MOTION

If we look around us, we find that there are number of objects which are in motion. An object is said to be in motion if it change its position with the passage of time. In other words, the movement of an object is known as the motion of the object.

Now observe the following bodies or objects and we will be able to understand the meaning of the term "motion". Cars, cycles, motorcycles, scooters, buses, rickshaws, trucks etc. running on the road, Birds flying in the sky, Fish swimming in water. All these objects are in motion. Very small objects like atoms and molecules and very large objects like planets, stars and galaxies are in motion.

Thus, all objects ranging from a smallest atom to the largest galaxy are in continuous motion.

TYPES OF MOTION :

(A) Linear motion : A body has linear motion if it moves in a straight line or path.

Ex. (i) Motion of a moving car on a straight road.
(ii) Motion of a ball dropped from the roof of a building.
(B) Circular (or rotational) Motion : A body has circular motion if it moves around a fixed point.

A vertical passing through the fixed point around which the body moves is known as axis of rotation.

Ex. (i) Motion of an electric fan.
(ii) Motion of merry-go-round

(iii) Motion of a spinning top.
(C) Vibratory motion :

A body has vibratory motion if it moves to and fro about a fixed point.
Ex. (i) Motion of a pendulum of a wall clock.
(ii) Motion of a simple pendulum.

MOTION IN LIVING AND NON LIVING OBJECTS :

It is a common observation that all living objects, whether plants or animals can move in some way or the other. The motion in animals is more apparent than the motion in plants.

The motion in animals is called LOCOMOTION.
Plants also move but their motion is not apparent as they cannot move from place to place. Their motion takes place in parts. As a plant grows so does its roots and its leaves.

MECHANICS :

The branch of physics which deals with the motion of non-living objects in everyday life is called mechanics or Classical mechanics. It is of two types.
(i) Statics and
(ii) Dynamics

STATICS : Statics deals with bodies at rest under the effect of different forces.
DYNAMICS : Dynamics deals with the bodies in motion. It is further of two types :
(i) Kinematics : Kinematics, which is derives from a Greek word kinema meaning motion, is a branch of Physics, which deals with the motion of a body without taking into account the cause of motion.
(ii) Dynamics proper : Dynamics proper, which is derived from a Greek word dyna meaning power it is a branch of Physics, which deals with the motion of bodies by taking into account the cause of motion (force).

CONCEPT OF A POINT OBJECT, REST AND MOTION

Point object : An extended object can be treated as a point object when the distance travelled by the object is much greater than its own size.
"A point object is one, which has no linear dimensions but possesses mass."
Ex. (i) Study of motion of a train travelling from Kota to New Delhi.
(ii) Revolution of earth around the sun for one complete revolution.

Rest :- A body is said to be at rest when its position does not change with time respect to the observer.
Motion :- A body is said to be in motion when its position changes with time respect to the observer.

Describe motion :

When a tree, is observed by an observer A sitting on a bench, the tree is at rest. This is because position of the tree is not changing with respect to the observer A.

Now, When the same tree T is observed by an observer sitting in a superfast train moving with a velocity v, then the tree is moving with respect to the observer because the position of tree is changing with respect to the observer B.

Rest and motion are relative terms : There is nothing like absolute rest. This means that an object can be at rest and also in motion at the same time i.e. all objects, which are stationary on earth, are said to be at rest with respect to each other, but with respect to the sun are making revolutions at $30 \mathrm{kmh}^{-1}$. In order to study motion, therefore, we have to choose a fixed position or point with respect to which the motion has to be studied. Such a point or fixed position is called a reference point or the origin. In order to describe the motion of an object we need to keep in mind three things;
(i) The distance of the body from a reference point. This reference point is called the origin of the motion of the body.
(ii) The direction of motion of the body.
(iii) The time of motion.

DOYOUKNOW?

- Motion is an integral part of this universe. Everybody around us is in motion. From the motion of the electrons in their orbitals around the nucleus to the motion of the centre universe around its centre.
lants also show motion. Plants move towards stimulus. Plants also move when they grow in size. But since these movements are very slow, These are hardly perceived for a small rinterval of time.

Mechanics deals with the motion of nonliving objects.
Kinematics deals with the motion of non-living objects without taking into account the cause of their motion.

- Motion along a straight line is called translatory or rectilinear motion
- A point object is one whose dimensioons are very small as compared to the distance it travels.
- Rest and motion are relative terms. A body can be at rest as well as in motion at the same time.

SCALAR AND VECTOR QUANTITIES

Scalar Quantity :- A quantity that has only magnitude no direction is called a scalar quantity.
Ex. mass, time, distance, speed, work, power, energy, charge, area, volume, density, pressure, potential, temperature etc.

Vector Quantity :- The physical quantity that has magnitude as well as direction are called vector quantity.
Ex. velocity, acceleration, force, displacement, momentum, weight, electric field etc.
DIFFERECE BETWEEN SCALAR \& VECTOR QUANTITIES :

Scalar quantities		Vector quantities
1	These are completely specified by their magnitude only.	These are completely specified by their magnitude as well as direction.
2	These change by change of their magnitude only	These change by change of either their magnitude or direction or both
3	These are added or subtracted by laws of ordinary algebra like $4 \mathrm{~m}+5 \mathrm{~m}=9 \mathrm{~m}$.	These are added or subtracted by laws of vector addition.

DISTANCE AND DISPLACEMENT

Distance : The length of the actual path between the initial and the final position of a moving object in the given time interval is known as the distance travelled by the object.

Distance $=$ Length of path I (ACB)
Distance is a scalar quantity.

Unit In SI system : metre (m)
In CGS system : centimetre (cm)
Large unit Kilometre (km)

Displacement:- The shortest distance between the initial position and the final position of a moving object in the given interval of time from initial to the final position of the object is known as the displacement of the object. Displacement of an object may also be defined as the change in position of the object in a particular direction. That is,

Displacement of an object $=$ Final position - Initial position of the object.
Displacement of an object may be zero but the distance travelled by the object in never zero.
Distance travelled by an object is either equal or greater than the magnitude of displacement of the object.
Displacement $=$ Length of path II (AB) A to B,
displacement is vector quantities.
Units In SI system : metre (m)
In CGS system : centimetre (cm)
Ex. A train goes from station A to station B as shown in figure. Calculate
(i) the distance travelled by the train and
(ii) the magnitude of the displacement of the train on reaching station B .

Sol. (i) Distance travelled by the train $=50+100+200+400=750 \mathrm{~km}$.
(ii) Magnitude of the displacement in going from station A to station $\mathrm{B}=400 \mathrm{~km}$.

DIFFERENCES BETWEEN DISTANCE AND DISPLACEMENT		
	Distance	Displacement
1	It is defined as the actual path traversed by a body.	It is the shortest distance between two points which the body moves.
2	It is a scalar quantity	It is a vector quantity
3	It can never be negative or zero	It can be negative, zero or positive.
4	Distance can be equal to or greater than displacement	Displacement can be equal to or less than distance.
5	Distance travelled is not a unique path between two points.	Displacement is a unique path between two points.
6	The distance between two points gives full information of the type of path followed by the body.	Displacement between two points does not give full information of the type of path followed by the body.
7	Distance never decreases with time. for a moving body it is never zero.	Displacement can decrease with time for a moving body it canbe zero.
8	Distance in SI is measured in metre	Displacement in SI is measured in metre.

UNIFORM AND NON-UNIFORM MOTION

A moving body may cover equal distances in equal intervals of time or different distances in equal intervals of time. On the basis of above assumption, the motion of a body can be classified as uniform motion and nonuniform motion.

Uniform motion:

Time (in second)	0	1	2	3	4	5	6
Distance covered (in metre)	0	10	20	30	40	50	60

When a body covers equal distances in equal intervals of time however small may be time intervals, the body is said to describe a uniform motion.

Example of uniform motion -

(i) An aeroplane flying at a speed of $600 \mathrm{~km} / \mathrm{h}$
(ii) A train running at a speed of $120 \mathrm{~km} / \mathrm{h}$
(iii) Light energy travelling at a speed of $310^{8} \mathrm{~m} / \mathrm{s}$
(iv) A spaceship moving at a speed of $100 \mathrm{~km} / \mathrm{s}$

Non-uniform motion:

Time (in second)	0	1	2	3	4
Distance (in metre)	0	1	4	9	16

When a body covers unequal distances in equal intervals of time, the body is said to be moving with a nonuniform motion.

Example of non-uniform motion -

(i) An aeroplane running on a runway before taking off.
(ii) A freely falling stone under the action of gravity.
(iii) An object thrown vertically upward.
(iv) When the brakes are applied to a moving car.

NCERT QUESTIONS WITH SOLUTION

1. An object has moved through a distance. Can it have zero displacement ? If yes, support you answer with an example.

Ans. Yes, an object which has moved through a distance can have zero displacement.

Example : When a person, walking along a circular path, returns back to the starting point, after completing a circle, his displacement is zero. But he covers a distance $2 \pi r$ where ' r ' is the radius of circular path.

The displacement is zero, as the shortest distance between the initial and final position of the person is zero.
2. A farmer moves along the boundary of a square field of side 10 m in 40 s . What will be the magnitude of displacement of the farmer at the end of 2 minutes 20 seconds ?
Ans. The perimeter square field $A B C D=4 \quad 10 \mathrm{~m}=40 \mathrm{~m}$.
Time for moving around the 10 m square field once $=40 \mathrm{~s}$.
Time for journey of farmer $=2 \mathrm{~min}$ and $20 \mathrm{~s}=140 \mathrm{~s}$.
Number of times the farmer moves around the square field $=\frac{140}{40}=3.5$ times.
For going once around the square field, the displacement $=0$
For going thrice around the square field, the displacement $=0$
For going $\frac{1}{2}$ times the square field, the distance covered $=40 \mathrm{~m} \quad \frac{1}{2}=20 \mathrm{~m}$.

It is obvious from the figure, that if the farmer starts from pt A , then he will cover 10 m along AB and then 10 m along BC .
Therefore displacement of farmer from the point A to point C is

$$
\mathrm{AC}=\sqrt{(\mathrm{AB})^{2}+(\mathrm{BC})^{2}}=\sqrt{(10)^{2}+(10)^{2}}=14.14 \mathrm{~m}
$$

3. Which of the following is true for displacement ?
(a) It cannot be zero.
(b) Its magnitude is greater than the distance travelled by the object.

Ans. None of the statement (a) or (b) is true for displacement.
4. Distinguish between speed and velocity.

Ans. (i) Speed is the rate of change of motion but velocity is the rate of change of motion in a specified direction.
(ii) Speed is a scalar quantity, but velocity is a vector quantity.
5. Under what condition is the magnitude of average velocity of an object equal to its average speed?

Ans. The magnitude of average velocity of an object is equal to its average speed when the velocity of an object changes at uniform rate, i.e., the body is in uniformly accelerated motion. If a body is moving with uniform acceleration.
Initial velocity $=u$, Final velocity $=v$
Average speed $=$ Average velocity $=\frac{u+v}{2}$.

SPEED

Speed of a body is the distance travelled by the body per unit time. or The rate of change of motion is called speed.

$$
\text { Speed }=\frac{\text { distance travelled }}{\text { time taken }}
$$

If a body covers a distance S in time t then speed,

$$
\mathrm{v}=\frac{\mathrm{S}}{\mathrm{t}}
$$

Unit: In SI system : m / s or ms^{-1}
In CGS system : cm / s or cms^{-1}
Other km / h or kmh^{-1}
Important note : While comparing the speed of different bodies we must convert all speeds into same units. Speed is a scalar quantity, because it has the magnitude but no direction.

Uniform speed :- When a body covers equal distance in equal intervals of time, the body is to be moving with a uniform speed or constant speed.
Ex. (i) A train running with a speed of $120 \mathrm{~km} / \mathrm{h}$
(ii) An aeroplane flying with a speed of $600 \mathrm{~km} / \mathrm{h}$

Non-uniform speed :- When a body covers unequal distances in equal intervals of time, the body is said to be moving with non-uniform speed or variable speed.
Ex. (i) A car running on busy road.
(ii) An aeroplane landing on runway.

Average speed :- The average speed of the body in a given time interval is defined as the total distance travelled, divided by the time interval.

$$
\text { Average speed }=\frac{\text { Total distance travelled }}{\text { Total time taken }}
$$

Ex. A car travels first half distance with a uniform u and next half distance travels with a uniform speed v. Find its average speed.

Sol. Total distances $=\frac{\mathrm{d}}{2}+\frac{\mathrm{d}}{2}=\mathrm{d}$
Total time $=\mathrm{t}_{1}+\mathrm{t}_{2}=\mathrm{t}$

$$
\begin{align*}
\therefore \quad \mathrm{t}_{1} & =\frac{\mathrm{d} / 2}{\mathrm{u}} \tag{i}\\
\mathrm{t}_{2} & =\frac{\mathrm{d} / 2}{\mathrm{v}} \tag{ii}
\end{align*}
$$

$\mathrm{V}_{\mathrm{av}}=\frac{\mathrm{d}}{\mathrm{t}}$ Putting the value of equation (i) and (ii)
$V_{a v}=\frac{d}{\frac{d / 2}{u}+\frac{d / 2}{v}}=\frac{d}{\frac{d}{2}\left(\frac{1}{u}+\frac{1}{v}\right)}=\frac{2}{\frac{v+u}{u v}} \quad V_{a v}=\frac{2 u v}{u+v}$
Ex. A car travels first half time with a uniform speed u and next half time with a uniform speed v. Find its average speed.
Sol. $\binom{\because \mathrm{d}_{1}=\mathrm{u} \times \frac{\mathrm{T}}{2} \ldots$ (i) }{$\because \mathrm{d}_{2}=\mathrm{v} \times \frac{\mathrm{T}}{2} \ldots(\mathrm{ii})}$

Total distances $d=d_{1}=u \times \frac{T}{2}+v \times \frac{T}{2}$

$$
\mathrm{d}=\frac{\mathrm{uT}}{2}+\frac{\mathrm{vT}}{2}
$$

Total time $=\mathrm{T}$

$$
\begin{array}{r}
\text { Average speed }=\frac{\text { Total distance }}{\text { Total time taken }} \\
\mathrm{V}_{\mathrm{av}}=\frac{\frac{\mathrm{uT}}{2}+\frac{\mathrm{vT}}{2}}{\mathrm{~T}}=\frac{\frac{\mathrm{T}}{2}(\mathrm{u}+\mathrm{v})}{\mathrm{T}} \quad \mathrm{~V}_{\mathrm{av}}=\frac{\mathrm{u}+\mathrm{v}}{2}
\end{array}
$$

INSTANTANEOUS SPEED

The speed of a body at any particular instant of time during its motion is called the instantaneous speed of the body.

