mask associated with each dot on 
the display determines the intensity of the threecolor components in the fi nal image; in a color active 
matrix LCD, there are three transistor switches at each point. 

Th e image is composed of a matrix of picture elements, or pixels, which can be represented as a 
matrix of bits, called a bit map. Depending on the size of the screen and the resolution, the display 
matrix in a typical tablet ranges in size from 1024 _ 768 to 2048 _ 1536. A color display might use 8 bits 
for each of the three colors (red, blue, and green), for 24 bits per pixel, permitting millions of diff erent 
colors to be displayed. 
 
Touchscreen 

While PCs also use LCD displays, the tablets and smartphones of the PostPC era have replaced 
the keyboard and mouse with touch sensitive displays, which has the wonderful user interface 
advantage of users pointing directly what they are interested in rather than indirectly with a mouse. 
While there are a variety of ways to implement a touch screen, many tablets today use capacitive 
sensing. Since people are electrical conductors, if an insulator like glass is covered with a transparent 
conductor, touching distorts the electrostatic fi eld of the screen, which results in a change in 
capacitance. Th is technology can allow multiple touches simultaneously, which allows gestures that can 
lead to attractive user interfaces. 
 
Opening the Box 

Figure 1.7 shows the contents of the Apple iPad 2 tablet computer. Unsurprisingly, of the fi ve 
classic components of the computer, I/O dominates this reading device. Th e list of I/O devices includes 
a capacitive multitouch LCD display, front facing camera, rear facing camera, microphone, headphone 
jack, speakers, accelerometer, gyroscope, Wi-Fi network, and Bluetooth network. Th e datapath,  ontrol, 
and memory are a tiny portion of the components. Th e small rectangles in Figure 1.8 contain the 
devices that drive our advancing technology, called integrated circuits and nicknamed chips. Th e A5 
package seen in the middle of in Figure 1.8 contains two ARM processors that operate with a clock rate 



of 1 GHz. Th e processor is the active part of the computer, following the instructions of a program to 
the letter. It adds numbers, tests numbers, signals I/O devices to activate, and so on. Occasionally, 
people call the processor the CPU, for the more bureaucratic-sounding central processor unit. 
 
Cache memory  
Itconsists of a small, fast memory that acts as a buff er for the DRAM memory. (Th e nontechnical defi 
nition of cache is a safe place for hiding things.) Cache is built using a diff erent memory technology, 
static random access memory (SRAM). SRAM is faster but less dense, and hence more expensive, than 
DRAM (see Chapter 5). SRAM and DRAM are two layers of the memory hierarchy. 
 
 
 
A Safe Place for Data 
Th us far, we have seen how to input data, compute using the data, and display data. If we were to lose 
power to the computer, however, everything would be lost because the memory inside the computer is 
volatile—that is, when it loses power, it forgets. In contrast, a DVD disk doesn’t forget the movie when 
you turn off the power to the DVD player, and is thus a nonvolatile memory technology. 
 
Communicating with Other Computers 
We’ve explained how we can input, compute, display, and save data, but there is still one missing item 
found in today’s computers: computer networks. Just as the processor shown in Figure 1.5 is connected 
to memory and I/O devices, networks interconnect whole computers, allowing computer users to 
extend the power of computing by including communication. Networks have become so popular that 
they are the backbone of current computer systems; a new personal mobile device or server without a 
network interface would be ridiculed. Networked computers have several major advantages: 
 
Communication: Information is exchanged between computers at high speeds. 
Resource sharing: Rather than each computer having its own I/O devices, computers on the network 
can share I/O devices. 
Nonlocal access: By connecting computers over long distances, users need not be near the computer 
they are using. 
 

Networks vary in length and performance, with the cost of communication increasing according 
to both the speed of communication and the distance that information travels. Perhaps the most 
popular type of network is Ethernet. It can be up to a kilometer long and transfer at up to 40 gigabits per 
second. 
 
Technologies for Building Processors 
and Memory 

Processors and memory have improved at an incredible rate, because computer designers have 
long embraced the latest in electronic technology to try to win the race to design a better computer. 
been used over time, with an estimate of the relative performance per unit cost for each technology. 
Since this technology shapes what computers will be able to do and how quickly they will evolve, we 
believe all computer professionals should be familiar with the basics of integrated circuits. 

 



 
A transistor is simply an on/off switch controlled by electricity. Th e integrated circuit (IC) 

combined dozens to hundreds of transistors into a single chip. When Gordon Moore predicted the 
continuous doubling of resources, he was predicting the growth rate of the number of transistors per 
chip. To describe the tremendous increase in the number of transistors from hundreds to millions, the 
adjective very large scale is added to the term, creating the abbreviation VLSI, for very large-scale 
integrated circuit. 

