EXTRA QUESTIONS

CIRCLES

If two intersecting chords of a circle make equal angles with the diameter passing through their point of intersection, prove that the chords are equal.

Solution :

Given : AB and CD are two chords of a circle, with centre O intersecting at a point E .
$P Q$ is a diameter through E, such that $\angle A E Q=\angle D E Q$
To prove: $\mathrm{AB}=\mathrm{CD}$.
Construction: Draw perpendiculars OL and OM on chords AB and CD respectively.
Proof:

```
\angleOE = 180
    = 90}\mp@subsup{}{}{\circ}- \EO (Angle sum property of a triangle
=90
= 90' - }\angleMEO = \angleMOE
In triangles OLE and OME,
```

```
\triangleEO = \MEO
(Why ?)
\angleOE = \triangleMOE EO (Proved above)
= EO
(Common)
```

Therefore, \triangle OLE $\cong \triangle$ OME (Why ?)
This gives $\mathrm{OL}=\mathrm{OM} \quad$ (CPCT)
So, $A B=C D$

$A B$ is a diameter of the circle, $C D$ is a chord equal to the radius of the circle. $A C$ and $B D$ when extended intersect at a point E. Prove that $\angle A E B=60^{\circ}$.

Solution:

Join OC, OD and BC.

- Triangle ODC is equilateral (Why?) Therefore, $\angle C O D=60^{\circ}$
- Now, $\angle C B D=1 / 2 \angle C O D R e a s o n$ This gives $\angle C B D=30^{\circ}$
- Again, $\angle \mathrm{ACB}=90^{\circ} \quad$ (Why ?)

So, $\angle B C E=180^{\circ}-\angle A C B=90^{\circ}$

- Which gives $\angle C E B=180-\left(90^{\circ}+30^{\circ}\right)=60^{\circ}$,
- i.e. $\quad \angle A E B=60^{\circ}$

ABCD is a cyclic quadrilateral in which $A C$ and $B D$ are its diagonals. If $\angle \mathrm{DBC}=55^{\circ}$ and $\angle \mathrm{BAC}=45^{\circ}$, find $\angle B C D$.

Solution:
Given $\angle C A D=\angle D B C=55^{\circ}$ (Angles in the same segment)
Therefore, $\angle \mathrm{DAB}=\angle \mathrm{CAD}+\angle \mathrm{BAC}$

$$
=55^{\circ}+45^{\circ}=100^{\circ}
$$

But $\angle \mathrm{DAB}+\angle \mathrm{BCD}=180^{\circ}$
(Opposite angles of a cyclic quadrilateral) So, $\angle B C D=180^{\circ}-100^{\circ}=80^{\circ}$

Prove that the quadrilateral formed (if possible) by the internal angle bisectors of any quadrilateral is cyclic.

Solution:
$A B C D$ is a quadrilateral in which the angle bisectors $A H, B F, C F$ and $D H$ of internal angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D respectively form a quadrilateral EFGH .

Now,

$$
\begin{aligned}
\angle \mathrm{FEH}=\angle \mathrm{AEB} & =180^{\circ}-\angle \mathrm{FAB}-\angle \mathrm{FBA}(\text { Why } ?) \\
& =180^{\circ}-1 / 2(\angle \mathrm{~A}+\angle \mathrm{B})
\end{aligned}
$$

and

$$
\begin{gathered}
\angle \mathrm{FGH}=\angle \mathrm{CGD}=180^{\circ}-\angle \mathrm{GCD}-\angle \mathrm{GDC}(\text { Why } ?) \\
=180^{\circ}-1 / 2(\angle \mathrm{C}+\angle \mathrm{D})
\end{gathered}
$$

Therefore, $\angle \mathrm{FEH}+\angle \mathrm{FGH}=180^{\circ}-1 / 2(\angle \mathrm{~A}+\angle \mathrm{B})+180^{\circ}-1 / 2(\angle \mathrm{C}+\angle \mathrm{D})$
$=360^{\circ}-1 / 2(\angle A+\angle B+\angle C+\angle D)$
$=360^{\circ}-1 / 2 \times 360^{\circ}$
$=360^{\circ}-180^{\circ}=180^{\circ}$
Therefore quadrilateral EFGH is cyclic REASON

Two chords $A B$ and $C D$ of lengths 5 cm and 11 respectively of a circle are parallel to each other and are on opposite sides of its

 centre. If the distance between $A B$ and $C D$ is 6 cm , find the radius of thecircle.
Sol.