It is measured by speedometer in vehicles.

COMPETITIVE WINDOW

Comment : It can be very easily argued that
(a) The relative speed between two bodies A and B moving in the same direction with speed $\left|V_{A}\right|$ and $\left|V_{B}\right|$ i.e.
$\left|V_{\text {same }}\right|=$ difference in the speeds of two bodies A and $B=\left|V_{A}\right|-\left|V_{B}\right|$ or $\left|V_{B}\right|-\left|V_{A}\right|$
depending upon the fact whether $\left|V_{A}\right|>\left|V_{B}\right|$ or $\left|V_{B}\right|>\left|V_{A}\right|$
(b) The relative speed between the two bodies A and B moving in the opposite direction with speed $\left|\mathrm{V}_{\mathrm{A}}\right|$ and $\left|V_{B}\right|$ i.e.
$\left|V_{\text {opposite }}\right|=$ sum of the speed of the two bodies A and $B=\left|V_{A}\right|+\left|V_{B}\right|$
It should be carefully noted that equation A and B are valid only for one-dimensional motion and not in two and three dimension motion.

VELOCITY

The velocity of a body is the displacement of a body per unit time.

$$
\text { Velocity }=\frac{\text { Displacement }}{\text { Time }}
$$

The displacement covered by a body per unit time or the speed of a body in specified direction is called the velocity.
Unit: In SI system : m / s or ms^{-1}
In CGS system : cm / s or cms^{-1}
Other km / h or kmh^{-1}, $\mathrm{km} / \mathrm{min}$.
Uniform velocity

Body moving with uniform velocity
When a body covers equal displacement in equal interval of time, the body is said to be moving with a uniform velocity.

Conditions for uniform velocity :-

(i) The body must cover equal displacement in equal intervals of time.
(ii) The direction of motion of the body should not change.

Ex. (i) A train running towards south with a speed of $120 \mathrm{~km} / \mathrm{h}$.
(ii) A aeroplane flying due north-east with a speed of $600 \mathrm{~km} / \mathrm{h}$.

Very important note :-

Direction of velocity represent direction of motion of body.
$O R$
Sign of velocity represent the direction of motion of body.

Non-uniform velocity/variable velocity :

Body moving with non-uniform velocity

When a body covers unequal displacement in equal intervals of time, the body is said to be moving with variable velocity.

Body moving with variable velocity

When a body covers equal distance in equal intervals of time, but its direction changes, then the body is said to be moving with variable velocity

Conditions for variable velocity :-

(i) It should cover unequal displacement in equal intervals of time.
(ii) It should cover equal distances in equal intervals of time but its direction must change.

Ex. (i) A car running towards north on a busy road has a variable velocity as the displacement covered by it per unit time changes with change in the road condition.
(ii) The blades of a rotating ceiling fan, a person running around a circular track with constant speed etc. are the example of variable velocity, as the direction of the moving body changes in each case.

Average velocity :

Total displacement divided by total time is called an average velocity.

$$
\text { Average velocity }=\frac{\text { Total displacement }}{\text { Total time taken }}
$$

$$
V_{\mathrm{av}}=\frac{\mathrm{x}_{2}-\mathrm{x}_{1}}{\mathrm{t}_{2}-\mathrm{t}_{1}}
$$

OR

The arithmetic mean of initial velocity and final velocity for a given time period, is called average velocity.

$$
\text { Average velocity }=\frac{\text { Initial velocity }+ \text { Final velocity }}{2}
$$

$$
\mathrm{v}_{\mathrm{av}}=\frac{\mathrm{u}+\mathrm{v}}{2} \quad \text { where } \mathrm{u}=\text { initial velocity, } \mathrm{v}=\text { final velocity }
$$

Memorise : When a body moves with constnat velocity, the average velocity is equal to instantaneous velocity. The body is said to be in uniform motion.

DIFFERENCE BETWEEN SPEED AND VELOCITY		
Speed		Velocity
1	It is defined as the rate of change of distance	It is the shortest distance between two points between which the body moves.
2	It is a scalar quantity	It is a vector quantity
3	It can never be negative or zero	It can be negative, zero or positive
4	Speed is velocity without direction.	Velocity is directed speed
5	Speed may or may not be equal to velocity.	A body mass possess different velocities but the same speed.
6	Speed never decreases with time. For a moving body it is never zero.	Velocity can decrease with time. For a moving body it can be zero.
7	Speed in SI is measured in ms^{-1}	Velocity in SI, is measured in ms^{-1}.

ACCELERATION

The rate of change of velocity of a moving body with time is called acceleration.

$$
\text { Acceleration }=\frac{\text { Change in velocity }}{\text { Time taken for change }}
$$

but change in velocity $=$ final velocity - initial velocity.

$$
\begin{aligned}
& \text { Acceleration }=\frac{\text { Final velocity }- \text { Inital velocity }}{\text { Time taken for change }} \\
& \overrightarrow{\mathrm{a}}=\frac{\overrightarrow{\mathrm{v}}-\overrightarrow{\mathrm{u}}}{\mathrm{t}}
\end{aligned}
$$

If body moves with uniform velocity, then $v=u$ and then acceleration is zero i.e. $a=0$.

Unit of accelration

Acceleration $=\frac{\text { Change in velocity }}{\text { Time }}$, Acceleration $=\frac{\text { Unit of velocity }}{\text { Unit of time }}$, Acceleration $=\frac{\mathrm{m} / \mathrm{s}}{\mathrm{s}}=\mathrm{m} / \mathrm{s}^{2}$
In SI system is $\mathrm{m} / \mathrm{s}^{2}$ or ms^{-2}
In CGS system is $\mathrm{cm} / \mathrm{s}^{2}$ or cms^{-2}

Positive Acceleration : If the velocity of an object increases with time in the direction of the motion of the object, then the acceleratin of the body is known as positive acceleration.

In this case, the object pick up the speed in a particular direction (i.e., velocity). For example, if an object starts from rest and its velocity goes on increasing with time in the direction of its motion, then the object has positive acceleration. The direction of positive acceleration is in the direction of motion of the object.

Negative Acceleration : If the velocity of an object decreases with time, then the acceleration of the object is known as negative acceleration.

It is written as $-\vec{a}$
For example, if an object moving with certain velocity is brought to rest then the object is said to have negative acceleration.

Acceleration without changing speed :

When an object moves in a circular path with constant speed, then its velocity changes due to the change in the direction of motion of the object. hence, the object is accelerated without changing its speed.

In this case, the direction of acceleration is towards the centre of the circular path.

DO YOUKNOW?

Positive or negative sign of acceleration always shows the direction of acceleration or direction of force but not represent direction of motion of body.

Acceleration which oppose the motion of a body is called retardation or negative acceleration.
If sign of velocity and acceleration are same it means speed of body will always increase.
If both are opposite sign it means speed of body will always decrease.

Uniform acceleration :

Uniformly accelerating body

When a body undergoes equal changes in velocity in equal intervals of time, the body is said to be moving with a uniform acceleration

Ex. (i) Motion of a freely falling body.
(ii) Motion of a ball rolling down on an inclined plane.

Non-uniform acceleration or variable acceleration :

When a body describes unequal change in velocity in equal intervals of time, the body is said to be moving with non-uniform acceleration.s

Ex. (i) The motion of a bus leaving or entering the bus stop.
(ii) The motion of a train leaving or entering the platform.
(iii) A car moving on a busy road has non-uniform acceleration.

EQUATIONS OF UNIFORMLY ACCELERATED MOTION

These equations give relationship between initial velocity, final velocity, time taken, acceleration and distnace travelled by the bodies.

FIRST EQUATION OF MOTION :

A body having an initial velocity ' u ' acted upon by a uniform acceleration 'a' for time ' t ' such that final velocity of the body is ' v '.

Where ; $\quad \mathrm{v}=$ final velocity of the body $\quad \mathrm{u}=$ initial velocity of the body
$\mathrm{a}=$ Acceleration $\quad \mathrm{t}=$ time taken

SECOND EQUATION OF MOTION :

It gives the distance travelled by a body in time t.
A body having an initial velocity ' u ' acted upon by a uniform acceleration 'a' for time ' t ' such that final velocity of the body is ' v ' and the distance covered is ' s '.

The average velocity is given by :-
Average velocity $=\frac{\text { Initial velocity }+ \text { Final velocity }}{2} \quad \mathrm{~V}_{\mathrm{av}}=\frac{\mathrm{u}+\mathrm{v}}{2}$
distance covered $=$ average velocity time $\quad \square=\left(\frac{v+u}{2}\right) \mathrm{t}$
but $v=u+$ at (from first equation of motion)

Thus,

$$
\begin{aligned}
& s=\left(\frac{u+a t+u}{2}\right) t=\left(\frac{2 u}{2}+\frac{a t}{2}\right) t \\
& s=u t+\frac{1}{2} a t^{2}
\end{aligned}
$$

Where ; $\mathrm{s}=$ distance travelled by the body in time t
$\mathrm{u}=$ initial velocity of the body
$\mathrm{a}=$ Acceleration
$\mathrm{t}=$ time taken
THIRD EQUATION OF MOTION :
A body having an initial velocity ' u ' moving with a uniform acceleration 'a' for time ' t ' such that final velocity ' v ' and the distance covered is 's'. the third equation of motion is $v^{2}=u^{2}+2$ at. it gives the velocity acquired by a body in travelling a distance s.

$$
\begin{align*}
& v=u+a t \tag{i}\\
& s=u t+\frac{1}{2} a t^{2} \tag{ii}
\end{align*}
$$

Squaring eq. (i), we have

$$
\begin{align*}
& v^{2}=(u+a t)^{2} \\
& v^{2}=u^{2}+2 u a t+a^{2} t^{2} \\
& v^{2}=u^{2}+2 a\left(u t+\frac{1}{2} a t^{2}\right) \tag{iii}
\end{align*}
$$

Substituting the value of eq (ii) in eq.(iii), we get.

$$
v^{2}=u^{2}+2 a s
$$

NCERT QUESTIONS WITH SOLUTION

6. What does speedometer of an automobile measure ?

Sol. The speedometer measures the instantaneous speed of the automobile at some particular time.
7. What does the path of an object look like when it is in uniform motion ?

Sol. The path of an object will be a straight line.
8. During an experiment, a signal from a spaceship reached the ground station in five minutes. What was the distance of the spaceship from the ground station? The signal travels at the speed of light, that is $310^{8} \mathrm{~ms}^{-1}$.
Sol. Speed of signal $=3 \quad 10^{8} \mathrm{~ms}^{-1}$
Time in which signal reaches ground $=5 \mathrm{~min}=5 \quad 60=300 \mathrm{~s}$
Distance of spaceship from the ground level $=$ speed time $=3 \quad 10^{8} \quad 300=9 \quad 10^{10} \mathrm{~m}$
9. When will you say a body is in
(i) Uniform acceleration.
(ii) Non uniform acceleration ?

Sol. (i) A body is in uniform acceleration when equal changes in velocity take place in equal intervals of time, however small these intervals may be.
(ii) A body is said to be possessing non-uniform acceleration when unequal changes in velocity take place in equal intervals of time, however small these intervals may be.
10. A bus decreases its speed from $80 \mathrm{~km} \mathrm{~h}^{-1}$ to $60 \mathrm{~km} \mathrm{~h}^{-1}$ in 5 s . Find the acceleration of the bus.

Sol. Given $\mathrm{t}=5 \mathrm{~s}$
Initial speed of bus
$\mathrm{u}=80 \mathrm{~km} \mathrm{~h}^{-1}=80 \quad \frac{5}{18}=22.2 \mathrm{~ms}^{-1}$
Final speed of the bus
$\mathrm{v}=60 \mathrm{~km} \mathrm{~h}^{-1}=60 \quad \frac{5}{18}=16.7 \mathrm{~ms}^{-1}$
Now acceleration is given by the relation
$a=\frac{v-u}{t}=\frac{16.7-22.2}{5}=-1.1 \mathrm{~ms}^{-1}$
11. A train starting from a railway station and moving with uniform acceleration attains a speed $40 \mathrm{kmh}^{-1}$ in 10 minutes. Find its acceleration.

Sol. Given $\mathrm{t}=10 \mathrm{~min}=10 \quad 60=600 \mathrm{~s}$
Initial speed of train, $u=0 \mathrm{~ms}^{-1}$
Final speed of train
$\mathrm{v}=40 \mathrm{~km} \mathrm{~h}^{-1}=40 \quad \frac{5}{18}=11.1 \mathrm{~ms}^{-1}$
Now acceleration is given by the relation

$$
\mathrm{a}=\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}}=\frac{11.1-0}{600}=0.0185 \mathrm{~ms}^{-1}
$$

12. What is the nature of the distance time graphs for uniform and non-uniform motion of an object ?

Sol. The distance time-graph for uniform motion is a straight line not parallel to the time axis. The distance time-graph for non-uniform motion is not a straight line. It can be a curve or a zigzag line not parallel to time axis.
13. What can you say about the motion of an object whose distance time-graph is a straight line parallel to the time axis ?

Sol. The object is stationary.
14. What can you say about the motion of an object if its speed-time graph is a straight line parallel to the time axis ?

Sol. The object has uniform motion.
15. What is the quantity which is measured by the area occupied below the velocity-time graph ?

Sol. Displacement is the quantity which is measured by the area under velocity time graph.
16. A bus starting from rest moves with a uniform acceleration of $0.1 \mathrm{~ms}^{-2}$ for 2 minutes. Find
(a) the speed acquired.
(b) the distance travelled.