Th is rate of increasing integration has been remarkably stable. Figure 1.11 shows the growth in 
DRAM capacity since 1977. For decades, the industry has consistently quadrupled capacity every 3 
years, resulting in an increase in excess of 16,000 times! To understand how manufacture integrated 
circuits, we start at the beginning. The manufacture of a chip begins with silicon, a substance found in 
sand. Because silicon does not conduct electricity well, it is called a semiconductor. With a special 
chemical process, it is possible to add materials to silicon that allow tiny areas to transform into one of 
three devices:  Excellent conductors of electricity (using either microscopic copper or aluminum wire) 
been used over time, with an estimate of the relative performance per unit cost for each technology. 
Since this technology shapes what computers will be able to do and how quickly they will evolve, we 
believe all computer professionals should be  familiar with the basics of integrated circuits.  
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 Excellent conductors of electricity (using either microscopic copper or  
 Excellent insulators from electricity (like plastic sheathing or glass) 
 Areas that can conduct or insulate under special conditions (as a switch) 

 
Transistors fall in the last category. A VLSI circuit, then, is just billions of combinations of 

conductors, insulators, and switches manufactured in a single small package.aluminum wire) 



 

 

 
Performance 
 



 
 
Throughput and Response Time 
Do the following changes to a computer system increase throughput, decrease 
response time, or both? 
1. Replacing the processor in a computer with a faster version 
2. Adding additional processors to a system that uses multiple processors for separate tasks—for 
example, searching the web Decreasing response time almost always improves throughput. Hence, in 
case 
1, both response time and throughput are improved. In case 2, no one task gets work done faster, so 
only throughput increases. If, however, the demand for processing in the second case was almost 
as large as the throughput, the system might force requests to queue up. In this case, increasing the 
throughput could also improve response time, since it would reduce the waiting time in the queue. Th 
us, in many real computer systems, changing either execution time or throughput oft en aff ects the 
other. In discussing the performance of computers, we will be primarily concerned with response time 
for the fi rst few chapters. To maximize performance, we want to minimize response time or execution 
time for some task. Th us, we can relate performance and execution time for a computer X: 

 
 



 
 



 
Th e dominant technology for integrated circuits is called CMOS (complementary metal oxide 

semiconductor). For CMOS, the primary source of energy consumption is so-called dynamic energy—
that is, energy that is consumed when transistors switch states from 0 to 1 and vice versa. Th e dynamic 
energy depends on the capacitive loading of each transistor and the voltage applied:  

 

 
 
Frequency switched is a function of the clock rate. Th e capacitive load per transistor is a 

function of both the number of transistors connected to an output (called the fanout) and the 
technology, which determines the capacitance of both wires and transistors. 

 
 
 



The Sea Change: The Switch from Uniprocessors to Multiprocessors 
 

The power limit has forced a dramatic change in the design of microprocessors. Figure 1.17 
shows the improvement in response time of programs for desktop microprocessors over time. Since 
2002, the rate has slowed from a factor of 1.5 per year to a factor of 1.2 per year. 

Rather than continuing to decrease the response time of a single program running on the single 
processor, as of 2006 all desktop and server companies are shipping microprocessors with multiple 
processors per chip, where the benefit is oft en more on throughput than on response time. To reduce 
confusion between the words processor and microprocessor, companies refer to processors as “cores,” 
and such microprocessors are generically called multicore microprocessors.  

Hence, a “quadcore” microprocessor is a chip that contains four processors or four cores. In the 
past, programmers could rely on innovations in hardware, architecture, and compilers to double 
performance of their programs every 18 months without having to change a line of code. Today, for 
programmers to get significant improvement in response time, they need to rewrite their programs to 
take advantage of multiple processors. Moreover, to get the historic benefit of running faster on new 
microprocessors, programmers will have to continue to improve performance of their code as the 
number of cores increases. 

To reinforce how the soft ware and hardware systems work hand in hand, we use a special 
section, Hardware/Soft ware Interface, throughout the book, with the first one appearing below. These 
elements summarize important insights at this critical interface. 
 

 

 



Operations of the Computer Hardware 
Every computer must be able to perform arithmetic. Th e MIPS assembly language notation add 

a, b, c instructs a computer to add the two variables b and c and to put their sum in a. 
 

This notation is rigid in that each MIPS arithmetic instruction performs only one operation and 
must always have exactly three variables. For example, suppose we want to place the sum of four 
variables b, c, d, and e into variable a. (In this section we are being deliberately vague about what a 
“variable” is; in the next section we’ll explain in detail.) 
 

The following sequence of instructions adds the four variables: 
add a, b, c # The sum of b and c is placed in a 
add a, a, d # The sum of b, c, and d is now in a 

add a, a, e # The sum of b, c, d, and e is now in a 
Thus, it takes three instructions to sum the four variables. The words to the right of the sharp 

symbol (#) on each line above are comments for the human reader, so the computer ignores them. 
 
MIPS ASSEMBLY LANGUAGE CODE 

 



 
 
Operands of the Computer Hardware 

One major difference between the variables of a programming language and registers is the 
limited number of registers, typically 32 on current computers, like MIPS. (See Section 2.21 for the 
history of the number of registers.) Thus, continuing in our top-down, stepwise evolution of the 
symbolic representation of the MIPS language, in this section we have added the restriction that the 
three operands of MIPS arithmetic instructions must each be chosen from one of the 32 32-bit registers. 
The reason for the limit of 32 registers may be found in the second of our three underlying design  
principles of hardware technology:  
 

Design Principle 2: Smaller is faster. 
 