Let O be the centre of the given circle and let its radius be r
cm . Draw $O P \perp A B$ and $O Q \perp C D$. Since $O P \perp A B, O Q \perp C D$ and $A B \|$
$C D$. Therefore, points P, O and Q are collinear. So $P Q=6 \mathrm{~cm}$.
Let $O P=x$. Then, $O Q=(6-x) \mathrm{cm}$. Join
$O A$ and $O C$. Then, $O A=O C=r$.
Since the perpendicular from the centre to a chord of the circle bisects the chord.
Therefore $\mathrm{AP}=\mathrm{PB}=2.5 \mathrm{~cm}$ and $\mathrm{CQ}=\mathrm{QD}=5.5 \mathrm{~cm}$. In right $\triangle \mathrm{s}$ OAP and OCQ, we have
$\mathrm{OA}^{2}=\mathrm{OP}^{2}+\mathrm{AP}^{2}$ and $\mathrm{OC}^{2}=\mathrm{OQ}^{2}+\mathrm{CQ}^{2}$
$\Rightarrow r^{2}=x^{2}+(2.5)^{2}$
and $r^{2}=(6-x) 2+(5.5)^{2}$
$\Rightarrow x^{2}+(2.5)^{2}=(6-x)^{2}+(5.5)^{2} \Rightarrow x^{2}+6.25=36-12 x+x^{2}+30.25$
$\Rightarrow 12 x=60 \Rightarrow x=5$

Putting $x=5$ in (1), we get
$r^{2}=52+(2.5)^{2}=25+6.25=31.25$
$\Rightarrow r=\sqrt{31.25}=5.6$ (approx.)
Hence, the radius of the circle is 5.6 cm (approx.)

The lengths of two parallel chords of a circle are 6 cm and 8 cm . If the smaller chord is at distance 4 cm from the centre, what is the distance of the other chord from the centre.

Sol.
Let $A B$ and $C D$ be two parallel chords of a circle with centre O such that $A B=6 \mathrm{~cm}$ and $C D=8 \mathrm{~cm}$.
Let the radius of the circle be rcm .
Draw $O P \perp A B$ and $O Q \perp C D$. Since $A B \| C D$ and $O P \perp A B, O Q \perp C D$.
Therefore, points O, Q and P are collinear. Clearly $\mathrm{OP}=4 \mathrm{~cm}$, and P,
Q are mid-points of $A B$ and CDrespectively.
Therefore $\quad A P=P B=1 / 2(A B)=3 \quad \mathrm{~cm}$
and, $C Q=Q D=1 / 2(C D)=4 \mathrm{~cm}$
In rt. $\angle \mathrm{d} \triangle \mathrm{OAP}$, we have
$\mathrm{OA}^{2}=\mathrm{OP}^{2}+\mathrm{AP}^{2}$
$\Rightarrow r^{2}=4^{2}+3^{2}=16+9=25$
$\Rightarrow r=5$
In rt. $\angle \mathrm{d} \triangle \mathrm{OCQ}$, we have

$\mathrm{OC}^{2}=\mathrm{OQ}^{2}+\mathrm{CQ}^{2}$
$\Rightarrow \mathrm{r}^{2}=\mathrm{OQ}^{2}+4^{2}$
$\Rightarrow 25=\mathrm{OQ}^{2}+16$
$\Rightarrow 0 Q^{2}=9$
$\Rightarrow O Q=3$
Hence, the distance of chord CD from the centre is 3 cm .
$A B C D$ is a parallelogram. The circle through A, B and C intersect $C D$ (produced if necessary) at E. Prove that $A E=A D$.

To prove: $A E=A D$
(\triangle AED is an isosceles triangle it is sufficient to prove that $\angle \mathrm{AED}=\angle \mathrm{ADE}$)

Proof:

Since ABCE is a cyclic quadrilateral.
Therefore $\angle A E D+\angle A B C=180$ 。 \qquad
Now, CDE is a straight line.
$\Rightarrow \angle A D E+\angle A D C=180$ 。
[Since $\angle A D C$ and $\angle A B C$ are opposite angles of a parallellogram i.e. $\angle A D C=\angle A B C$

From (1) and (2), we get
$\angle A E D+\angle A B C=\angle A D E+\angle A B C$
$\Rightarrow \angle A E D=\angle A D E$
Therefore In $\triangle A E D$, we have
$\angle A E D=\angle A D E$
$\Rightarrow A D=A E$.

In the Fig, O is the centre of the circle, prove that, $\angle a=\angle b+\ldots$

Solution:

$\angle \mathrm{AOB}=2 \angle \mathrm{AEB}=2 \angle \mathrm{AFB}$
$\therefore \angle \mathrm{AOB}=\angle \mathrm{AEB}+\angle \mathrm{AFB}$
$\therefore \angle \mathrm{a}=\angle 4+\angle 3=2 \angle 4$

Now $\angle 1=\angle 2 \quad$ (In same segment)
$\angle \mathrm{b}=\angle 4+\angle 1 \quad$ (Exterior angles equal to sum of two equal interior opposite angles)
$\Rightarrow \angle \mathrm{b}=\angle 4+\angle 2$
(iii) [from (ii)]
$\angle \mathrm{c}=\angle 4-\angle 2$
(iv) $($ Since $\angle \mathrm{c}+\angle 2=\angle 4)$

Adding equations (iii) and (iv) we get,
$\angle \mathrm{b}+\angle \mathrm{c}=2 \angle 4=\angle \mathrm{a} \quad$ [from(i)]
or $\angle \mathrm{a}=\angle \mathrm{b}+\angle \mathrm{c}$