Sol. Given
Initial speed of bus, $\mathrm{u}=0 \mathrm{~ms}^{-1}$
Final speed of bus, $\mathrm{v}=$?
$\mathrm{a}=0.1 \mathrm{~ms}^{-2}, \mathrm{t}=2 \mathrm{~min}=120 \mathrm{~s}$
$\mathrm{S}=$?
(i) We know, $\mathrm{v}=\mathrm{u}+\mathrm{at}$

$$
\text { or } \mathrm{v}=0+0.1 \quad 120=12 \mathrm{~ms}^{-1}
$$

(ii) $\mathrm{S}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}$

$$
\mathrm{S}=0 \quad 120+\frac{1}{2} \quad 0.1 \quad(120)^{2}=720 \mathrm{~m}
$$

Therefore
Final speed acquired $=12 \mathrm{~ms}^{-1}$
Distance travelled $=720 \mathrm{~m}$

IMPORTANT NOTE:-

- Velocity in $\mathrm{m} / \mathrm{s}=\frac{5}{18}$ velocity in km / h.
$36 \mathrm{~km} \mathrm{~h}^{-1}=36000 \mathrm{~m} \mathrm{~h}^{-1}$

$$
=\frac{36000}{60 \times 60} \mathrm{~ms}^{-1}=10 \mathrm{~ms}^{-1}
$$

$1 \mathrm{~km} \mathrm{~h}^{-1}=\frac{10}{36} \mathrm{~ms}^{-1}$ or $1 \mathrm{~km} \mathrm{~h}^{-1}=\frac{5}{18} \mathrm{~ms}^{-1}$
To convert $\mathrm{km} \mathrm{h}^{-1}$ to ms^{-1}, multiply by $5 / 18$.
¥o convert ms^{-1} to $\mathrm{km} \mathrm{h}^{-1}$, multiply by $18 / 5$.
$1 \mathrm{~km}=1000 \mathrm{~m}$
$1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}$

- Distance in kilometres should be converted into metre.
- Before solving problems, asure that the data provided have the same system of unit, i.e. either they should be in SI system or CGS system.
- If a body start from rest, its initial velocity (u) is zero, $(u=0)$
- If a moving body comes to rest/stops, its final velocity (v) is zero, ($v=0$)
- If a body is moving with uniform velocity, its acceleration is zero, (a =0)

GRAPHICAL REPRESENTATION OF MOTION

Graph :

A graph is a line, straight line or curved, showing the relation between two variable quantities of which one varies as a result of the change in the other.

The quantity which changes independently is called independent variable and the one which changes as a result of the change in the other is called dependent variable.

Plotting a graph :

- Take independent varibale along X-axis and dependent variable along Y-axis.
- Choose convenient scale so that more than $2 / 3 \mathrm{rd}$ of graph is filled.
- Draw free hand curve to join them.

Uses of graph :

- It gives a bird's eye view of the changes.
- It is used to show dependence of one quantity on the other e.g., distance or velocity on time.
- We can find distance covered in a given time.
- Slope of velocity-time graph gives acceleration.
- We can find position or velocity of body at any instant.

COMPITITIVE WINDOW

- A graph gives not only the relation between two variable quantities in a pictorial form but also enable us to study of nature of motion.
- Speed = slope of distance time graph.
- If distance-time graph is parallel to time axis, then the body is stationary.
- If distance-time graph is a straight line having constant gradient or slope, then the body has uniform motion.
- If distance-time graph is a curve with increasing gradient or slope, then the body has non-uniform motion
- If slope of distance-time graph increases, the speed of the body increases.
- If slope of distance-time graph of non-uniform motion decreases, the speed of the body decreases.

Distance/Displacement - Time graph :

This graph is plotted between the time taken and the distance covered, the time is taken along the x -axis and the distance covered is taken along the y-axis.

$$
\text { Speed }=\frac{\text { distance }}{\text { time }}
$$

- The slope of the distance-time graph gives the speed of the body.
- The slope of the displacement-time graph gives the velocity of the body.

When the body is at rest :

When position of the body does not change with time then it is said to be stationary, the distance-time graph of such a body is a straight line parallel to x -axis.

When the body is in uniform speed:

When the position of the body changes by equal intervals of time then body is said to be moving with uniform speed. The distance-time graph of such a body is a straight line, inclined to x -axis.

$$
\begin{aligned}
& \text { Slope }=\frac{\text { measure on } y \text {-axis }}{\text { measure on } x \text {-axis }} \\
& \text { Slope }=\frac{x_{2}-x_{1}}{t_{2}-t_{1}} \\
& \frac{\text { displacement }}{\text { time }}=\text { velocity } \quad V=\frac{\Delta x}{\Delta t} . \quad \text { OR } \quad \frac{\text { distance }}{\text { time }}=\text { speed }
\end{aligned}
$$

Special case-I

In uniform motion along a straight line the position x of the body at any time t is related to the constant velocity as,

$$
\begin{aligned}
& x_{A}=\text { vt Starting form zero } \\
& x_{B}=x_{0}+v t \text { starting from } x_{0}
\end{aligned}
$$

Special case-II
Slope of line $A=\tan \theta_{A}=\tan 0 \quad\left(\because \theta_{\mathrm{A}}=0\right)$
= zero velocity
Slope of line $B=\tan \theta_{\mathrm{B}}=$ positive velocity
Slope of line $C=\tan \theta_{c}=$ more positive velocity
$\because \theta_{\mathrm{C}}>\theta_{\mathrm{B}}\left(\tan \theta_{\mathrm{C}}>\theta_{\mathrm{B}}\right)$
Then $v_{C}>v_{B}$
Slope of line $D=\tan \left(-\theta_{D}\right)=$ negative velocity.

When the body is in motion with a non-uniform (variable) speed.

distance-time graph for a body moving with non-unifrom speed.
The position-time graph is not a straight line, but is a curve.
The speed of the body at any point is known as instantaneous speed and can be calculated by finding the slope at that point.

So instantaneous speed of the body at point A.
Slope at point $A=\tan \theta_{A}=\frac{A E}{C E}$
instantaneous speed of the body at point B
Slope at point $B=\tan \theta_{B}=\frac{B F}{D F}$
$\theta_{\mathrm{B}}>\theta_{\mathrm{A}}$ so slope at point B is greater than the slope at point A .
Hence speed of body at point B is a greater than, the speed of body at point A.

When the speed decreases with passage of time -

Slope at point $\mathrm{A}>$ slope at point $\mathrm{B}\left(\therefore \theta_{\mathrm{A}}>\theta_{\mathrm{B}}\right)$

So, speed at point $\mathrm{A}>$ speed at point B

Important note :- A distance time graph can never be parallel to y-axis (representing distance) because this line has slope of 90 and slope $=\tan \theta=\tan 90=$ infinite, which means infinite speed. It is impossible.

Acceleration from displacement-time graph.
For line A :- A straight line displacement-time graph represents a uniform velocity and zero acceleration
for line B :- A curved displacement-time graph rising upward represents an increasing velocity and positive acceleration

For line C :- A curved displacement-time graph falling
 downwards, represents a decreasing velocity and negative acceleration.

VELOCITY-TIME GRAPH :

The variation in velocity with time for an object moving in a straight line can be represented by a velocity-time graph. In this graph, time is represented along the x-axis and velocity is represented along the y-axis.

$$
\text { Acceleration }=\frac{\text { speed or velocity }}{\text { time }}
$$

hence the slope of the speed/velocity-time graph, gives the acceleration of the body.

$$
\text { Distance }=\text { speed } \quad \text { time }
$$

hence, area enclosed between the speed-time graph line and x-axis (time axis) gives the distance covered by the body. Similarly area enclosed between the velocity-time graph line and the x-axis (time axis) gives the displacement of the body.

Note: Since the graph takes into account, only the magnitude hence velocity-time graph is not different from speed-time graph.

When the body is moving with constant velocity :

When the body moves with constant velocity i.e. its motion is uniform.

The speed or velocity of the body is uniform hence the magnitude remains same. The graph is a straight line parallel to x-axis (time-axis). Since the velocity is uniform. Its acceleration is zero. The slope of the graph in this case is zero.

CONCLUSION : Velocity-time graph of a body moving with constant velocity is a straight line parallel to time axis.

When the body is moving with a uniform acceleration.

Time
The speed or velocity is changing by equal amounts in equal interval of time, the speed or velocity time graph of such a body is a straight line inclined to x -axis (time-axis).

When the body is moving with a non-uniform (variable) acceleration.
the speed or velocity-time graph is not a straight line but is a curve.

The line has different slopes at different times, its acceleration is variable. At point A, slope is less hence acceleratoin is less. At point B slope is more hence acceleration is more.

Note: Speed or velocity-time graph line can never be paralled to y-axis (speed axis), because slope angle becomes 90 than $\tan 90$ is infinite it is impossible.

Distance or displacement from speed or velocity-time graph.
As distance or displacement $=$ speed or velocity x time, hence the distance or displacement can be calculated from speed or velocity-time graph.

When speed or velocity is uniform (constant)

Distance/displacement $=$ Area of rectangle $\mathrm{ABCD}=\mathrm{AB} \quad \mathrm{AD}$
Thus, We find that the area enclosed by velocity-time graph and the time axis gives the distance travelled by the body.

When acceleration is uniform (constant)

distance or displacement $=$ area of right triangle $O A B=\frac{1}{2} \times$ base \times height $=\frac{1}{2} \times O B \times B A$
When speed or velocity as well as acceleration is non-uniform (variable).

The speed-time graph of a body moving irregularly with variable speed and acceleration. For a small interval of time $\Delta \mathrm{t}$, as there is not much change in speed, hence the speed can be taken as constant.
$\therefore \quad$ For this small time interval.

Distance $\Delta \mathrm{s}=\mathrm{v} \Delta \mathrm{t}=$ Area of the blackened strip.
For whole time interval between t_{1} and t_{2}, distance $=$ sum of areas of all the strips, between t_{1} and $t_{2}=$ area of shaded figure $A B C D$.

Application of Velocity- time Graphs :

A number of useful results can be deduced from velocity time graph.

- Slope of velocity-time graph gives the acceleration.
- Area below velocity-time graph and the time axis gives the distance covered.
- Using the above two results, we can derive all equations of motion.
Natre of slope :-

GRAPHICAL REPRESANTATION OF EQUATION OF MOTION :

Represents a velocity-time graph $B C$, in which $A B$ represents the initial velocity u, $C E$ represents final velocity v, such that the change in velocity is represented by $C D$, which takes place in time t, represented by $A E$.

Derivation of $v=u+a t$
Acceleration $=$ slope of the graph line BC .

$$
\begin{aligned}
a= & \frac{C D}{B D}=\frac{C E-D E}{B D} O R \quad a=\frac{v-u}{t} \\
& v-u=a t \\
& v=u+a t
\end{aligned}
$$

Derivation of $s=u t+\frac{1}{2} a t^{2}$
Distance travelled $=$ Area of trapezium ABCE
$=$ Area of rectangle $\mathrm{ABDE}+$ Area of triangle BCD

$$
=A B \quad A E+\frac{1}{2}\left(\begin{array}{lll}
B D & C D
\end{array}\right)=\mathrm{t} \quad \mathrm{u}+\frac{1}{2}\left[\begin{array}{ll}
\mathrm{t} & (\mathrm{v}-\mathrm{u})
\end{array}\right] \quad\left[\begin{array}{l}
\because \mathrm{BD}=\mathrm{AE}=\mathrm{t} \\
\because \mathrm{CD}=\mathrm{CE}-\mathrm{DE}=\mathrm{v}-\mathrm{u}
\end{array}\right]
$$

$$
\because \quad v=u+a t=u \quad t+\frac{1}{2}[t \quad(u+a t-u)]
$$

$$
\mathrm{S}=\mathrm{ut}+\frac{1}{2} a \mathrm{t}^{2}
$$

Derivation of $v^{2}=u^{2}+2$ as
From the velocity-time graph distance covered = Area of trapezium ABCE

$$
\begin{equation*}
\Rightarrow \quad \mathrm{S}=\frac{1}{2}(\mathrm{AB}+\mathrm{CE}) \quad \mathrm{AE} \quad \mathrm{~S}=\frac{1}{2}(\mathrm{u}+\mathrm{v}) \quad \mathrm{t} \tag{i}
\end{equation*}
$$

Acceleration $=\frac{\text { Change in velocity }}{\text { Time }}$

$$
\begin{equation*}
a=\frac{v-u}{t} \quad t=\frac{v-u}{a} \tag{ii}
\end{equation*}
$$

Substituting the value of t in eq (i)

$$
\begin{aligned}
& S=\frac{(v+u)}{2} \times \frac{(v-u)}{a} \\
& S=\frac{v^{2}-u^{2}}{2 a} \\
& v^{2}-u^{2}=2 a s A^{2}-B^{2}=(A+B) \quad(A-B) \\
& v^{2}=u^{2}+2 a s
\end{aligned}
$$

CIRCULAR MOTION

Motion of a particle (small body)along a circle (circular path), is called circular motion.

If the body covers equal distances along the circumference of the circle, in equal intervals of time, then motion is said to be a uniform circular motion. When a body moves along a circular path, then its direction of motion changes continuously.

Note:- A uniform circular motion is a motion in which speed remain constant but direction of velocity changes continuously.

square track four sides

Octagonal track eigth sides

Gircular track Indefinite number of sides

Examples of uniform circular motion are:-
(i) Motion of moon around the earth.
(ii) Motion of a satellite around its planet.
(iii) Motion of earth around the sun.
(iv) An athlete running on a circular track with constant speed.
(v) Motion of tips of the second hand, minute hand and hour hand of a wrist watch.

DOYOUKNOW?

Circular motion is an accelerated motion.
a circular motion, velocity changes in direction only, the motion is said to be accelerated.

Uniform linear motion is not accelerated but uniform circular motion is accelerated.

Difference between a uniform linear motion and a uniform circular motion.

Uniform linear motion		Uniform circular motion
1	The direction of motion does not change.	The direction of motion changes continuously.
2	The motion is non-accelerated	The motion is accelerated

RADIAN

It is a convenient unit for measuring angles in physics.
The arc $A B$ of the circle, has length ℓ and subtends an angle θ at the centre C.
If $\quad \angle \mathrm{ACB}=\theta$ radians
Then $\theta=\frac{\text { arc }}{\text { radius }}$
$\theta=\frac{\ell}{r}$

when $\ell=r$ then $\theta=1$ radian.
One radian is defined as the angle subtended at the centre of the circle by an arc which is equal in length to its radius.

Angle subtended by the circumference at the centre.

$$
\theta=\frac{2 \pi \mathrm{r}}{\mathrm{r}}=2 \pi \text { radians } \quad 2 \pi \text { radians }=360 \quad 1 \text { radian }=\frac{360^{\circ}}{2 \pi}
$$

$$
1 \text { radian }=57.3^{\circ}
$$

ANGULAR DISPLACEMENT AND ANGULAR VELOCITY :

The angle covered by a body in 1 sec. is called angular velocity.
It is usually denoted by w and measured in radian per sec.
If θ is the angle covered in time ' t ' then :

$$
\begin{aligned}
& \text { Angular velocity }=\frac{\text { Angular displacement }}{\text { Time taken }} \\
& \omega=\frac{\theta}{\mathrm{t}} \\
& \theta=\omega \mathrm{t}
\end{aligned}
$$

Unit Angular displacement $=\theta$ (in radian)
Angular velocity ω

$$
\begin{gathered}
\omega=\frac{\theta}{\mathrm{t}} \\
\Rightarrow \frac{\text { radian }}{\text { second }} \Rightarrow \mathrm{rad} / \mathrm{s}
\end{gathered}
$$

Relation between linear velocity and angular velocity.
Linear displacement $=\ell$
Angular displacement $=\theta$

$$
\begin{aligned}
& \theta=\frac{\ell}{\mathrm{r}} \\
& \ell=\mathrm{r} \theta
\end{aligned}
$$

for a time inervals t
Linear velocity $\mathrm{v}=\frac{\ell}{\mathrm{t}}$
Angular velocity $\omega=\frac{\theta}{\mathrm{t}}$

$$
\omega=\frac{\mathrm{t}}{\ell} \mathrm{r.t}
$$

$\omega=\frac{\mathrm{v}}{\mathrm{r}} \quad \mathrm{v}=\mathrm{r} \omega$

NCERT QUESTION WITH SOLUTION

17. A train is travelling at a speed of $90 \mathrm{kmh}^{-1}$. Brakes are applied so as to produce a uniform acceleration of $-0.5 \mathrm{~ms}^{-2}$. Find how far the train will go before it is brought to rest.

