SSK ACADEMY LEARN TODAY LEAD TOMORROW

CIRCLES

LONGANSWER QUESTIONS (7 Marks)

***1. Find equation and centre of the circle passing through the points (3,4'), (3,2)& (1,4)

(May-12,16 A.P&T.S)

***2. Find the value of 'c' if the points (2,0), (0,1), (4,5) and (0,c) are concylic.

(Mar-07,15-T.S,May-07)

- ***3. Find the equation of a circle which passes through (2,-3) and (-4, 5) and having the centre on 4x+3y+1=0 (May-05) (May-06)
- ***4. Find the equation of a circle which passes through the points (4, 1), (6, 5) and having centre on

4x+3y-24 = 0. (Mar-08, 12, 16 A.P)

***5. Find the equation of the circle whose center lies on X-axis and passing through the points

(-2, 3) and (4, 5) (Mar-10, 15- A.P, May-09)

***6. Show that the circles $x^2 + y^2 - 4x - 6y - 12 = 0$ and $x^2 + y^2 + 6x + 18y + 26 = 0$ touch each other also find the point of contact and common tangent at this point of contact.

(Mar-02,05,08)(Mar-13)

***7. Show that the circles $x^2+y^2-6x-2y+1=0$; $x^2+y^2+2x-8y+13=0$ touch each other. Find the point of contact and the equation of common tangent at their point of contact.

(May-06, 16A.P, Mar-09, 10, 11, 16A.P)

***8. Find the equations of the pair of direct common tangents to the circles

$$x^{2} + y^{2} + 22x - 4y - 100 = 0$$
 and $x^{2} + y^{2} - 22x + 4y + 100 = 0$. (Mar-07, 15-T.S)

- ***9. Find the equations of transverse common tangents of the circles. $x^2 + y^2 - 4x - 10y + 28 = 0; \quad S \equiv x^2 + y^2 + 2gx + 2fy + c = 0$ is $S_1^2 = S.S_{11}$ (Mar-06, June-05)
- ***10. Find the equations of the circles with radius $\sqrt{13}$ units and touching 2x 3y + 1 = 0 at (1, 1).
- ***11. Prove that the equation to the pair of tangents drawn from the point (x_1, y_1) to the circle

$$S \equiv x^{2} + y^{2} + 2gx + 2fx + c = 0 \text{ is } S_{1}^{2} = S.S_{11} \text{ (Mar-03)}$$

- **12. Show that the four points (-6, 0), (-2, 2), (-2, -8) and (1, 1) are concyclic. (Mar-05, 06)
- **13. Find the equations of the circles which touches the x-axis at a distance of 3 units from the origin and making an intercept of length 6 units on the y-axis.
- **14. If the polar of points on the circle $x^2 + y^2 = a^2$ with respect to $x^2 + y^2 = b^2$ touches the circle $x^2 + y^2 = c^2$ then show that a, b, care in G.P.

- *15. Show that the points (1,2), (3,-4), (5,-6) and (19,8) are concyclic and find the equation of the circle on which they lie. (May-15 T.S)
- *16. Show that the points (9, 1), (7,9), (-2,12), (6,10) are concyclic and find the equation of the circle on which they lie. (May-08)
- *17. Find the equation of the circle passing through the points (5, 7),(8,1),(1,3) (June-10)
- *18. Show that four common tangents can be drawn for the circles given by

 $x^{2} + y^{2} - 14x + 6y + 33 = 0$, $x^{2} + y^{2} + 30x - 2y + 1 = 0$ and find the internal and external center of similitudes.

- *19. Find the equation of the circle circumscribing the triangle formed by the lines 2x+y=4, x+y=6 and x+2y=5
- *20 If θ_1, θ_2 are the angles of inclination of tangents through a point P to the circle $x^2 + y^2 = a^2$ then find the locus of P when $\cot \theta_1 + \cot \theta_2 = k$
- *21. Find the equation of the circle passing through the three points (1,2), (3,-4), (5,-6) (Mar-16TS)
- *22. Find the pair of tangents drawn from (I,3) to the circle $x^2 + y^2 2x + 4y 11 = 0$ and also find the angle between them.(Mar- 2016 TS)

SHORT ANSWER QUESTIONS (4 Marks)

***1. Find the length of the chord intercepted by the circle $x^2 + y^2 - x + 3y - 22 = 0$ on the line y = x - 3 (Mar-13, May-11, 16 A.P.)

***2. Find the length of the chord intercepted by the circle $x^2 + y^2 - 8x - 2y - 8 = 0$ on the line x+y+1=0 (Mar-16 T.)

