4. Linear Combinations

Definition 1. Let a, b be integers. Any expression of the form $a x+b y$ where $x, y \in \mathbb{Z}$ is called a linear combination of a and b.

For example, let $a=4$ and $b=7$. Some linear combinations of 4 and 7 are:

$$
\begin{aligned}
0 & =4(0)+7(0) \\
4 & =4(1)+7(0) \\
7 & =4(0)+7(1) \\
11 & =4(1)+7(1) \\
15 & =4(2)+7(1) \\
1 & =4(2)+7(-1) \\
-3 & =4(-2)+7(1) \\
-4 & =4(-1)+7(0)
\end{aligned}
$$

In fact, it is easy to see that since 1 is a linear combination of 4 and 7 then every integer is a linear combination of 4 and 7 : Let m be an integer. Then multiplying the equation $1=$ $4(2)+7(-1)$ by m, we have $m=4(2 m)+7(-m)$, showing that m is indeed a linear combination of 4 and 7 .

Exercises:

1. Let a and b be integers (not both zero) and $d=\operatorname{gcd}(a, b)$. Must divide every linear combination of a and b ?
2. Suppose u and v are linear combinations of a and b. Show that any linear combination of u and v is a linear combination of a and b.

Proposition 2. Let a and b be integers (not both zero). Then $\operatorname{gcd}(a, b)$ is a linear combination of a and b.

Proof. Consider the equations in the Euclidean algorithm:

$$
\begin{aligned}
a & =b q_{1}+r_{1} \\
b & =r_{1} q_{2}+r_{2} \\
r_{1} & =r_{2} q_{3}+r_{3} \\
& \cdots \\
r_{n-2} & =r_{n-1} q_{n}+r_{n} \\
r_{n-1} & =r_{n} q_{n}+0
\end{aligned}
$$

We will show by PCI that each remainder r_{i}, for $1 \leq i \leq n$, is a linear combination of a and b. Since $r_{1}=a+b\left(-q_{1}\right)$, we see that r_{1} is a linear combination of a and b. Let $k>1$ and assume that r_{i} is a linear combination of a and b for all $i<k$. Now, from the k th equation in
the algorithm, we have $r_{k}=r_{k-2}-r_{k-1} q_{k}$. That is, r_{k} is a linear combination of r_{k-2} and r_{k-1}. By the induction hypothesis, we know that r_{k-1} and r_{k-2} are linear combinations of a and b. Thus, by the exercise above, this means that r_{k} is a linear combination of a and b. By PCI, this proves that each remainder is a linear combination of a and b. In particular, this holds for $r_{n}=\operatorname{gcd}(a, b)$.

The above proof is actually constructive. That is, it can be used to find integers x and y such that expressing $\operatorname{gcd}(a, b)=a x+b y$. One first uses the Euclidean Algorithm to find the gcd, and then go back through each step (starting from the top) to write the remainders as linear combinations of a and b. We illustrate with the following example.
Example: Express gcd $(141,120)$ as a linear combination of 141 and 120.
Solution: Using the Euclidean algorithm on 141 and 120, we get

$$
\begin{aligned}
141 & =120(1)+21 \\
120 & =21(5)+15 \\
21 & =15(1)+6 \\
15 & =6(2)+3 \\
6 & =3(2)+0,
\end{aligned}
$$

so $\operatorname{gcd}(141,120)=3$. We now use "back substitution" to write each of the remainders as linear combinations of 141 and 120. Most students find it helpful to use variables (usually a and b) for 141 and 120 to keep track of the 141's and the 120's in the equations. So we start by letting $a=141$ and $b=120$ and substitute these letters into the first equation above. Then we find the remainder as a linear combination of a and b and substitute into the next equation in the Euclidean Algorithm. We keep doing this until we reach the gcd.

$$
\begin{aligned}
a=b+21 & \Longrightarrow 21=a-b \\
b=(a-b)(5)+15 & \Longrightarrow 15=6 b-5 a \\
a-b=(6 b-5 a)(1)+6 & \Longrightarrow 6=6 a-7 b \\
6 b-5 a=(6 a-7 b)(2)+3 & \Longrightarrow 3=20 b-17 a
\end{aligned}
$$

Thus, we have $3=141(-17)+120(20)$. (You should always check your answer at this point.)

Exercises:

1. Express $\operatorname{gcd}(878,421)$ as a linear combination of 878 and 421.
2. Let a and b be integers, not both zero, and let $d=\operatorname{gcd}(a, b)$. Prove that an integer m is a linear combination of a and b if and only if $d \mid m$.

Homework:

1. Express $\operatorname{gcd}(573,366)$ as a linear combination of 573 and 366.
2. Suppose $d=\operatorname{gcd}(a, b)$ and e is any common divisor of a and b. We know that $e \leq d$. Must $e \mid d$?
3. Let a and b be integers, not both zero. Prove that $\operatorname{gcd}(a, b)=1$ if and only if $1=a x+b y$ for some $x, y \in \mathbb{Z}$.
4. Let a, b, d, x, y, d be integers such that $d=a x+b y$, and $d>0$. Must $d=\operatorname{gcd}(a, b)$?