Sol. Given
Initial speed of train,
$\mathrm{u}=90 \mathrm{~km} \mathrm{~h}^{-1}=90 \quad \frac{5}{18}=25 \mathrm{~ms}^{-1}$
Final speed, $v=0 \mathrm{~ms}^{-1}$
Acceleration $\mathrm{a}=-0.5 \mathrm{~ms}^{-2}$
Distance covered, $\mathrm{S}=$?
Using the relation $v^{2}-u^{2}=2 \mathrm{aS}$, we have
$S+\frac{v^{2}-u^{2}}{2 a}=\frac{0-(25)^{2}}{2 \times(-0.5)}=625 \mathrm{~m}$
18. A trolley, while going down an inclined plane, has an acceleration of $2 \mathrm{cms}^{-2}$. What will be its velocity 3 s after the start ?

Sol. Given
Initial velocity, $\mathrm{u}=0$
Final velocity, $\mathrm{v}=$?
Time, $\mathrm{t}=3 \mathrm{~s}$
Acceleration, $\mathrm{a}=2 \mathrm{cms}^{-2}$
We know that $\mathrm{v}=\mathrm{u}+$ at
Or $v=0+2 \quad 3=6 \mathrm{cms}^{-1}$
Therefore, final velocity $=6 \mathrm{cms}^{-1}$.
19. A racing car has uniform acceleration of $4 \mathrm{~ms}^{-2}$. What distance will it cover in 10 s after start ?

Sol. Given
Initial velocity, $\mathrm{u}=0$
Acceleration, $\mathrm{a}=4 \mathrm{~ms}^{-2}$
Time, $\mathrm{t}=10 \mathrm{~s}$
Distance covered, $\mathrm{S}=$?

We know ; $\mathrm{S}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}$
$S=0 \quad 10+\frac{1}{2} \quad 4 \quad(10)^{2}$
$=0+200=200 \mathrm{~m}$
Therefore, distance covered $=200 \mathrm{~m}$.
20. A stone is thrown in a vertically upward direction with a velocity of $5 \mathrm{~ms}^{-1}$. If the acceleration of the stone during its motion is $10 \mathrm{~ms}^{-2}$ in the downward direction, what will be the height attained by the stone and how much time will it take to reach there ?
Sol. Given
Initial velocity, $\mathrm{u}=5 \mathrm{~ms}^{-1}$
Final velocity, $v=0$
Acceleration in the downward direction $=10 \mathrm{~ms}^{-2}$
Therefore acceleration in the upward direction
$\mathrm{a}=-10 \mathrm{~ms}^{-2}$
Height attained by stone, $\mathrm{S}=$?
Time taken to attain height, $\mathrm{t}=$?
(i) Using the relation; $\mathrm{v}=\mathrm{u}+\mathrm{at}$

$$
\begin{aligned}
& 0=5+(-10) \mathrm{t} \text { or } \\
& \mathrm{t}=5 / 10=0.5 \mathrm{~s}
\end{aligned}
$$

(ii) Using the relation ; $\mathrm{v}^{2}-\mathrm{u}^{2}=2 \mathrm{aS}$, we have

$$
\mathrm{S}=\frac{\mathrm{v}^{2}-\mathrm{u}^{2}}{2 \mathrm{a}}=\frac{(0)^{2}-(5)^{2}}{2 \times(-10)}=1.25 \mathrm{~m}
$$

21. An athlete completes one round of a circular track of diameter 200 m in 40 s . What will be the distance covered and the displacement at the end of 2 minutes 20 s ?
Sol. Given
Diameter of circular track, $2 \mathrm{r}=200 \mathrm{~m}$
Circumcference of circular track $=2 \pi \mathrm{r}$

$$
\mathrm{S}=\pi(2 \mathrm{r})=\frac{22}{7} \times 200=\frac{4400}{7} \mathrm{~m}
$$

Time for completing one round $=40 \mathrm{~s}$.
Time for which the athlete ran $=2 \mathrm{~min}$ and $20 \mathrm{~s}=140 \mathrm{~s}$
Now distance coverd by the athlete in 40 s .

$$
S=\frac{4400}{7}
$$

(i) Therefore, distance covered by athlete in 140 s .

$$
=\frac{4400}{7} \times \frac{140}{40}=2200 \mathrm{~m}
$$

(ii) As the athlete returns to the initial point in 40 s , this displacement $=0$

Now
Number of rounds in 40 second $=1$
Hence number of rounds in 140 s is $=\frac{140}{40}=3.5$.
For each complete round the displacement is zero.
Therefore for 3 complete rounds, the displacement will be zero.
The final displacement will be due to half the round.
In half round distance covered $=$ half of circumference.
Thus, his displacement $=$ diameter of circular track $=200 \mathrm{~m}$
Displacement after $140 \mathrm{~s}=200 \mathrm{~m}$
22. Joseph jogs from one end A to the other end B of a straight 300 m road in 2 minutes 50 seconds and then turns around and jogs 100 m back to point C in another 1 minute. What are Joseph's average speeds and velocities in Jogging (a) from A to B and (b) from A to C ?

Sol. The required figure is as shown
Distance covered $=300 \mathrm{~m}$
Time taken $=2 \mathrm{~min}$ and $50 \mathrm{~s}=170 \mathrm{~s}$
Now average speed from A to B is given by
$\mathrm{V}_{\mathrm{av}}=\frac{\text { distance covered }}{\text { time }}=\frac{300}{170}=1.76 \mathrm{~ms}^{? 1}$

Now average velocity from A to B is given by
$\mathrm{V}_{\mathrm{av}}=\frac{\text { displacement }}{\text { time }}=\frac{300}{170}=1.76 \mathrm{~ms}^{? 1}$
When Joseph turns around from B to C toward
west, then
Distance covered $=300+100=400 \mathrm{~m}$ and
Time taken $=170+60=230 \mathrm{~s}$
Therefore average speed from A to C is
$\mathrm{V}_{\mathrm{av}}=\frac{\text { distance covered }}{\text { time }}=\frac{400}{230}=1.74 \mathrm{~ms}^{-1}$
Now displacement from A to $C=200 \mathrm{~m}$
Therefore average velocity from A to C is
$\mathrm{V}_{\mathrm{av}}=\frac{\text { displacement }}{\text { time }}=\frac{200}{230}=0.869 \mathrm{~ms}^{-1}$
23. Abdul while driving to school computes the average speed for his trip to be $20 \mathrm{~km} \mathrm{~h}^{-1}$. On his return trip along the same route, there is less traffic and the average speed is $40 \mathrm{~km} \mathrm{~h}^{-1}$. What is the average speed for Abdul's trip ?

Sol. Let one way distance for his trip be S.
Let t_{1} be the time for his trip from home to school and t_{2} be the time for his return trip.

Then $t_{1}=\frac{S}{v_{1}}=\frac{S}{20} h$ and $t_{2}=\frac{S}{v_{2}}=\frac{S}{40} h$
Therefore total time of trip is
$T=t_{1}+t_{2}=\frac{S}{20}+\frac{S}{40}=\frac{3 S}{40} h$
Total distance covered $=2 \mathrm{~S}$
Therefore average speed of Abdul
$\mathrm{V}_{\mathrm{av}}=\frac{\text { total distance }}{\text { total time }}=\frac{2 \mathrm{~S} \times 40}{3 \mathrm{~S}}=26.7 \mathrm{kmh}^{-1}$
24. A motorboat starting from rest on a lake accelerates in a straight line at a constant rate of $3.0 \mathrm{~ms}^{-2}$ for 8.0 s . How far does the boat travel during this time ?

Sol. Given : Initial velocity of boat, $\mathrm{u}=0$
Acceleration, $a=3.0 \mathrm{~m} \mathrm{~s}^{-2}$
Time, $\mathrm{t}=8 \mathrm{~s}$
Distance covered, $\mathrm{S}=$?
Using the relation $S=u t+\frac{1}{2} a t^{2}$ we have
$S=0 \quad 8+\frac{1}{2} \quad 3 \quad 8^{2}=96 \mathrm{~m}$.
25. A driver of a car travelling at $52 \mathrm{~km} \mathrm{~h}^{-1}$ applies the brakes and accelerates uniformly in the opposite direction. The car stops in 5 s . Another driver going at $3 \mathrm{kmh}^{-1}$ in another car applies his brakes slowly and stops in 10 s . On the same graph paper, plot the speed versus time graphs for the two cars. Which of the two cars travelled farther after the brakes were applied ?

Sol. The speed time graph of both the cars are shown below.
(i) Distance covered by car moving at $52 \mathrm{kmh}^{-1}$
or $52 \frac{5}{18}=14.4 \mathrm{~ms}^{-1}$.
$=$ area of $\triangle \mathrm{POQ}=\frac{1}{2} \quad \mathrm{PQ} \quad \mathrm{QR}=\frac{1}{2} \quad 14.4 \quad 5=36 \mathrm{~m}$
(ii) Distance covered by car moving at $3 \mathrm{kmh}^{-1}$
or $3 \frac{5}{18}=0.83 \mathrm{~ms}^{-1}$
area of $\triangle \mathrm{OLN}=\frac{1}{2} \quad \mathrm{LO} \quad \mathrm{ON}=\frac{1}{2} \quad 0.83 \quad 10=4.15 \mathrm{~m}$

The car moving at $52 \mathrm{~km} \mathrm{~h}^{-1}$ travels more distance on the application of brakes.
26. Figure below shows the distance-time graph of three object A, B and C. Study the graph and answer the following questions :
(a) Which of the three is travelling the fastest ?
(b) Are all three ever at the same point on the road?
(c) How far has C travelled when B passes A ?
(d) How far has B travelled by the time it passes C ?

Sol. (a) Speed of car A
$\mathrm{V}_{\mathrm{A}}=\frac{\mathrm{S}_{\text {final }}-\mathrm{S}_{\text {initial }}}{\text { time }}=\frac{11-6}{2}=2.50 \mathrm{~km} \mathrm{~h}^{-1}$
Speed of car B
$V_{B}=\frac{S_{\text {final }}-S_{\text {initial }}}{\text { time }}=\frac{12-0}{14}=8.57 \mathrm{~km} \mathrm{~h}^{-1}$
Speed of car C
$\mathrm{V}_{\mathrm{C}}=\frac{\mathrm{S}_{\text {final }}-\mathrm{S}_{\text {initial }}}{\text { time }}=\frac{12-2}{1.76}=5.68 \mathrm{~km} \mathrm{~h}^{-1}$
Car B is travelling the fastest.

(b) No, they are never at the same point because all the graphs of A, B and C do not intersect at one point.
(c) When car B passes car A at point P , the distance covered by car $\mathrm{C}=7-2=5 \mathrm{~km}$.
(d) Car B and C pass each other at point O. The distance travelled by B at that point is slightly more than 5 km .
27. A ball is gently dropped from a height of 20 m . If its velocity increases uniformly at the rate of 10 ms^{-2}, with what velocity will it strike the ground ? After what time will it strike the ground ?

Sol. Given
Initial velocity of ball, $\mathrm{u}=0$
Final velocity of ball, $\mathrm{v}=$?
Distance through which the ball falls, $\mathrm{S}=20 \mathrm{~m}$
Acceleration $\mathrm{a}=10 \mathrm{~ms}^{-2}$
Time of fall, $t=$?
We know

$$
\begin{array}{ll}
& v^{2}-u^{2}=2 a S \\
\text { or } & v^{2}-0=2 \quad 10 \quad 20=400 \\
\text { or } & v=20 \mathrm{~ms}^{-1}
\end{array}
$$

Now using $\mathrm{v}=\mathrm{u}+$ at we have
$20=0+10 \quad t$ or $t=2 s$
28. The speed-time graph for a car is shown in figure below.
(a) Find how far does the car travel in the first 4 seconds. Shade the area on the graph thatrepresents the distance travelled by the car during the period.
(b) Which part of the graph represents uniform motion of the car ?

Sol. (a) The car travels with a non-uniform speed which is non accelerated in nature.
(b) The straight line portion of the graph represents uniform motion
 of the car.
29. State which of the following situations are possible and given an example for each of these
(a) An object with a constant acceleration but with zero velocity.
(b) An object moving in a certain direction with acceleration in the perpendicular direction.

Sol. (a) A body with a constant acceleration but with zero velocity is possible. For example, when a body is just released, its initial velocity $\mathrm{u}=0$, but acceleration $\mathrm{g}=10 \mathrm{~ms}^{-2}$.
(b) When a stone, tied to a string, is whirled in a circular path, the acceleration acting on it is always at right angles to the direction of motion of stone.
30. An artifical satellite is moving in a circular orbit of radius 42250 km . Calculate its speed if it takes 24 hours to revolve around the earth.
Sol. Distance covered by the satellite in 24 hour.
$S=2 \pi r$
$=2 \quad \frac{22}{7} \quad 42250=265571.43 \mathrm{~km}$
Therefore speed of satellite
$v=\frac{\text { distance travelled }}{\text { time taken }}=\frac{265571.43}{24 \times 60 \times 60}=3.07 \mathrm{kms}^{-1}$

HIGHER ORDER THINKING SKILL

PROJECTILE'S MOTION

A projectile is an object moving in space (or air) under the effect of gravitational effect of earth alone (without any other external force) is called the projectile motion and the object is caled the projectile.

The examples of projectile are missile shot from a gun, a bomb released from an airplane, a batted cricket ball, a ball thrown at some angle with horizontal and a rocket after its fuel is exhausted.
The motion of a projectile may always be resolved into two perpendicular straight line motions, viz, horizontal and vertical motions. These motions in perpendicular directions are quite independent of each other.

Path of Projectile :-

Consider a body is projected with velocity $\overrightarrow{\mathrm{u}}$, making an angle θ, point of projection O as the origin the axis OX and OY being horizontal and vertical directions respectively. The initial velocity $\overrightarrow{\mathrm{u}}$ may be resolved into horizontal and vertical components.

