ezyEXAMSolution
 JEE MAINS PATTERN
 Mathematics: Binomial Theorem
 Practice Paper - 01

1. The sum of coefficients of $\left(1+x-3 x^{2}\right)^{2134}$ is
(A) -1
(B) 1
(C) 0
(D) 2^{2134}
2. The sum ${ }^{r} C_{r}+{ }^{r+1} C_{r}+{ }^{r+2} C_{r}+\ldots .+{ }^{n} C_{r}(n \geq r)$ equals
(A) ${ }^{n} \mathrm{C}_{\mathrm{r}+1}$
(B) ${ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}+1}$
(C) ${ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}-1}$
(D) ${ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}}$
3. The expansion $\left[x^{2}+\left(x^{6}-1\right)^{1 / 2}\right]^{5}+\left[x^{2}-\left(x^{6}-1\right)^{1 / 2}\right]^{5}$ is a polynomial of degree
(A) 8
(B) 10
(C) 13
(D) 14
4. The term independent of x in $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$ is
(A) 5
(B) 6
(C) 7
(D) 8
5. The value of the greatest term in the expansion of $\sqrt{3}\left(1+\frac{1}{\sqrt{3}}\right)^{20}$ is
(A) 2871.11
(B) 2871
(C) 2872
(D) 2873
6. $9^{n+1}-8 n-9$ is divisible by
(A) 18
(B) 64
(C) 128
(D) 81
7. The first integral term in the expansion of $(\sqrt{3}+\sqrt[3]{2})^{9}$ is its
(A) $2^{\text {nd }}$ term
(B) $3^{\text {rd }}$ term
(C) $4^{\text {th }}$ term
(D) $5^{\text {th }}$ term
8. The number of irrational terms in the expansion of $\left(2^{1 / 5}+3^{1 / 10}\right)^{55}$ is
(A) 47
(B) 56
(C) 50
(D) 48
9. The number of terms in the expansion of $(2 x+3 y-4 z)^{n}$ is
(A) $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
(B) $\frac{\mathrm{n}(\mathrm{n}-1)}{2}$
(C) $\frac{(\mathrm{n}+1)(\mathrm{n}+2)}{2}$
(D) $\frac{(\mathrm{n}+2)(\mathrm{n}+3)}{2}$
10. In the expansion of $\left(\frac{a}{x}+b x\right)^{12}$, the coefficient of x^{-10} will be
(A) $12 \mathrm{a}^{11}$
(B) $12 b^{11} a$
(C) $12 a^{11} b$
(D) $12 \mathrm{a}^{11} \mathrm{~b}^{11}$
11. If $(1+a x)^{n}=1+8 x+24 x^{2}+\ldots$, then the values of a and n are equal to
(A) 2, 4
(B) 2, 3
(C) 3, 6
(D) 1,2
12. The product of middle terms in the expansion of $\left(x+\frac{1}{x}\right)^{11}$ is equal to
(A) ${ }^{11} \mathrm{C}_{6}{ }^{11} \mathrm{C}_{6}$
(B) ${ }^{11} \mathrm{C}_{5}{ }^{11} \mathrm{C}_{6}\left(\frac{1}{\mathrm{x}}\right)$
(C) ${ }^{11} \mathrm{C}_{5}{ }^{11} \mathrm{C}_{6}(\mathrm{x})$
(D) $\left({ }^{11} \mathrm{C}_{6}\right)^{2} \mathrm{x}^{2}$
13. The middle term in the expansion of $\left(1-2 x+x^{2}\right)^{n}$ is
(A) $\frac{2 n}{n!}(-x)^{n}$
(B) $\frac{2 n}{(n!)^{2}}(-x)^{n}$
(C) $\frac{2 \mathrm{n}}{(\mathrm{n}!)^{2}}(\mathrm{x})^{\mathrm{n}}$
(D) $\frac{2 n}{n!} x^{n}$
14. The sum of the binomial coefficients in the expansion of $\left(x^{-3 / 4}+\mathrm{ax}^{5 / 4}\right)^{\mathrm{n}}$ lies between 200 and 400 and the term independent of x equals 448 . The value of a is
(A) 1
(B) 2
(C) $1 / 2$
(D) for no value of a
15. ${ }^{23} \mathrm{C}_{0}+{ }^{23} \mathrm{C}_{2}+{ }^{23} \mathrm{C}_{4}+. .+{ }^{23} \mathrm{C}_{22}$ equals
(A) $2^{23}-2$
(B) 2^{22}
(C) 2^{11}
(D) $\frac{2^{10}-4^{10}}{2}$
16. If $\left(1-x+2 x^{2}\right)^{10}=\sum_{r=0}^{20} a_{r} x^{r}$ then $\sum_{r=1}^{10} a_{2 r-1}$ equals
(A) 2×6^{9}
(B) 3×6^{9}
(C) 6^{10}
(D) $\frac{2^{10}-4^{10}}{2}$
17. The greatest coefficient in the expansion of $(1+x)^{2 n+2}$ is
(A) $\frac{(2 n)!}{(n!)^{2}}$
(B) $\frac{(2 \mathrm{n}+2)!}{\{(\mathrm{n}+1)!\}^{2}}$
(C) $\frac{(2 n+2)!}{n!(n+1)!}$
(D) $\frac{(2 n)!}{n!(n+1)!}$
18. $\left({ }^{\mathrm{n}} \mathrm{C}_{0}\right)^{2}+\left({ }^{\mathrm{n}} \mathrm{C}_{1}\right)^{2}+\left({ }^{\mathrm{n}} \mathrm{C}_{2}\right)^{2}+\ldots .+\left({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}\right)^{2}$ equals
(A) $\frac{2 \mathrm{n}!}{\mathrm{n}!}$
(B) $\frac{2 n!}{n!n!}$
(C) 2^{n}
(D) $2^{n} n$!