***3. Show that the tangent at (-1,2) of the circle $x^2 + y^2 - 4x - 8y + 7 = 0$ touches the circle

 $x^{2} + y^{2} + 4x + 6y = 0$ and also find its point of tangency. (June-10)

- ***4. Find equations of tangents to the circle $x^2 + y^2 4x + 6y 12 = 0$ which are parallel to x + y 8 = 0.
- ***5. If a point P is moving such that the lengths of the tangents drawn from P to the circles
 - $x^{2}+y^{2}-4x-6y-12=0$ and $x^{2}+y^{2}+6x+18y+26=0$ are in the ratio 2:3 then find the equation of the locus of P. (Mar-09)
- ***6. If the chord of contact of a point 'p' with respect to the circle $x^2 + y^2 = a^2$ cut the circle at A and B such that $|AOB| = 90^0$ then show that 'p' lies on the circle $x^2 + y^2 = 2a^2$
- ***7. Find the angle between the tangents drawn from (3,2)to the circle $x^2 + y^2 6x + 4y 2 = 0$ (Mar-12)
- ***8. Find the locus of mid points of the chords of contact $x^2+y^2=a^2$ from the points lying on the line lx + my + n = 0 (Mar-2002) (June-03)

- **9. If the abscissae of points A,B are the roots of the equation $x^2 + 2ax b^2 = 0$ and ordinates of A, B are roots of $y^2 + 2py -q^2 = 0$, then find the equation of a circle for which \overline{AB} is a diameter. (Mar-14)
- **10. Find the equation of the circle which touches the circle $x^2 + y^2 2x 4y 20 = 0$ externally at (5, 5) with radius 5 units. (May-16 T.S)
- **11. Find the inverse point of (-2, 3) with respect to the circle $x^2 + y^2 4x 6y + 9 = 0$.
- **12. Show that the lines 2x+3y+11=0 and 2x-2y-1=0 are conjugate with respect to the circle x^2+y^2 +4x+6y+12=0
- **13. Show that the poles of the tangent of the circle $x^2 + y^2 = a^2$ w.r.to the circle $(x+a)^2 + y^2 = 2a^2$

lies on the curve $y^2 + 4ax = 0$

- **14. Find the pair of tangents drawn from P(3, 2) to the circle $x^2 + y^2 6x + 4y 2 = 0$ (Apr-01)
- **15. Show that x+y+1=0 touches the circle $x^2 + y^2 3x + 7y + 14 == 0$ and find the point of contact. (May-09)
- **16. Find the equation of the cirlce with centre (-2,3) cutting a chord length2units on 3x + 4y + 4 = 0. (Mar 2011)
- **17. Find the equation of the circle passing through (O, 0) and making intercepts 4, 3 on X-axis and Y-axis respectively
- **18. Find the area of the triangle formed with the coordinate axes and the tangent drawn at the point $P(x_1, y_1)$ on the circle $x^2 + y^2 = a^2$
- **19. If P (x_1, y_1) is the mid point of a chord AB (other than the diameter) of the circle $x^2 + y^2 + 2gx + gfy + c = 0$ then the equation of the chord AB is $S_1 = S_{11}$.
- *20. Equation of the chord joining $P(\theta_1), Q(\theta_2)$ on the circle $S = x^2 + y^2 + 2gx + 2fy + c = 0$ is

$$(x+g)\cos\left(\frac{\theta_1+\theta_2}{2}\right)+(y+f)\sin\left(\frac{\theta_1+\theta_2}{2}\right)=r\cos\left(\frac{\theta_1-\theta_2}{2}\right)$$
 where r is radius of a circle.

*21. Prove that the tangent at (3,-2) of the circle $x^2 + y^2 = 13$ touches the circle

 $x^2 + y^2 + 2x - 10y - 26 = 0$ and find its point of contact.

- *22. Find the value of k, if kx + 3y 1 = 0, 2x + y + 5 = 0 are conjugate lines with respect to circle $x^2 + y^2 - 2x - 4y - 4 == 0$. (May-15T.S)
- *23. Find the equation of tangents of the circle $x^2 + y^2 = 10$ at the points whose abscissae are 1.
- *24. Find the equation of circle which touches $x^2 + y^2 4x + 6y 12 = 0$ at (-1,1) internally with a radius of 2.