Horizontal Component

$$
u_{x}=u \cos \theta
$$

Vertical Component
$u_{y}=u \sin \theta$
The trajectory of the projectile is parabolic.

Time of flight T :-
The time in which the porjectile again meets the horizontal plane is called the time of flight. The net vertical displacement of projectile in time of flight is zero (i.e. $y=0$) ; therefore, time of flight (T) of projectile from the relation $s=u t+\frac{1}{2} a t^{2}$ is given by :-

$$
T=\frac{2 u_{y}}{g}=\frac{2 u \sin \theta}{g}
$$

Maximum height H :-

At maximum height vertical component of projectile's velocity is zero, i.e., $v_{y}=0$
$\therefore \quad$ from relation $\mathrm{v}^{2}=\mathrm{u}^{2}+2$ as, we have

$$
\mathrm{H}=\frac{\mathrm{u}_{\mathrm{y}}^{2}}{2 \mathrm{~g}}=\frac{(\mathrm{u} \sin \theta)^{2}}{2 \mathrm{~g}}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}
$$

This equation shows that the height H is maximum when $\sin \theta=1$ or $\theta=\frac{\pi}{2}$. That is why the athlete in high jump tries to throw his body vertically upward.

Range of Projectile :-

The horizontal distance traversed by the projectile in time of flight T is called the range of projectile.
$\therefore \quad$ Range $\mathrm{R}=$ horizontal speed time of flight $=\mathrm{u}_{\mathrm{x}} \mathrm{T}$
$=u \cos \theta \cdot \frac{2 u \sin \theta}{g}=\frac{u^{2}(2 \sin \theta \cos \theta)}{g}=\frac{u^{2} \sin 2 \theta}{g}$
For maximum range $\sin 2 \theta=1$
and the maximum range,
$(\because \sin 2 \theta=2 \sin \theta \cos \theta)$
$2 \theta=90$ or $\theta=45$

$$
\mathrm{R}_{\max }=\frac{\mathrm{u}^{2}}{\mathrm{~g}}
$$

Obviously the maximum range is achieved when angle of projection is 45 .

	DO YOUKNOU?				
	If on X -axis	\& on Y-axis	then Slope	Formula	
	Time	Displacement	Velocity	$\overrightarrow{\mathrm{v}}=\frac{\mathrm{d} \overrightarrow{\mathrm{s}}}{\mathrm{dt}}$	$\overrightarrow{\mathrm{v}}_{\mathrm{av}}=\frac{\vec{s}_{\mathrm{f}}-\overrightarrow{\mathrm{s}}_{\mathrm{i}}}{\text { time }}$
	Time	Velocity	Acceleration	$\overrightarrow{\mathrm{a}}=\frac{\mathrm{d} \overrightarrow{\mathrm{v}}}{\mathrm{dt}}$	$\overrightarrow{\mathrm{a}}_{\mathrm{av}}=\frac{\overrightarrow{\mathrm{v}}_{\mathrm{f}}-\overrightarrow{\mathrm{v}}_{\mathrm{i}}}{\text { time }}$
	Time	Momentum	Force	$\overrightarrow{\mathrm{F}}=\frac{\mathrm{d} \overrightarrow{\mathrm{p}}}{\mathrm{dt}}$	$\mathrm{P}_{\mathrm{av}}=\frac{\mathrm{W}}{\text { time }}$
	Time	Energy	Power	$\mathrm{P}=\frac{\mathrm{dW}}{\mathrm{dt}}$	$\vec{\tau}_{\text {av }}=\frac{\vec{J}_{f}-\vec{J}_{i}}{\text { time }}$

SOLVED EXEMPLES

1. A farmer moves along the boundary of a square field of side 10 m in 40 s . What will be the magnitude of displacement of the farmer at the end of 2 minutes 20 seconds ?

Sol. Distance covered in one round $=40 \mathrm{~m}$
Time taken $=40 \mathrm{~s}$
Total time of journey $=2 \mathrm{~min} .20 \mathrm{~s}=140 \mathrm{~s}$
Total distance covered $=\frac{40 \mathrm{~m}}{40 \mathrm{~s}} \times 140 \mathrm{~s}=140 \mathrm{M}$
Total rounds $=\frac{140 \mathrm{~m}}{40 \mathrm{~m}}=3.5$ round

After every complete round, farmer will be at the starting point, hence after 3.5 rounds farmer will be at the diagonal ends of the field.

$$
\text { Displacement }=\sqrt{(10)^{2}+(10)^{2}}=10 \sqrt{2} \mathrm{~m}
$$

2. In a long distance race the athletes were expected to take four rounds of the track such that the line of finish was same as the line of start. Suppose the length of the track was 200 m
(i) What is the total distance to be covered by the athletes?
(ii) What is the displacement of the athletes when they touch the finish line?
(iii) Is the motion of the athletes uniform or non-uniform.
(iv) Is the displacement of an athlete and the distance moved by him at the end of the race equal?

Sol.

(i) Total distance covered $=4 \quad 200 \mathrm{~m}=800 \mathrm{~m}$
(ii) As the athletes finish at the starting line

Displacement $=$ final position-initial positive $=r_{A}-r_{A}=0$
(iii) Motion is non-uniform as the direction of motion of the athlete is changing while running on the track.
(iv) Displacement and distance moved are not equal.
3. On a 120 km track, a train travels the first 30 km with a uniform speed of $30 \mathrm{~km} / \mathrm{h}$. How fast must the train travel the next 90 km so as to average $60 \mathrm{~km} / \mathrm{h}$ for the entire trip ?
Sol. Total distance $d=120 \mathrm{~km}$
Average speed $\mathrm{V}_{\mathrm{av}}=60 \mathrm{~km} / \mathrm{h}$
Total time $=t=$?

$$
\begin{align*}
& \text { Average speed }=\frac{\text { Total distance }}{\text { Total time taken }} \\
& \mathrm{V}_{\mathrm{av}}=\frac{\mathrm{d}}{\mathrm{t}} \\
& \mathrm{t}=\frac{\mathrm{d}}{\mathrm{~V}_{\mathrm{av}}} \text { Putting the values } \\
& \mathrm{t}=\frac{120 \mathrm{~km}}{60 \mathrm{~km} / \mathrm{h}}=2 \mathrm{~h} \ldots \ldots \ldots \ldots . . \text { (i) } \tag{i}
\end{align*}
$$

Distance travelled in first part of trip

$$
\mathrm{d}_{1}=30 \mathrm{~km}
$$

Speed in first part of the trip $v_{1}=30 \mathrm{~km} / \mathrm{h}$
Time taken in first part of trip

$$
\begin{aligned}
& \mathrm{t}_{1}=? \\
& \mathrm{t}_{1}=\frac{\mathrm{d}_{1}}{\mathrm{v}_{1}} \text { putting the values } \\
& \mathrm{t}_{1}=\frac{30 \mathrm{~km}}{30 \mathrm{~km} / \mathrm{h}}=1 \mathrm{~h}
\end{aligned}
$$

Time taken left to complete second part of the trip

$$
\mathrm{t}_{2}=\mathrm{t}-\mathrm{t}_{1}=2-1=1 \mathrm{~h}
$$

Distance to be covered in second part of the trip

$$
\mathrm{d}_{2}=90 \mathrm{~km}
$$

required speed in second part

$$
\begin{aligned}
& \mathrm{v}_{2}=? \\
& \text { speed }=\frac{\text { distance }}{\text { time }} \\
& \mathrm{v}_{2}=\frac{\mathrm{d}_{2}}{\mathrm{t}_{2}}=\frac{90 \mathrm{~km}}{1 \mathrm{~h}}=90 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

4. Nisha swims in a 90 m long pool. She covers 180 m in one minute by swimming from one end to the other and back along the same straigh path. Find the average speed and average velocity of Nisha.

Sol. Total distance $=180 \mathrm{~m}$
Total displacement $=0$
Time taken $\mathrm{t}=1 \mathrm{~min} .=60 \mathrm{~s}$
Average speed $\left(\mathrm{V}_{\mathrm{av}}\right)=\frac{\text { total distance }}{\text { total time taken }}$

$$
\mathrm{V}_{\mathrm{av}}=\frac{180 \mathrm{~m}}{60 \mathrm{~s}}=3 \mathrm{~m} / \mathrm{s}
$$

Average velocity $\left(\mathrm{V}_{\mathrm{av}}\right)=\frac{\text { total displacement }}{\text { total time taken }}$

$$
\mathrm{V}_{\mathrm{av}}=\frac{0}{60 \mathrm{~s}}=0 \mathrm{~m} / \mathrm{s}
$$

5. A bus decreases its speed from $80 \mathrm{~km} / \mathrm{h}$ to $60 \mathrm{~km} / \mathrm{h}$ is 5 second. Find the acceleration of the bus.

Sol. $u=80 \mathrm{~km} / \mathrm{h}=80 \quad \frac{5}{18}=22.22 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}=60 \mathrm{~km} / \mathrm{h}=60 \quad \frac{5}{18}=16.67 \mathrm{~m} / \mathrm{s}$
time $\mathrm{t}=5 \mathrm{~s}$

$$
\begin{aligned}
\text { Acceleration }(\mathrm{a}) & =\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}} \\
\mathrm{a} & =\frac{(16.67-22.22) \mathrm{m} / \mathrm{s}}{5 \mathrm{~s}}=-1.11 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

6. A train starting from a railway station and moving with uniform acceleration, attains a speed $40 \mathrm{~km} / \mathrm{h}$ in 10 minutes. Find its acceleration.
Sol. $u=0$ (starting from rest)
$\mathrm{v}=40 \mathrm{~km} / \mathrm{h}=40 \quad \frac{5}{18}=11.11 \mathrm{~m} / \mathrm{s}$
time $\mathrm{t}=10$ minutes $=600 \mathrm{~s}$

$$
\begin{aligned}
\text { Acceleration }(\mathrm{a}) & =\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}} \\
\mathrm{a} & =\frac{11.11 \mathrm{~m} / \mathrm{s}}{600 \mathrm{~s}}=0.0185 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

7. A bus between Kota to Jaipur passed the $100 \mathrm{~km}, 160 \mathrm{~km}$ and 220 km points at $10.30 \mathrm{am}, 11.30$ am and 1.30 pm . Find the average speed of the bus during each of the following intervals :
(a) 10.30 am to 11.30 am ,
(b) 11.30 am to 1.30 pm and
(c) 10.30 am to 1.30 pm .

Sol. (a) The distance covered between 10.30 am and 11.30 am is $160 \mathrm{~km}-100 \mathrm{~km}=60 \mathrm{~km}$. The time interval is 1 hour. The average speed during this interval is -

$$
\mathrm{v}_{1}=\frac{60 \mathrm{~km}}{1 \mathrm{~h}}=60 \mathrm{~km} / \mathrm{h}
$$

(b) The distance covered between 11.30 am and 1.30 pm is $220 \mathrm{~km}-160=60 \mathrm{~km}$. The time interval is 2 hours. The average speed during this interval is -

$$
\mathrm{v}_{2}=\frac{60 \mathrm{~km}}{2 \mathrm{~h}}=30 \mathrm{~km} / \mathrm{h}
$$

(c) The distance covered between 10.30 am and 1.30 pm is $220 \mathrm{~km}-100 \mathrm{~km}=120 \mathrm{~km}$. The time interval is 3 hours. The average speed during this interval is -

$$
\mathrm{v}_{3}=\frac{120 \mathrm{~km}}{3 \mathrm{~h}}=40 \mathrm{~km} / \mathrm{h}
$$

8. The average speed of a bicycle, an athlete and car are $18 \mathrm{~km} / \mathrm{h}, 7 \mathrm{~m} / \mathrm{s}$ and $2 \mathrm{~km} / \mathrm{min}$. respectively. Which of the three is the fastest and which is the slowest ?

Sol. $18 \mathrm{~km} / \mathrm{h}=\frac{18 \mathrm{~km}}{1 \mathrm{~h}}=\frac{18000 \mathrm{~m}}{3600 \mathrm{~s}}=5 \mathrm{~m} / \mathrm{s}$
$2 \mathrm{~km} / \min =\frac{2 \mathrm{~km}}{1 \mathrm{~min} .}=\frac{2000 \mathrm{~m}}{60 \mathrm{~s}}=33.3 \mathrm{~m} / \mathrm{s}$
Thus the average speeds of the bicycle, the athlete and the car are $5 \mathrm{~m} / \mathrm{s}, 7 \mathrm{~m} / \mathrm{s}$ and $33.3 \mathrm{~m} / \mathrm{s}$ respectively. So the car is the fastest and the bicycle is the slowest.
9. An object is sliding down on inclined plane. The velocity changes at a constant rate from $10 \mathrm{~cm} /$ s to $15 \mathrm{~cm} / \mathrm{s}$ in 2 seconds. What is its acceleration?

Sol. The situation is shown in figure. Let us take $B A$ as the positive direction. The velocity at $t=0$ is $u=+10 \mathrm{~cm} /$ s and that at $\mathrm{t}=25$ is $\mathrm{v}=+15 \mathrm{~cm} / \mathrm{s}$.

Thus, $\mathrm{a}=\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}}=\frac{15 \mathrm{~cm} / \mathrm{s}-10 \mathrm{~cm} / \mathrm{s}}{2 \mathrm{sec}}=\frac{5 \mathrm{~cm} / \mathrm{sec}}{2 \mathrm{sec}}=2.5 \mathrm{~cm} / \mathrm{s}^{2}$

The acceleration is positive, which means it is in the direction BA.
10. Figure shows distance-time graph of two objects A and B which object is moving with greater speed when both are moving?

Sol. The line for object B makes a longer angle with the time-axis. Its slope is longer than the slope of the line for object A. Thus, the speed of B is greater than that of A.
11. Figure represents the speed time graph for a particle. Find the distance covered by the particle between $t=10 \mathrm{~min}$. and $\mathrm{t}=30 \mathrm{~min}$.

(a)
time (min) \rightarrow

time (min) \rightarrow

Sol. We draw perpendicular lines from the 10 -minute point and the 30 -minute point to the time-axis (fig.) The distance covered is equal to the area of the rectangle ABCD its value is

$$
\begin{aligned}
\mathrm{ABCD} & =(30 \mathrm{~min} .-10 \mathrm{~min} .) \quad(10 \mathrm{~km} / \mathrm{h}) \\
& =20 \mathrm{~min} . \quad 10 \mathrm{~km} / \mathrm{h} \\
& =\frac{20}{60} \mathrm{~h} \quad 10 \mathrm{~km} / \mathrm{h}=\frac{10}{3} \mathrm{~km} .
\end{aligned}
$$

12. Find the distance coverd by a particle during the time interval $t=0$ to $t=20 \mathrm{~s}$ for which the speedtime graph is shown in figure.