A very large number of registers may increase the clock cycle time simply because it takes 

electronic signals longer when they must travel farther. Guidelines such as “smaller is faster” are not 
absolutes; 31 registers may not be faster than 32. Yet, the truth behind such observations causes 
computer designers to take them seriously. In this case, the designer must balance the craving of 
programs for more registers with the designer’s desire to keep the clock cycle fast. Another reason for 
not using more than 32 is the number of bits it would take in the instruction format, as Section 2.5 
demonstrates. 

 

 



 
Logical Operations 

Although the first computers operated on full words, it soon became clear that it was useful to 
operate on fields of bits within a word or even on individual bits. Examining characters within a word, 
each of which is stored as 8 bits, is one example of such an operation (see Section 2.9). It follows that 
operations were added to programming languages and instruction set architectures to simplify, among 
other things, the packing and unpacking of bits into words. Th ese instructions are called logical 
operations. Figure 2.8 shows logical operations in C, Java, and MIPS. 
 

 



The first class of such operations is called shift s. They move all the bits in a word to the left or right, 
filling the emptied bits with 0s. For example, if register $s0 contained 
 

0000 0000 0000 0000 0000 0000 0000 1001two = 9ten 
 
and the instruction to shift left by 4 was executed, the new value would be:  

 
0000 0000 0000 0000 0000 0000 1001 0000two = 144ten 

 

 
 

Instructions for Making Decisions 

 

 



 

 

 
 

 



 

 



 
 
MIPS Addressing for 32-bit Immediates and Addresses 
 

Although keeping all MIPS instructions 32 bits long simplifi es the hardware, there are times 
where it would be convenient to have a 32-bit constant or 32-bit address. Th is section starts with the 
general solution for large constants, and then shows the optimizations for instruction addresses used in 
branches and jumps.  

 
32-Bit Immediate Operands 

Although constants are frequently short and fi t into the 16-bit fi eld, sometimes they are bigger. 
Th e MIPS instruction set includes the instruction load upper immediate (lui) specifi cally to set the upper 
16 bits of a constant in a register, allowing a subsequent instruction to specify the lower 16 bits of the 
constant. Figure 2.17 shows the operation of lui. 

 



 
 

 
 

 



 
 
MIPS Addressing Mode Summary 
Multiple forms of addressing are generically called addressing modes. Figure 2.18 shows how operands 
are identifi ed for each addressing mode. Th e MIPS addressing modes are the following: 
1. Immediate addressing, where the operand is a constant within the instruction itself 
2. Register addressing, where the operand is a register  
3. Base or displacement addressing, where the operand is at the memory location whose address is the 
sum of a register and a constant in the instruction 
4. PC-relative addressing, where the branch address is the sum of the PC and a constant in the 
instruction 
5. Pseudodirect addressing, where the jump address is the 26 bits of the instruction concatenated with 
the upper bits of the PC 
 



 
 

 
 
 
 
 
 
 
 
 
 
 



UNIT II       ARITHMETIC OPERATIONS 
 

 
 

 



 

 

 

 



 

 

 



 

 

 

 



 

 
 

 



 

 



 
 

 



 

 



 

 



 
Parallelism and Computer Arithmetic: Subword Parallelism 

 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



UNIT III       PROCESSOR AND CONTROL UNIT 
 

Basic MIPS implementation 
 

 
 

 
 

 
 



 

 
 



 
 
 

Building a Datapath

 



 



 

 



 
 

A Simple Implementation Scheme 
 

 
 



 

 



 



 



 

 
 
 
 
 
 
 
 
 



An Overview of Pipelining 
 

 
 

 
 



 

 
 



 

 

 
 

 



Pipelined Datapath and Control 

 
 



 

 

 



 
 
 Data Hazards: Forwarding versus Stalling 

 
 





 

 
 
 
 
 
 
 
 
 
 



Control Hazards 

 



 

 
 



 
 
 



Exceptions 
 





 

 
 
 
 
 
 
 
 



UNIT IV       PARALLELISM             
     

 

 
 



 

 



 

 



 
 
 

 



 



 

 

 



 
 

 
 



 
 

 



 

 
 



 

 



 
 
 

 
 



 

 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



UNIT V         MEMORY AND I/O SYSTEMS                                         
 
Memory hierarchy 
 

 

 



 

 
 
 



Memory technologies 
 

 
 

 



 

 



 
 

 
 



 
 

 
 
 
 



The Basics of Caches 

 

 



 

 

 

 



 
 
 
 
 
 
 
 
 
 



Measuring and Improving Cache Performance 

 

 
 



 



 

 



 

 

 



 



 

 



 
 



Virtual Memory 

 

 
 



 

 
 

 



 

 
 

 
 



 
 

 
 



 
 

 
 
 
 
 





 

 
 
 
 
 
 
 



 
 
 

 

 



 

 



 
 

 

 



 
 

 



 



 
 
 
 


