Q. 1 If $\alpha, \beta$ are the root of a quadratic equation $x^{2}-3 x+5=0$ then the equation whose roots are $\left(\alpha^{2}-3 \alpha+7\right)$ and
( $\beta^{2}-3 \beta+7$ ) is
(A) $x^{2}+4 x+1=0$
(B) $x^{2}-4 x+4=0$
(C) $x^{2}-4 x-1=0$
(D) $x^{2}+2 x+3=0$
Q. 2 If $\alpha, \beta$ are root of the equation $x^{2}-5 x+6=0$ then the equation whose roots are $\alpha+3$ and $\beta+3$ is
(A) $x^{2}-11 x+30=0$
(B) $(x-3)^{2}-5(x-3)+6=0$
(C) Both (A) and (B)
(D) none
Q. 3 If a, p, q are non-zero real numbers, the two equations $2 a^{2} x^{2}-2 a b x+b^{2}=0$ and $p^{2} x^{2}+3 p q x+q^{2}=0$ have
(A) No common root
(B) One common root if $2 a^{2}+b^{2}=p^{2}+q^{2}$
(C) Two common roots if $3 \mathrm{pq}=2 \mathrm{ab}$
(D) Two common roots iff $3 \mathrm{qb}=2 \mathrm{ap}$
Q. 4 If $\mathrm{a}>\mathrm{b}>0$ are two real numbers, the value of
$\sqrt{a b+(a-b) \sqrt{a b+(a-b) \sqrt{a b+(a-b) \sqrt{a b+\ldots .}}}}$ is
(A) Independent of $b$
(B) Independent of a
(C) Independent of both $A$ and $B$
(D) Dependent on both A and B
Q. 5 The equation $x^{2}+(1+2 \sin \theta) x+\sin 2 \theta(\sin \theta-\cos \theta)=0$ has roots of equal magnitude but opposite signs for
(A) Only one value of $\theta$
(B) Only two values of $\theta$
(C) Infinitely many values of $\theta$ (D) No value of $\theta$
Q. 6 The number of solutions of the equation
$4 x(x-3)-5|2 x-3|+13=0$ is
(A) I
(B) 2
(C) 3
(D) 4
Q. 7 The quadratic expression $21+12 x-4 x^{2}$ are
(A) The least value 5
(B) The highest value 30
(C) The highest value 21
(D) None of these
Q. 8 The roots of $\mathrm{x}^{2}-8|\mathrm{x}|+12=0$
(A) Do not form a progression
(B) Form an A..P. with Zero sum
(C) Form an A.P. with non-zero sum
(D) Forma G.P.
Q. 9 The quadratic equation with real coefficients one of whose complex roots has the real part 12 and modulus 13 is
(A) $x^{2}-12 x+13=0$
(B) $\mathrm{x}^{2}-24 \mathrm{x}+13=0$
(C) $\mathrm{x}^{2}-24 \mathrm{x}+169=0$
(D) $x^{2}-24 x-13=0$
Q. 10 The quadratic equation
$(3+\sin \theta) x^{2}+(2 \cos \theta) x+2-\sin \theta=0$ has
(A) Equal roots for all $\theta$
(B) Real and distinct roots for all $\theta$
(C) Complex roots for all $\theta$
(D) Real or complex roots depending upon $\theta$
Q. 11 If $a, b, c$ are real and $a \neq b$, then the roots of the equation 2 $(a-b) x^{2}-11(a+b+c) x-3(a-b)=0$ are -
(A) real and equal
(B) real and unequal
(C) purely imaginary
(D) none of these
Q. 12 The quadratic expression $21+12 \mathrm{x}-4 \mathrm{x}^{2}$ takes -
(A) the least value 5
(B) the greatest value 30
(C) the greatest value 21
(D) none of these
Q. 13 If $\sin ^{x} \theta+\cos ^{x} \theta \geq 1,0<\theta<\pi / 2$, then -
(A) $x \in(-\infty, 2]$
(B) $x \in[-2,2]$
(C) $x \in[-1,1]$
(D) $x \in[2, \infty]$
Q. 14 The number of positive terms in the expansion of $\left(1-2 x+x^{2}\right)^{n}\left(1+x+x^{2}\right)^{2 n} \cdot x>0$ and $n \in N$ is
(A) $n$
(B) $n+1$
(C) $2 n+1$
(D) $(\mathrm{n}+1)(2 \mathrm{n}+1)$
Q. 15 If $\sin x+\cos x=\sqrt{y+\frac{1}{y}}, x \in[0, \pi]$, then
(A) $x=\pi / 4$
(B) $x=\pi / 2$
(C) $x=\pi /$
(D) $x=3 \pi / 4$
Q. 16 The inequalities $y(-1) \geq-4, y(1) \leq 0$ and $y(3) \geq 5$ are known to hold for $y=a x^{2}+b x+c$ then the least value of ' $a$ ' is
(A) $-1 / 4$
(B) $-1 / 3$
(C) $1 / 4$
(D) $1 / 8$
Q. 17 If the roots of the equation, $\frac{1}{x+p}+\frac{1}{x+q}=\frac{1}{r}$ are equal in magnitude but opposite in sign then $\mathrm{p}+\mathrm{q}$ is equal to