Sol. The distance covered in the time interval 0 to 20 s . is equal to the area of the shaded triangle. It is

$$
\begin{aligned}
& \frac{1}{2} \text { base height. } \\
=\quad & \frac{1}{2} \quad(20 \mathrm{~s}) \quad(20 \mathrm{~m} / \mathrm{s})=200 \mathrm{~m}
\end{aligned}
$$

13. Figure shows the velocity-time graphs for two objects, A and B, moving along the same direction. Which object has greater acceleration ?

Sol. The slope of the velocity-time graph of B is greater than that for A, Thus, the acceleration of B is greater than that of A .
14. A particle moves through a distance of 3 m due east and then 4 m due north.
(a) How much is the net distance traversed ?
(b) What is the magnitude of the net displacement?

Sol. The situation shown in figure. The particle starts from O. It moves through a distance of 3 m due east to reach A and then through a distance of 4 m due north to reach B.

(a) The total distance moved is $3 \mathrm{~m}+4 \mathrm{~m}=7 \mathrm{~m}$,
(b) The magnitude of the net displacement is OB . In the right-angled triangle OAB ,

$$
\mathrm{OB}^{2}=\mathrm{OA}^{2}+\mathrm{AB}^{2}=(3 \mathrm{~m})^{2}+(4 \mathrm{~m})^{2}=9 \mathrm{~m}^{2}+16 \mathrm{~m}^{2}=25 \mathrm{~m}^{2} \mathrm{OR} \mathrm{OB}=5 \mathrm{~m}
$$

15. A car moves 30 km . in 30 min . and the next 30 km . in 40 min . calculate the average speed for the entire journey.
Sol. Given, the total time taken is $30 \mathrm{~min} .+40 \mathrm{~min} .=70 \mathrm{~min}$. and the total distance traversed is -
$30 \mathrm{~km}+30 \mathrm{~km}=60 \mathrm{~km}$. The average speed is

$$
\mathrm{v}_{\mathrm{av}}=\frac{60 \mathrm{~km}}{70 \mathrm{~min}}=\frac{60 \mathrm{~km}}{(70 / 60) \mathrm{h}}=\frac{3600}{70} \mathrm{~km} / \mathrm{hr}=51.4 \mathrm{~km} / \mathrm{h}
$$

16. A boy runs for 10 min . at a uniform speed of $9 \mathrm{~km} / \mathrm{h}$. At what speed should he run for the next 20 min . So that the average speed comes to $12 \mathrm{~km} / \mathrm{h}$?
Sol. Total time $=10 \mathrm{~min}+20 \mathrm{~min}=30 \mathrm{~min}$.
The average speed is $12 \mathrm{~km} / \mathrm{h}$. using $\mathrm{s}=\mathrm{vt}$, the distance covered in 30 min is

$$
12 \mathrm{~km} / \mathrm{h} \quad 30 \mathrm{~min}=\frac{12 \mathrm{~km}}{\mathrm{~h}} \times \frac{1}{2} \mathrm{~h}=6 \mathrm{~km}
$$

The distance covered in the first 10 min is -

$$
9 \mathrm{~km} / \mathrm{h} \quad 10 \mathrm{~min} .=\frac{9 \mathrm{~km}}{\mathrm{~h}} \times \frac{1}{6} \mathrm{~h}=1.5 \mathrm{~km}
$$

Thus, he has to cover $6 \mathrm{~km}-1.5 \mathrm{~km}=4.5 \mathrm{~km}$. in the next 20 min . The speed required is

$$
\frac{4.5 \mathrm{~km}}{20 \mathrm{~min}}=\frac{4.5 \mathrm{~km}}{(20 / 60) \mathrm{h}}=13.5 \mathrm{~km} / \mathrm{h}
$$

17. A particle was at rest from 9:00 am to $9: 30 \mathrm{am}$. It moved at a uniform speed of $10 \mathrm{~km} / \mathrm{h}$ from 9:30 am to $10: 00 \mathrm{am}$. Find the average speed between (a) 9:00 am and 10:00 am (b) 9:15 am and 10:00 am

Sol. (a) The distance moved by the particle between 9:30 am and 10:00 am is

$$
\mathrm{s}=\mathrm{vt}=\frac{10 \mathrm{~km}}{\mathrm{~h}} \times \frac{1}{2} \mathrm{~h}=5 \mathrm{~km} .
$$

This is also the distance moved between 9:00 am and 10:00 am. Thus, the average speed during this interval is

$$
\mathrm{v}_{\mathrm{av}}=\frac{\mathrm{s}}{\mathrm{t}}=\frac{5 \mathrm{~km}}{1 \mathrm{~h}}=5 \mathrm{~km} / \mathrm{h}
$$

(b) The distance moved between 9:30 am and 10:00 am is 5 km . This is also the distance moved in the interval 9:15 am to 10:00 am. The average speed during this interval is -

$$
\mathrm{v}_{\mathrm{av}}=\frac{\mathrm{s}}{\mathrm{t}}=\frac{5 \mathrm{~km}}{45 \mathrm{~min}}=\frac{5 \times 60}{45} \mathrm{~km} / \mathrm{h} \approx 6.67 \mathrm{~km} / \mathrm{h} .
$$

18. A boy is running on a straight road. He runs 500 m towards north in 2.10 minutes and then turns back and runs 200 m in 1.00 minute. Calculate :-
(a) His average speed and magnitude of average velocity during first 2.10 minutes, and
(b) His average speed and magnitude of average velocity during the whole journey.

Sol. (a) Total distance $=500 \mathrm{~m}$
Total time $=2.10$ minutes $=130 \mathrm{~s}$
Magnitude of displacement $=500 \mathrm{~m}$

Average speed $=\frac{\text { Distance }}{\text { Time }}=\frac{500 \mathrm{~m}}{130 \mathrm{~s}}=3.85 \mathrm{~ms}^{-1}$

Magnitude of average velocity $=\frac{\text { Magnitude of displacement }}{\text { Time }}=\frac{500 \mathrm{~m}}{130 \mathrm{~s}}=3.85 \mathrm{~ms}^{-1}$

Note : This example shows that the average speed = average velocity if the motion is in one direction.
(b) Total distance $=500 \mathrm{~m}+200 \mathrm{~m}=700 \mathrm{~m}$

$$
\text { Total time }=2.10+1.00=3.10 \text { minutes }=190 \mathrm{~s}
$$

Magnitude of total displacement $=500 \mathrm{~m}-200 \mathrm{~m}=300 \mathrm{~m}$

$$
\therefore \quad \text { Average speed }=\frac{\text { Total displacement }}{\text { Total time }}=\frac{700 \mathrm{~m}}{190 \mathrm{~s}}=3.68 \mathrm{~ms}^{-1}
$$

Magnitude of average velocity $=\frac{\text { Total displacement }}{\text { Total time }}=\frac{300 \mathrm{~m}}{190 \mathrm{~s}}=1.58 \mathrm{~ms}^{-1}$

Note : This example shows that average speed is greater than the magnitude of average velocity if the direction of motion changes.
19. It is estimated that the radio signal takes 1.27 seconds to reach the earth from the surface of the moon. Calculate the distance of the moon from the earth. Speed of radio signal $=310^{8} \mathrm{~ms}^{-1}$ (speed of light in air).

Sol. Here, time $=1.27 \mathrm{~s}$
speed $=3 \quad 10^{8} \mathrm{~ms}^{-1}$
distance $=$?
Using distance $=$ speed time, we get

$$
\text { distance }=3 \quad 10^{8} \mathrm{~ms}^{-1} \quad 1.27 \mathrm{~s}=3.81 \quad 10^{8} \mathrm{~m}=3.81=10^{5} \mathrm{~km}
$$

20. A wireless signal is sent to earth from a spacecraft. This signal reaches the earth in 300 seconds. Calculate the distance of the spacecraft from the earth. Given, speed of the signal $=3 \quad 10^{8} \mathrm{~ms}^{-1}$.

Sol. Here, $\mathrm{t}=300 \mathrm{~s}$

$$
\begin{aligned}
& \text { Speed, } v=3 \quad 10^{8} \mathrm{~ms}^{-1} \\
& \text { Distance }=?
\end{aligned}
$$

Using distance $=$ speed time, we get

$$
\text { distance }=3 \quad 10^{8} \mathrm{~ms}^{-1} \quad 300 \mathrm{~s}=9 \quad 10^{10} \mathrm{~m}=9=10^{7} \mathrm{~km}
$$

Thus, distance of spacecraft from earth $=9 \quad 10^{7} \mathrm{~km}$.
21. A sound is heard 5 seconds later than the lightning is seen in the sky on a rainy day. Find the distance of the location of lightning. Given speed of sound $=346 \mathrm{~ms}^{-1}$.

Sol. Here, $\mathrm{t}=5 \mathrm{~s}$

$$
\text { Speed, } v=346 \mathrm{~ms}^{-1}
$$

Distance $=$?
Using distance $=$ speed time, we get

$$
\text { distance }=346 \mathrm{~ms}^{-1} \quad 5 \mathrm{~s}=1730 \mathrm{~m}
$$

Thus, distance of the location of lightning $=1730 \mathrm{~m}$.

SUMMATIVE ASSESSMENT

1. A body goes from A to B with a velocity of $20 \mathrm{~m} / \mathrm{s}$ and comes back B to A with a velocity of $30 \mathrm{~m} / \mathrm{s}$. The average velocity of the body during the whole journey is
(1) zero
(3) $25 \mathrm{~m} / \mathrm{s}$
(2) $24 \mathrm{~m} / \mathrm{s}$
(4) none of these
2. If an object covering distances in direct proportion to the square of the time lapsed, then the acceleration is
(1) increasing
(2) decreasing
(3) constant
(4) none of these
3. Distance travelled by a freely falling body is proportional to :-
(1) mass of the body
(2) square of the acceleration due to gravity
(3) square of the time of fall
(4) time off all
4. The rate of change of displacement with time is :-
(1) speed
(2) acceleration
(3) retardation
(4) velocity
5. Which of the following is not vector quantity?
(1) Retardation
(2) Acceleration due to gravity
(3) Average speed
(4) Displacement
6. If the time-displacement graph of a particle is parallel to the time-axis, then velocity of the particle is :-
(1) infinity
(2) unity
(3) equal to acceleration of the body
(4) zero
7. In the velocity-time graph, AB shows that the body has :
(1) uniform acceleration
(2) non-uniform retardation
(3) uniform speed
(4) intitial velocity OA and is moving with uniform retardation

8. In the given velocity-time graph, AB shows that the body has
(1) uniform acceleration
(2) uniform retardation
(3) uniform velocity throughout its motion and has zero initial velocity
(4) none of these

9. If the displacement-time graph for the two particles A and B are straight lines inclined at angles of 30 and 60 with the time axis, then ratio of the velocities $v_{A}: v_{B}$ will be
(1) $1: 2$
(2) $1: 3$
(3) $\sqrt{3}: 1$
(4) $3: 1$

10. In the given figure, velocity of the body at A is
(1) zero
(2) unity
(3) maximum
(4) infinite

11. The velocity-time graph for a body with nonuniform motion is a
(1) straight line
(2) straight line parallel to x-axis
(3) straight line parallel to y-axis
(4) curved line
12. Area under a velocity-time graph gives
(1) time taken by a moving object
(2) distance travelled by a moving object
(3) acceleration of moving object
(4) retardation of a moving object
13. If a body is thrown u with an initial velocity u and covers a maximum height of h, then h is equal to :-
(2) $\frac{u^{2}}{2 g}$
(2) $\frac{u}{2 g}$
(3) $2 u^{2} g$
(4) none of these
14. A body is thrown vertically upwards and rises to a height of 10 m . The velocity with which the body was thrown upwards is ($\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
(1) $16 \mathrm{~m} / \mathrm{s}$
(2) $15 \mathrm{~m} / \mathrm{s}$
(3) $14 \mathrm{~m} / \mathrm{s}$
(4) $12 \mathrm{~m} / \mathrm{s}$
15. A truck running along a straight line increases its speed uniformly from $30 \mathrm{~m} / \mathrm{s}$ to $60 \mathrm{~m} / \mathrm{s}$ over a time interval 1 min . The distance travelled during this time interval is
(1) 900 m
(2) 1800 m
(3) 2700 m
(4) 3600 m

TRUE OR FALSE

1. The motion in animals is called locomotion. Mechanics deals with the motion of non living object.
2. Kinematics deals with the motion of non-living object without taking into account the cause of their motion.
3. Motion along a curved line is called translatory or rectilinear motion.
4. A body is said to be at rest if it does not change its position with respect to the reference point.
5. A quantity which can be represented completely by magnitude along is called a vector quantity.
6. A quantity which can be completely specified by magnitude as well as direction is called a scalar quantity.
7. Velocity and speed are measured in different units.
8. In one dimensional motion the average velocity and the instantaneous velocity are unequal.
9. A motion is said to be uniform if a body undergoes equal displacements in equal intervals of time.
10. A motion is said to be uniform if $x \alpha t^{2}$.
11. Acceleration is defined as the rate of change of velocity.
12. The graph between velocity and time for uniform acceleration is a curved line.

MATCH THE COLUMN

1.

	COLUMN-I		COLUMN-II
(A)	A body covers equal displacements in equal intervals of time.	(p)	velocity.
(B)	Slope of distance-time graph.	(q)	displacement.
(C)	Area under velocity-time graph.	(r)	circular motion.
(D)	Speed is constant but object is accelerated.	(s)	uniform motion.

MATCH THE COLUMN

	COLUMN-I		COLUMN-II
(A)	A body falling freely.	(p)	displacement.
(B)	Distance with direction.	(q)	velocity.
(C)	Speed with direction.	(r)	acceleration.
(D)	Rate of change of velocity.	(s)	uniformly accelerated motion.

MATCH THE COLUMN

3.

	COLUMN-I		COLUMN-II
(A)	Distance.	(p)	displacement.
(B)	Scalar.	(q)	velocity.
(C)	Vector.	(r)	speed
(D)	Shortest path between two points of motion.	(s)	distance
		(t)	actual path travelled.

FILL IN THE BLANKS

1. Mechanics is the branch of physics which deals with \qquad
2. Statics is a sub branch of mechanics which deals with bodies at \qquad
3. Dynamics is a sub branch of mechanics which deals with bodies in \qquad
4. A point object is one whose size is \qquad as compared to the distance it moves.
5. A body is said to be at rest if it does not change its \qquad with respect to the surroundings.
6. A body is said to be in motion if it change its \qquad with respect to the surroundings.
7. The reference point from which the distance of a body is measured is called \qquad
8. Distance is the \qquad path followed by a body between two points.
9. Displacement is the \qquad distance between two points.
10. A quantity which can be completely represented by magnitude alone is called
11. A quantity which can be completely represented by magnitude and direction is called \qquad
12. Speed is the ratio of the \qquad travelled to the time taken.