- *25. The line y = mx + c and the circle $x^2 + y^2 = a^2$ intersect at A and B. If $AB = 2\lambda$ then show that $c^2 = (1+m^2)(a^2 \lambda^2)$
- *26. Find the condition that the tangents drawn from (0,0) to the circle $s = x^2 + y^2 + 2gx + 2fy + c = 0$ perpendicular to each other (May-15 TS)

VERY SHORT ANSWER QUESTIONS (2M)

- 1. Find the centre and radius of the circle $\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0(c>0)$ (June-10)
- 2. Find the values of a, b if $ax^2 + bxy + 3y^2 5x + 2y 3 = 0$ represents a circle. Also find radius and centre of the circle.
- 3. If the center of the circle $x^2 + y^2 + ax + by 12 = 0$ is (2,3), find the values of a,b and the radius of the circle. (May-07, 9, Mar-08)
- 4. Find the values of g and f, if $x^2 + y^2 + 2gx + 2fy 12 = 0$ represents the circle with centre

```
(2,3) and radius?
```

- 5. Find the other end of the diameter of the circle $x^2 + y^2 8x 8y + 27 = 0$. if one end of it is (2,3). (Mar-13)
- 6. If $x^2 + y^2 4x + 6y + c = 0$ represents a circle with radius '6', then find the value of 'c'

(Mar-09)

- 7. If the length of the tangent from (2,5) to the circle $x^2 + y^2 5x + 4y + k = 0$ is $\sqrt{37}$, then find 'k' (May-06).
- 8. Find the equation of the circle passing through (2, -1) and having the centre at (2, 3);(May-08)
- 9. Find the equation of the circle passing through (3, 4) and having the centre at (-3, 4) (Mar-12)
- 10. Find the equation of the circle whose centre is (-4, -3) and which passes through the origin. (Mar-04, June-02)
- 11. Obtain the parametric equation of the circle $x^2 + y^2 6x + 4y 12 = 0$ (Mar-06, 10)
- 12. Obtain the parametric equation of the circle $(x-3)^2 + (y-4)^2 = 8^2$ (Mar-11,16,A.P)
- 13. Find the equation of the circle whose extremities of a diameter are (1,2) and (4,5)
- 14. Find the polar of (I, 2) with respect to $x^2 + y^2 = 7$
- 15. Find the pole of ax+by+c=0 ($c \neq 0$) with respect to $x^2+y^2=r^2$ (Mar-16 A.P)
- 16. Find the pole of 3x + 4y 45 = 0 wsith respect $x^2 + y^2 6x .8y + 5 = 0$ (Mar-16 A.P)

17.	Find the value of 'k', if the points (4, k), (2, 3) are conjugate with respect to $x^2 + y^2 = 17$
18.	Find the number of common tangents that can be drawn to the circles
	$x^2 + y^2 = 4$, $x^2 + y^2 - 6x - 8y + 16 = 0$
19.	Find the value of a if $2x^2 + ay^2 - 3x + 2y - I = 0$ represents a circle and also radius. (Mar - 13)
20.	State and necessary and sufficient condition for $lx + my + n = 0$ be a normal the circle
	$x^2 + y^2 + 2gx + 2fo + c = 0$
21.	Show that A(3,-I) lies on the circle $x^2 + y^2 - 2x + 4y = 0$ also find the other end of the diameter through A
22.	Find the value of k, if the points (4,2) and (k,-3) are conjugate with respect to the circle
	$x^2 + y^2 - 5x + 8y + 6 = 0$
23.	Find the chord of contact of (2,5) with respect to circle $x^2 + y^2 - 5x + 4y - 2 = 0$
24.	Find the equation of the normal to the circle $x^2 + y^2 - 4x - 6y + 11 = 0$ at (3,2) also find the other point where the normal meets the circle.
25.	Obtain the parametric equation of the circle represented by $x^2 + y^2 = 4$
26.	Find the equation of the circle which is concentric with $x^2 + y^2 - 6x - 4y - 12 = 0$ and passing through $(-2, 14)$.
27.	Find the value 'a' if $2x^2 + ay^2 - 3x + 2y - I = 0$ represents a circle and also find its radius.
	(Mar-16 AP)
28.	If the length of a tangent from (5,4) to the circle x ² + y ² + 2ky = 0 is 'I', then find 'k'
	(Mar-16 AP)(May-15 T.S)
29.	Find the power of the point P(-1,1) with respect to the circle x ² + y ² -6x+4y-12=0
	(Mar- 16 TS)
30.	Find the value of k, if the points (I,3) and (2,k) are conjugate with respect to the circle $x^2 + y^2 = 35$.
	(Mar- 16 A.P)
31.	If the circle $x^2 + y^2 - 4x + 6y + a = 0$ has radius 4, then find a.
32.	Find the equation of the polar of (I,-2) with respect to circle $x^2 + y^2 - 10x - 10^y + 25 = 0$ (Mar-15TS)
33.	Find the length of the tangent from (-2, 5) to the circle $x^2 + y^2 - 25 = 0$ (May 16 TS)
34.	Find the length of the chord formed by $x^2 + y^2 = a^2$ on the line $x \cos \alpha + y \sin \alpha = P$ (May 16 TS)