COMBINATIONS

For combinations, \boldsymbol{k} objects are selected from a set of \boldsymbol{n} objects to produce subsets without ordering.

Contrasting the previous permutation example with the corresponding combination,the $A B$ and $B A$ subsets are no longer distinct selections;
by eliminating such cases there remain only 10 different possible subsets- $A B, A C, A D, A E, B C, B D$, $B E, C D, C E$, and DE.

The number of such subsets is denoted by $\boldsymbol{n} \boldsymbol{C} \boldsymbol{k}$, read " \boldsymbol{n} choose \boldsymbol{k}." For combinations, since \boldsymbol{k} objects have \boldsymbol{k} ! arrangements, there are k ! indistinguishable permutations for each choice of k objects;
hence dividing the permutation formula by k ! yields the following combination formula:

$$
{ }_{n} C_{k}=\frac{n!}{k!(n-k)!}
$$

This is the same as the (n, k) binomial coefficient (see binomial theorem). For example, the number of combinations of five objects taken two at a time is

$$
\begin{aligned}
{ }_{5} C_{2} & =\frac{5!}{(2)!(5-2)!}=\frac{5!}{(2)!(3)!}=\frac{(1)(2)(3)(4)(5)}{(1)(2)(1)(2)(3)} \\
& =\frac{120}{12}=10
\end{aligned}
$$

The formulas for $\boldsymbol{n} \boldsymbol{P}_{\boldsymbol{k}}$ and $\boldsymbol{n} \boldsymbol{C} \boldsymbol{k}$ are called counting formulas
since they can be used to count the number of possible permutations or combinations in a given situation without having to list them