EXERCISE \# 1

ANSWER KEY

SCHOOL EXAM.

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	1	3	3	4	3	4	4	4	4	1	4	2	1	3	3

TRUE OR FALSE

1. True
2. False
3. True
4. True
5. False
6. False
7. False
8. False
9. True
10. True
11. False
12. False

MATCH THE COLUMN

1. $(A-s),(B-p),(C-q),(D-r)$
2. $(A-s),(B-p),(C-q),(D-r)$
3. $(A-t),(B-r, s),(C-p, q),(D-p)$

FILL IN THE BLANKS

1. Motion
2. Rest
3. Position
4. Scalar
5. Motion
6. Origin
7. Vector
8. Small
9. Actual
10. Distance

SUMMATIVE ASSESSMENT

SHORT ANSWER TYPE QUESTIONS

1. An object travels 16 m in 4 sec . and then another 16 m in 2 sec . What is the average speed of the object?

$$
\text { [Ans. } \frac{16}{3} \mathrm{~ms}^{-1} \text {] }
$$

2. A train starting from a railway station and moving with uniform acceleration attains a speed of $40 \mathrm{~km} / \mathrm{h}^{-1}$ in 10 minutes. Find its acceleration -
[Ans. $240 \mathrm{~km} / \mathrm{h}^{2}$]
3. What can you say about the motion of an object whose distance-time graph is a straight line parallel to the time axis?
[Ans. at rest.]
4. A racing car has a uniform acceleration of $40 \mathrm{~m} / \mathrm{s}^{2}$ what distance will it cover in 10 s after start?
[Ans. 2000 m.$]$
5. Name the quantity that essentially changes as a body moves.
[Ans. Time]
6. What does the area below $v-t$ graph give?
[Ans. Displacement]
7. Relate $36 \mathrm{~km} / \mathrm{h}$ with m / s.
[Ans. $10 \mathrm{~m} / \mathrm{s}$]
8. A car travels $\left(\frac{1}{4}\right)^{\text {th }}$ of a circle with radius r. Find the ratio of the distance to it's displacement. [Ans. $\frac{\pi}{2 \sqrt{2}}$]
9. If $5 \mathrm{~m} / \mathrm{s}$ and $10 \mathrm{~m} / \mathrm{s}$ are the velocities of a body having a uniform acceleration in same time interval. What will be its average velocity?
[Ans. $7.5 \mathrm{~m} / \mathrm{s}$]
10. What is the nature of motion of two cars A and B as depicted by the $v-t$ graph in fig -

[Ans. A - Uniform motion, B - Uniform acceleration]
11. When a body moving with a speed of $20 \mathrm{~m} / \mathrm{s}$. stops in 20 seconds, what is the acceleration?

$$
\text { [Ans }-1 \mathrm{~m} / \mathrm{s}^{2} \text {] }
$$

12. A particle moves 3 m north, then 4 m east and finally 6 m south calculate its distance travelled and displacement
[Ans $13 \mathrm{~m}, 5 \mathrm{~m}$]
13. A car travels 30 km at a uniform speed of $40 \mathrm{~km} / \mathrm{h}$ and the next 30 km at a uniform speed of $20 \mathrm{~km} / \mathrm{h}$. Find its average speed
[26.7 km/h]
14. Ravina takes 20 minutes to cover a distance of 3.2 kilometres on a bicycle. Calculate her speed in units of kilometre/minute, metre/minute, kilometre/hour. and m/s. [0.16 km/min, $160 \mathrm{~m} / \mathrm{min}, 9.6 \mathrm{~km} / \mathrm{h}, 2.67 \mathrm{~m} / \mathrm{s}$]
PHYSICS
15. Starting from a stationary position, Rahul paddles his bicycle to attain a velocity of $6 \mathrm{~m} / \mathrm{s}$ in 30 s . Then he applies brakes such that the velocity of the bicycle comes down to $4 \mathrm{~m} / \mathrm{s}$ in the next 5 s . Calculate the acceleration
of the bicycle in both the cases.
Ans. $\frac{1}{5} \mathrm{~m} / \mathrm{s}^{2}, \quad \frac{-2}{5} \mathrm{~m} / \mathrm{s}^{2}$
16. The velocity of a car is $18 \mathrm{~m} / \mathrm{s}$. Express this velocity in km / h.
[64.8 km/h]
17. An electric train is moving with a velocity of $120 \mathrm{~km} / \mathrm{h}$. How much distance will it cover in 30 second? [1 km]
18. A train starting from rest attains a velocity of $72 \mathrm{~km} / \mathrm{h}$ in 5 minutes. Assuming that the acceleration is uniform, find (i) the acceleration and (ii) the distance travelled by the train for attaining this velocity -

Ans. (i) $\frac{1}{15} \mathrm{~m} / \mathrm{s}^{2}$
(ii) 3 km .
19. A bus covers 30 km with a uniform speed of $60 \mathrm{~km} / \mathrm{h}$ and the next 30 km with a uniform speed of $40 \mathrm{~km} / \mathrm{h}$. Find the total time taken and the average speed.
[Ans. 75 minutes, $48 \mathrm{~km} / \mathrm{h}$]
20. A car moves 30 minute with a uniform speed of $30 \mathrm{~km} / \mathrm{h}$ and next 30 minute moves with uniform speed of $60 \mathrm{~km} / \mathrm{h}$. Find the average speed in entire journey.
[Ans. $45 \mathrm{~km} / \mathrm{h}$]
21. A 60 m long train moving on a staright level track passes a pole in 5 s , find (a) the speed of train (b) the time it will take to cross a 540 m long bridge.
[Ans. $12 \mathrm{~m} / \mathrm{s}, 50 \mathrm{~s}$]
22. The brakes applied to a car it produce an acceleration of $-10 \mathrm{~m} / \mathrm{s}^{2}$. If the car takes 5 s to stop after applying the brakes, calculate the distance covered by the car before coming to rest.
[Ans. 125 m]
23. What is the direction of velocity in a circular motion?
[Ans. tangent at any point]
24. Is it possible to have the speed of a moving body zero?
[Ans. No.]
25. If two bodies in circular paths of radii $1: 2$ take same time to complete their circles, what is the ratio of their angular speeds ?
[Ans. 1 : 2]
26. Is the $\mathrm{x}-\mathrm{t}$ graph given in the figure valid. Why?

[Ans. Not possible]
27. When a moving car returns to the same point what will be the displacement -
[Ans. Zero]
28. A body moving with a constant speed, say $10 \mathrm{~m} / \mathrm{s}$ on a frictionless surface has uniform motion while a freely falling object has non uniform motion. Give reason -
[Ans. Due to presence of acceleration due to gravity falling object accelerates.]
29. A 150 m long train crosses a bridge of length 250 m in 25 seconds. What is its velocity?
30. A ship is moving at a speed of $56 \mathrm{~km} / \mathrm{h}$. One second later it is moving at $58 \mathrm{~km} / \mathrm{h}$. What is its acceleration?

$$
\text { [Ans. } \left.\frac{5}{9} \mathrm{~m} / \mathrm{s}^{2}\right]
$$

31. If a car starts from rest and attains speed $20 \mathrm{~m} / \mathrm{s}$ in 25 seconds. Find the acceleration.

$$
\text { [Ans. } a=\frac{4}{5} \mathrm{~m} / \mathrm{s}^{2} \text {] }
$$

32. How much time will it take for a body with acceleration $2 \mathrm{~m} / \mathrm{s}^{2}$, to gain a velocity of $10 \mathrm{~m} / \mathrm{s}$, starting from rest?
[Ans. 5 sec$]$
33. When the slope of $v-t$ graph is negative and constant, what is the nature of acceleration?
[Ans. deaccelerates , zero.]
34. What is the angular speed of second's hand of a clock?
[Ans. $\frac{\pi}{30} \mathrm{rad} / \mathrm{s}$]
35. An artifical satellite is moving in a circular orbit of radius $42,250 \mathrm{~km}$. Find its angular velocity if it takes 24 hours to revolve round the earth. [Ans. $\left.\frac{\pi}{12} \mathrm{rad} / \mathrm{h}.\right]$
36. What is one radian?
37. Draw the velocity-time graph for a body moving with a uniform acceleration. Assume that the body is initially at rest.
38. The variation of velocity of a particle moving along a straight line in a certain time interval is shown below. What is the distance travelled during acceleration?

Ans. 5 m
39. A steel ball of mass 10 g is through horizontally with a velocity of $100 \mathrm{~km} / \mathrm{h}$ from the top of a 75 m high. Draw a diagram to show its path of entire journey. (you are not required to do any calculation.)

Ans. Path is parabola

40. Out of the following, identify the graph with corresponds to a motion with -
(i) Uniform retardation
(ii) Zero acceleration

A VERY SHORT ANSWER TYPE QUESTION :-

1. Define displacement. Give the S.Z unit.
2. Give an example of a motion in which distance is covered but there is no displacement.
3. What is retardation ? Give its S.I. unit.
4. A car travels 1 km and returns back to the same point in a different path. What is its average velocity ?
5. A cyclist is riding a circular path of radius 5 m with a speed of $10 \mathrm{~m} / \mathrm{s}$. What is the change in velocity when he has travelled through a semicircle ?
6. Two cars A and B have their x -t graphs as given. Which one has the greater velocity ?

7. Name a physical quantity that (i) varies (ii) remains same in a uniform circular motion.
8. Can we apply the equations of motion if acceleration is 2 t where t is the time ?
9. In a circular path of radius 1 m , a mass of 2 kg moves with a constant spee of $10 \mathrm{~m} / \mathrm{s}$. Find the angular speed.
10. If two bodies in circular paths of radii $1: 2$ take same time to complete their circles. What is the ratio of their angular speeds ?
11. What is the value of acceleration. If v-t graph is a straight line parallel to the time axis ?
12. What type of motion is associated with a pendulum ?
13. Give one type of motion where distance and displacement are same.
14. A body moving with a constant speed. Say $100 \mathrm{~m} / \mathrm{s}$ on a frictionless surface has uniform motion. Give reason.
15. A 150 m long train crosses a bridge of length 250 m in 25 seconds. What is its velocity ?
16. A ship is moving at a speed of $56 \mathrm{~km} / \mathrm{h}$. One second later it is moving at $58 \mathrm{~km} / \mathrm{h}$. What is its acceleration?
17. A car travelling at $20 \mathrm{~km} / \mathrm{h}$ speeds up to $60 \mathrm{~km} / \mathrm{h}$ in 6 sec . What is its acceleration ?
18. What is the ratio of CGS to MKS unit of acceleration ?
19. A body travelling eastward with a velocity $10 \mathrm{~m} / \mathrm{sec}$ turns northward and travels with the same speed $10 \mathrm{~m} / \mathrm{sec}$ for 10 seconds. Is there any acceleration ? Give reasons
20. A man keeps 12 steps in Northern direction and turns left to keep 5 steps the then returns to the initial point by the shortest path. Find (i) distance travelled (ii) displacement. Given : each step is 0.3 m .
21. Is displacement independent of path ? How ?
22. A man travels 10 m to the East, 20 m to the North and then $20 \sqrt{2} \mathrm{~m}$ South West. Find (i) displacement and (ii) distance travelled.
23. A train is moving with a velocity of $36 \mathrm{~km} / \mathrm{h}$. Calculate the distance travelled by the train, in (i) 1 hour (ii) 1 minute
24. A child completes a circular track of 200 m length in 10 sec. Find (i) Speed (ii) Velocity
25. A body moving along a straight line at $20 \mathrm{~m} / \mathrm{s}$ undergoes an acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$. After two seconds what will be its speed ? Also find the displacement
26. A car travelling at a velocity of $10 \mathrm{~m} / \mathrm{s}$ due North speeds up uniformly to a velocity of $25 \mathrm{~m} / \mathrm{s}$ in 5 sec . Calculate the acceleration in 5 seconds.
27. A car accelerates uniformly from $18 \mathrm{~km} / \mathrm{h}$ to $36 \mathrm{~km} / \mathrm{h}$ in 5 sec . Calculate acceleration in (i) $\mathrm{km} / \mathrm{h}^{2}$ and (ii) $\mathrm{m} / \mathrm{s}^{2}$.

NUMERICAL PROBLEMS :

1. An athlete completes one round of a circular track of diameter 200 m in 40 s . What will be the distance covered and the displacement at the end of 2 minutes 20 s?
2. Amit jogs from one end A to the other end B of a straight 300 m road in 2 minutes 30 seconds and then turns around and jogs 100 m back to point C in another 1 minute. what are Amit's average speeds and velocities in jogging (1) from A to B and (2) from A to C ?
3. Rahim, while driving to school, computes the average speed for his trip to be $20 \mathrm{~km} \mathrm{~h}^{-1}$. On his return trip along the same route, there is less traffic and the average speed is $30 \mathrm{~km} \mathrm{~h}^{-1}$. What is the average speed for Rahim's trip?
4. A motorboat starting from rest on a lake accelerates in a straight line at a constant rate of $3.0 \mathrm{~m} \mathrm{~s}^{-2}$ for 8.0 s. How far does the boat travel during this time?
5. A 100 m long train crosses a bridge of length 200 m in 50 seconds with constant velocity. Find the velocity.
6. A ball is gently dropped from a height of 20 m . If its velocity increases uniformly at the rate of $10 \mathrm{~m}^{-2}$, with what velocity will it strike the ground? After what time will it strike the ground?
7. An artificial satellite is moving in a circular orbit of radius 42250 km . Calculate its speed if it takes 24 hours to revolve around the earth.
8. The odometer of a car reds 2000 km at the start of a trip and 2400 km at the end of the trip. If the trip took 8 h , calculate the average speed of the car in $\mathrm{km} \mathrm{h}^{-1}$ and ms^{-1}.
9. A car accelerates uniformly from $18 \mathrm{~km} / \mathrm{h}$ to $36 \mathrm{~km} / \mathrm{h}$ in 5 s . Calculate (i) the acceleration and (ii) the distance covered by the car in that time.
10. The brakes applied to a car produce an acceleration of $6 \mathrm{~ms}^{-2}$ in the opposite direction to the motion. If the car takes 2 s to stop after the application of brakes, calculate the distance it travels during this time.
11. A boy walks around a circular track of radius 14 m , such that after 2 minutes he is diametrically opposite to the starting point. Find distance and displacement of boy.
12. The average speed of a body in the above diagram is