(A) r
(B) 2 r
(C) $(1 / 2) \mathrm{r}$
(D) none of these
Q. 18 The roots of the equation $x^{2}-2 \sqrt{2} x+1=0$ are (2010)
(A) Real and different
(B) Imaginary and different
(C) Real and equal
(D) Rational and different
Q. 19 If $p$ and $q$ are roots of the equation $x^{2}-2 x+A=0$ and $r$ and $s$ be roots of the equation $x^{2}-18 x+B=0$ if $p<q<r<s$ be in A.P., then $A$ and $B$ are respectively -
(A) $-3,77$
(B) 3,77
(C) $3,-77$
(D) none of these
Q. 20 If the roots of equation $x^{2}+b x+a c=0$ are $\alpha, \beta$ and roots of the equation $x^{2}+a x+b c=0$ are $\alpha, \gamma$ then the value of $\alpha$, $\beta, \lambda$ respectively -
(A) a, b, c
(B) b, c, a
(C) $\mathrm{c}, \mathrm{a}, \mathrm{b}$
(D) none of these
Q. 21 If the quadratic equations $\mathrm{ax}^{2}+2 \mathrm{cx}+\mathrm{b}=0$ and $a x^{2}+2 b x+c=0(b \neq c)$ have a common root, then $a+4 b+4 c$ is equal to -
(A) -2
(B) -1
(C) 0
(D) 1
Q. 22 The value of $m$ for which one of the roots of $x^{2}-3 x+2 m=0$ is double of one of the roots of $\mathrm{x}^{2}-\mathrm{x}+\mathrm{m}=0$ is
(A) 0,2
(B) $0,-2$
(C) $2,-2$
(D) none of these
Q. 23 If the expression $x^{2}-11 x+a$ and $x^{2}-14 x+2 a$ must have a common factor and $\mathrm{a} \neq 0$, then, the common factor is -
(A) $(x-3)$
(B) $(x-6)$
(C) $(x-8)$
(D) none of these
(2009)
Q. 24 If the roots of the equation $x^{2}+3 x+2=0$ and $x^{2}-x+\lambda=$ 0 are in same ratio then the value of $\lambda$ is given by-
(A) $2 / 7$
(B) $2 / 9$
(C) $9 / 2$
(D) $7 / 2$
Q. 25 The sum of all real roots of the equation $|x-2|^{2}+|x-2|-2=0$, is -
(A) 0
(B) 8
(C) 4
(D) none of these
Q. 26 The minimum value of $f(x)=x^{2}-2 b x+2 c^{2}$ is more than the maximum value of $g(x)=-x^{2}-2 c x+b^{2}$, $x$ being real, for -
(A) $|\mathrm{c}|<|\mathrm{b}| \sqrt{2}$
(B) $0<$ c $<$ b $\sqrt{2}$
(C) $|\mathrm{c}|>|\mathrm{b}| \sqrt{2}$
(D) $\mathrm{b} \sqrt{2}<\mathrm{c}<0$
Q. 27 If the roots of $x^{2}-b x+c=0$ are two consecutive integers, then $b^{2}-4 c$ is -
(A) 0
(B) 2
(C) 3
(D) 1
Q. 28 If $a, b, c$ are non-zero real numbers, then two equations $2 a^{2} x^{2}-2 a b x+x^{2}=0$ and $a x^{2}+b x-c^{2}=0$ have -
(A) no common root
(B) two common roots
(C) one common root if $\mathrm{a}>0$ (D) no common root if $\mathrm{a}>0$
Q. 29 Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$ and $\mathrm{ax} \mathrm{a}^{2}+\mathrm{bx}+\mathrm{c}=0$ has two negative roots, then -
(2008)
(A) a, b, c are of same sign
(B) $a,-b$, c are of same sign
(C) a, b, -c are of same sign
(D) $a,-c$ are of same sign
Q. 30 The equation $\pi^{x}=-2 x^{2}+6 x-9$ has -
(A) one solution
(B) two solutions
(C) infinite solutions
(D) no solution
Q. 31 Number of integral values of $x$ satisfying the inequality $\left(3^{\frac{5}{2} \log _{3}(12-3 x)}\right)-\left(3^{\log _{2} x}\right)>32$ are $\qquad$
(A) 2
(B) 6
(C) 8
(D) 10
Q. $32 \frac{8 x^{2}+16 x-51}{(2 x-3)(x+4)}>3$, if $x$ satisfies
(A) $x<-4$
(B) $-3<x<3 / 2$
(C) $x>5 / 2$
(D) all the above
Q. 33 Number of solution for the system of inequalities
$\left\{\begin{array}{l}2 x+1<x+2, \\ x-1>2 x\end{array}\right.$
(2007)
(A) 1
(B) 2
(C) 3
(D) 0
Q. 34 Solution for the system of inequalities : $\left\{\begin{array}{l}x^{2}-3 x+2 \geq 0 \\ x-x^{2}+2 \geq 0\end{array}\right.$
(A) $[-1,1] \cup\{2\}$
(B) $[1,1] \cup\{2\}$
(C) $[1,-1] \cup\{2\}$
(D) $[-1,-1] \cup\{2\}$