19. The value of $\mathrm{C}_{1}+3 \mathrm{C}_{3}+5 \mathrm{C}_{5}+7 \mathrm{C}_{7}+\ldots$., where $\mathrm{C}_{0}, \mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{7}, \ldots$. . are binomial coefficients is
(A) $n .2^{n-1}$
(B) $\mathrm{n} .2^{\mathrm{n}+1}$
(C) $n \cdot 2^{\mathrm{n}}$
(D) $\mathrm{n} \cdot 2^{\mathrm{n}-2}$
20. Fractional part of $\frac{2^{78}}{31}$ is
(A) $\frac{2}{31}$
(B) $\frac{4}{31}$
(C) $\frac{8}{31}$
(D) $\frac{10}{31}$
21. $(103)^{86}-(86)^{103}$ is divisible by
(A) 7
(B) 13
(C) 17
(D) 23
22. $2^{3 \mathrm{n}}-\mathrm{bn}-\mathrm{a}$ is divisible by 49 then (a, b) is
(A) $(-1,-7)$
(B) $(1,7)$
(C) $(1,49)$
(D) $(7,49)$
23. The number of dissimilar terms in the expansion of $(a+b+c)^{2 n+1}-(a+b-c)^{2 n+1}$ is
(A) $(\mathrm{n}+1)^{2}$
(B) $(\mathrm{n}-1)^{2}$
(C) $4 n^{2}-1$
(D) none of these
24. The numbers of terms in the expansion of $\left(a^{3}+\frac{1}{a^{3}}+1\right)^{100}$ is
(A) 201
(B) 300
(C) 200
(D) ${ }^{100} \mathrm{C}_{3}$
25. The coefficient of x^{50} in the expansion of $(1+\mathrm{x})^{1000}+2 \mathrm{x}(1+\mathrm{x})^{999}+3 \mathrm{x}^{2}(1+\mathrm{x})^{998}+\ldots+1001 \mathrm{x}^{1000}$ is
(A) ${ }^{1000} \mathrm{C}_{50}$
(B) ${ }^{1001} \mathrm{C}_{50}$
(C) ${ }^{1002} \mathrm{C}_{50}$
(D) 2^{1001}
26. The coefficient of term independent of x in the expansion of $\left(\frac{x+1}{x^{\frac{2}{3}}-x^{\frac{1}{3}}+1}-\frac{x-1}{x-x^{\frac{1}{2}}}\right)^{10}$
(A) 70
(B) 112
(C) 105
(D) 210
27. The value of $\left[(\sqrt{2}+1)^{6}\right]$, where $[x]$ represents integral part of ' x ' is
(A) 199
(B) 198
(C) 197
(D) 196
28. If in the expansion of $(1+x)^{m}(1-x)^{n}$, the coefficient of x and x^{2} are 3 and -6 respectively, then m is
(A) 6
(B) 9
(C) 12
(D) 24
29. For $2 \leq r \leq n,\binom{n}{r}+2\binom{n}{r-1}+\binom{n}{r-2}$ is equal to
(A) $\binom{\mathrm{n}+1}{\mathrm{r}-1}$
(B) $2\binom{\mathrm{n}+1}{\mathrm{r}+1}$
(C) $2\binom{\mathrm{n}+2}{\mathrm{r}}$
(D) $\binom{n+2}{r}$
30. Coefficient of t^{24} in $\left(1+\mathrm{t}^{2}\right)^{12}\left(1+\mathrm{t}^{12}\right)\left(1+\mathrm{t}^{24}\right)$ is
(A) ${ }^{12} \mathrm{C}_{6}+3$
(B) ${ }^{12} \mathrm{C}_{6}+1$
(C) ${ }^{12} \mathrm{C}_{6}$
(D) ${ }^{12} \mathrm{C}_{6}+2$