13. The table below shows the speed of moving vehicle with respect to time.

Speed (m/s)	2	4	6	8	10
Time (s)	0	2	3	4	5

Find the acceleration of the vehicle.
14. Calculate the distance covered in above question in 5 seconds.
15. Find the ratio of average speed of a scooter moving at $30 \mathrm{~m} / \mathrm{min}$ and a car moving at $27 \mathrm{~km} / \mathrm{h}$.
16. Rahul while driving to school, computes the average speed of his trip to be $20 \mathrm{~km} / \mathrm{h}$. On his return trip along the same route, there is less traffic and average speed is $40 \mathrm{~km} / \mathrm{h}$. Calculate the average speed of Rahul's round trip.
17. A circular cycle track has a circumference of 314 m with $A B$ as one of its diameters. A cyclist travels from A to B along the circular path with a velocity of constant magnitude $15.7 \mathrm{~m} / \mathrm{s}$. Find:
(1) the distance moved by the cyclist.
(2) the displacement of the cyclist if AB represents north-south direction.
(3) the average velocity of the cyclist.
18. On a 100 km road, a car travels the first 50 km at a uniform. speed of $30 \mathrm{~km} \mathrm{~h}^{-1}$. How fast must the car travel for the next 50 km so as to have an average speed of $45 \mathrm{~km} \mathrm{~h}^{-1}$ for the entire journey.
19. A man walks at $1 \mathrm{~m} / \mathrm{s}$ for 60 minutes. He takes rest for 20 minutes and then walks at a speed of $1 \mathrm{~m} / \mathrm{s}$ for 60 minutes. Find its average speed.
20. A train 120 m long moving on a straight and level track with uniform speed passes a pole in 6 seconds. Find:
(1) the speed of the train.
(2) the time it will take to cross a 50 m long bridge.
21. A body covers half of its journey with a speed of $60 \mathrm{~ms}^{-1}$ and the other half with a speed of $40 \mathrm{~ms}^{-1}$. Then find the average speed during the whole journey.
22. A car travelling at $20 \mathrm{~km} / \mathrm{h}$ speeds up to $60 \mathrm{kmh}^{-1}$ in 6 secs. What is its acceleration?
23. In 1985, Said Aouita set the world record for the 1500 m race in a time of 3 minute 29.46 second ? What was his average speed ?
24. A car travelling at a constant speed of $27 \mathrm{~ms}^{-1}$. The driver looks away from the road for 2.0 second to tune in a radio station on the radio. How far does the car go during this time ?
25. If a sports car can go from rest to $27 \mathrm{~ms}^{-1}$ in 9.0 second, what is the magnitude of its average acceleration?
26. A cheetah, the fastest of all land animals over a short distance, accelerates from rest to $26 \mathrm{~ms}^{-1}$. Assuming that the acceleration is constant, find the average speed of the cheetah.
27. A skier, starting from rest, accelerates down a slope at $1.6 \mathrm{~ms}^{-2}$. How far has he gone at the end of 5.0 second ?

LONG ANSWER TYPE QUESTION :

1. With the help of an example, explain 'when do we say that a body is at rest and when we say that it is moving'.
2. With the help of examples explain that motion is relative.
3. Distinguish between
(i) scalar and vector quantities
(ii) distance and displacement
(iii) speed and velocity.
4. Explain with the help of an example when avera, ge velocity is zero.
5. Can the speed of a particle be negative ? Can the velocity of a particle be negative? Give reasons is support of your answer.
6. Derive $\mathrm{v}^{2}-\mathrm{u}^{2}=2$ as.
7. What is velocity-time graph? How can you derive $v=u+$ at and $s=u t+\frac{1}{2}$ at 2 by this ?
8. What is meant by uniform circular motion ?
9. Establish formula $s=u t+\frac{1}{2} a t^{2}$ from velocity-time graph.
10. Deduce the expression for distance covered by a uniformly accelerated body after a certain time.
11. A body moving with initial velocity x moves with a constant acceleration y . Plot its velocity-time graph.

EXERCISE \# 2
 ANSWER KEY
 NUMERICAL PROBOMEM.

1. distance $=2200 \mathrm{~m}$; displacement $=200 \mathrm{~m}$.
2. (1) average speed $=$ average velocity $=2.00 \mathrm{~m} / \mathrm{s}$.
(2) average speed $=1.90 \mathrm{~m} / \mathrm{s}$; average velocity $=0.952 \mathrm{~m} / \mathrm{s}$.
3. average speed $=24 \mathrm{~km} / \mathrm{h}$.
4. distance travelled $=96 \mathrm{~m}$
5. $6 \mathrm{~m} / \mathrm{s}$
6. velocity $=20 \mathrm{~m} / \mathrm{s}$; time $=2 \mathrm{~s}$
7. speed $=3.07 \mathrm{~km} / \mathrm{s}$.
8. $50 \mathrm{~km} / \mathrm{h}$ or $13.9 \mathrm{~m} / \mathrm{s}$
9. (i) $1 \mathrm{~m} / \mathrm{s}^{2} \quad$ (ii) 37.5 m
10. 12 m
11. $1.67 \mathrm{~m} / \mathrm{s}$
12. 30 m
13. $26.7 \mathrm{~km} / \mathrm{h}$
14. $90 \mathrm{~km} / \mathrm{h}$
15. $20 \mathrm{~m} \mathrm{~s}^{-1} ; 8.5 \mathrm{~s}$
16. Distance $=44 \mathrm{~m}$ \& Displacement $=28 \mathrm{~m}$
17. $1.6 \mathrm{~m} / \mathrm{s}^{2}$
18. $2: 3$
19. (1) $157 \mathrm{~m}(2) 100 \mathrm{~m}$ direction toward south (3) $10 \mathrm{~m} / \mathrm{s}$
20. $0.86 \mathrm{~m} / \mathrm{s}$
21. $48 \mathrm{~m} \mathrm{~s}^{-1}$
22. $1.8 \mathrm{~m} \mathrm{~s}^{-2}$
23. $7.16 \mathrm{~ms}^{-1}$
24. 54 m
25. $3 \mathrm{~ms}^{-2}$
26. $13 \mathrm{~ms}^{-1}$
27. 20 m
28. A car travels $\frac{1}{3} \mathrm{rd}$ distance on a straight road with a velocity of $10 \mathrm{~km} / \mathrm{hr}$, next $\frac{1}{3} \mathrm{rd}$ with velocity $20 \mathrm{~km} /$ hr and the last $\frac{1}{3} \mathrm{rd}$ with velocity $60 \mathrm{~km} / \mathrm{hr}$. What is the average velocity of the car in the whole journey?
(1) $4 \mathrm{~km} / \mathrm{hr}$
(2) $6 \mathrm{~km} / \mathrm{hr}$
(3) $12 \mathrm{~km} / \mathrm{hr}$
(4) $18 \mathrm{~km} / \mathrm{hr}$
29. A motor ship covers the distance of 300 km between two localities on a river in 10 hrs downstream and in 12 hrs upstream. Find the flow velocity of the river assuming that these velocities are constant.
(1) $2.0 \mathrm{~km} / \mathrm{hr}$
(2) $2.5 \mathrm{~km} / \mathrm{hr}$
(3) $3 \mathrm{~km} / \mathrm{hr}$
(4) $3.5 \mathrm{~km} / \mathrm{hr}$
30. Driver of a train travelling at $115 \mathrm{~km} / \mathrm{hr}$ sees on a same track, 100 m infront of him, a slow train travelling in the same direction at $25 \mathrm{~km} / \mathrm{hr}$. The least retardation that must be applied to faster train to avoid a collision is
(1) $3.125 \mathrm{~m} / \mathrm{s}^{2}$
(2) $3.5 \mathrm{~m} / \mathrm{s}^{2}$
(3) $2.75 \mathrm{~m} / \mathrm{s}^{2}$
(4) $3.0 \mathrm{~m} / \mathrm{s}^{2}$
31. Distance of the moon from the earth is $410^{8} \mathrm{~m}$. The time taken by a radar signal transmitted from the earth to reach the moon is
(1) 5.2 s
(2) 1.3 s
(3) 2.6 s
(4) 0.70 s
32. A stone is dropped into a well in which the level of water is h, below the top of the well. If v is velocity of sound, then time T after which the splash is heard is equal to
(1) $\frac{2 h}{v}$
(2) $\sqrt{\frac{2 h}{v}}+\frac{h}{g}$
(3) $\sqrt{\frac{2 h}{g}}+\frac{h}{v}$
(4) $\sqrt{\frac{h}{2 g}}+\frac{2 h}{v}$
33. A stone weighing 3 kg falls from the top of a tower 100 m high and buries itself 2 m deep in the sand. The time of penetration is :-
(1) 0.09 sec
(2) 0.9 sec
(3) 2.1 sec
(4) 1.3 sec
34. The velocity of a body at any instant is $10 \mathrm{~m} / \mathrm{s}$. After 5 sec , velocity of the particle is $20 \mathrm{~m} / \mathrm{s}$. The velocity at 3 seconds before is
(1) $8 \mathrm{~m} / \mathrm{sec}$
(2) $4 \mathrm{~m} / \mathrm{sec}$
(3) $6 \mathrm{~m} / \mathrm{sec}$
(4) $7 \mathrm{~m} / \mathrm{sec}$
35. A body covers 200 cm in the first 2 sec .and 220 cm in next 4 sec . What is the velocity of the body at the' end of 7 th second?
(1) $40 \mathrm{~cm} / \mathrm{sec}$
(2) $20 \mathrm{~cm} / \mathrm{sec}$
(3) $10 \mathrm{~cm} / \mathrm{sec}$
(4) $5 \mathrm{~cm} / \mathrm{sec}$
36. A boat takes 2 hrs . to travel 8 km and back in still water lake with water velocity of $4 \mathrm{~km} / \mathrm{hr}$, then the time taken for going upstream of 8 km and coming back is :-
(1) 120 min
(2) 160 min
(3) 200 min
(4) none of these
37. If two bodies of different masses m_{1} and m_{2} are dropped from differnet heights h_{1} and h_{2}, then ratio of the times taken by the two to drop through these distances is :-
(1) $h_{1}: h_{2}$
(2) h_{2} / h_{1}
(3) $\sqrt{\mathrm{h}_{1}}: \sqrt{\mathrm{h}_{2}}$
(4) $h_{1}{ }^{2}: h_{2}^{2}$
38. A ball is dropped on the floor from a height of 10 m . It rebounds to a height of 2.5 m . If the ball is in contact with the floor for 0.01 sec , then average acceleration during contact is :-
(1) $2100 \mathrm{~m} / \mathrm{s}^{2}$
(2) $1400 \mathrm{~m} / \mathrm{s}^{2}$
(3) $700 \mathrm{~m} / \mathrm{s}^{2}$
(4) $400 \mathrm{~m} / \mathrm{s}^{2}$
39. A stone is thrown vertically upward with an initial velocity u from the top of a tower, reaches the ground with a velocity 3 u . The height of the tower is :-
(1) $\frac{3 u^{2}}{g}$
(2) $\frac{4 u^{2}}{g}$
(3) $\frac{6 u^{2}}{g}$
(4) $\frac{9 u^{2}}{g}$
40. If a ball is thrown up with a certain velocity. It attains a height of 40 m and comes back to the thrower, then :-
(1) total distance covered by it is 40 m
(2) total displacement covered by it is 80 m
(3) total displacement is zero
(4) total distance covered by it is zero
41. Acceleration of a body projected upwards with a certain velocity is
(1) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(2) $-9.8 \mathrm{~m} / \mathrm{s}^{2}$
(3) zero
(4) insufficient data
42. If a body of mass 0.10 kg is moving on circular path of diameter 1.0 m at the rate of 10 revolutions per 31.4 sec , then centripetal force acting on the body ($\mathrm{n}=3.14$) is
(1) 0.2 Newton
(2) 2.0 Newton
(3) 0.02 Newton
(4) 20.0 Newton
43. The earth's radius is 6400 km . It makes one revolution about its own axis in 24 hrs . The centripetal acceleration of a point on its equator is nearly
(1) $340 \mathrm{~cm} / \mathrm{s}^{2}$
(2) $34 \mathrm{~cm} / \mathrm{s}^{2}$
(3) $3.4 \mathrm{~cm} / \mathrm{s}^{2}$
(4) $0.34 \mathrm{~cm} / \mathrm{s}^{2}$
44. The acceleration of a point on the rim of flywheel 1 m in diameter, if it makes 1200 revolutions per minute is
(1) $8 \pi^{2} \mathrm{~m} / \mathrm{s}^{2}$
(2) $80 \pi^{2} \mathrm{~m} / \mathrm{s}^{2}$
(3) $800 \pi^{2} \mathrm{~m} / \mathrm{s}^{2}$
(4) none of these
45. A phonograph record on turn table rotates at 30 rpm . The linear speed of a point on the record at the needle at the beginning of the recording when it is at a distance of 14 cm from the centre is
(1) $22 \mathrm{~cm} / \mathrm{sec}$
(2) $44 \mathrm{~cm} / \mathrm{sec}$
(3) $48 \mathrm{~cm} / \mathrm{sec}$
(4) $52 \mathrm{~cm} / \mathrm{sec}$
46. The relationship between average speed, time and distance is
(1) Average speed $=$ distance time
(2) Average speed $=\frac{\text { total distance }}{\text { total time }}$
(3) Time = average speed/distance
(4) Distance $=$ average speed time
47. A body moving along a circular path has
(1) both constant speed
(2) constant velocity
(3) no radial acceleration
(4) no tangential velocity
48. A rubber ball dropped from a certain height is an example of
(1) uniform acceleration
(2) uniform retardation
(3) uniform speed
(4) non-uniform speed
49. If the velocity of a body does not change, its acceleration is
(1) zero
(2) infinite
(3) unity
(4) none of these
50. When the distance an object travels is directly proportional to the length of time, it is said to travel with
(1) zero velocity
(2) constant speed
(3) constant acceleration
(4) uniform velocity
51. A body moves on three quarters of a circle of radius r. The displacement and distance travelled by it are:-
(1) displacement $=r$, distance $=3 r$
(2) displacement $\sqrt{2} r$, distance $=\frac{3 \pi r}{2}$
(3) distance $2 r$, displacement $=\frac{3 \pi r}{2}$
(4) displacement 0 , distance $=\frac{3 \pi r}{2}$
52. For the motion on a straight line path with constant acceleration the ratio of the magnitude of the displacement to the distance covered is :-
(1) $=1$
(2) ≥ 1
(3) ≤ 1
(4) <1

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	2	1	2	3	1	2	3	2	3	1	2	3	2	1
Que.	16	17	18	19	20	21	22	23	24	25					
Ans.	3	3	2	2	1	4	1	2	2	1					

