Introduction To Differentiation

"Change is the only constant in this world."

Definition of Differentiation
$\frac{\text { Introduction }}{\text { Differential }} \frac{\text { Calculus (Differentiation) }}{}$

* Definition:- Rate of change of aquantity $\rightarrow v$ (with respect to another quantity.

Slope of a Straight Line

Slope of a Curved Line

Slope of a Curved Line

Physical Interpretation of Slope

$$
\begin{array}{ll}
* V_{\text {in } s t}=\left(\frac{d s}{d t}\right)=\text { Slope } \rightarrow f \text { tangent at a point }=\tan \theta \\
\left.\tan \theta=\frac{d s}{d t s}\right) \\
\rightarrow \text { Rate of change of displacement at any time u.r.t. time }
\end{array}
$$

Various Cases of Slope

$$
\begin{aligned}
& v_{\text {inst }}=\left(\frac{d s}{d t}\right)< \\
& \text { (i) If } \frac{d s}{d t}=\sigma \text {. } \\
& a_{\text {inst }}=\left(\frac{d v}{d t}\right) \\
& a_{a v g}=\frac{v_{2}-v_{1}}{t}=\frac{\Delta v_{1}}{\Delta t} \\
& a_{\text {inst }}=\frac{d v}{d t} \\
& \text { viii) If } \frac{d s}{d t}<0 \\
& \text {, } S \rightarrow \text { Decreasing with time }
\end{aligned}
$$

Interpretation of Slope (Graphical and Physical)

Sign of Slope
$* \frac{d y}{d x} \rightarrow$ Rate of change $\quad y \neq$ $\tan \theta=\sin \theta \rightarrow$ tue

Basic Formulae in Differentiation

Basic Formulae in differentiation
(i) Constant

$$
\begin{aligned}
& y=\text { constant }=k \\
& \left(\frac{d y}{d x}\right)=\frac{d+k)^{\circ}}{d x}=0
\end{aligned}
$$

(ii) $y=x$
(iii) $y=K x \quad(K \rightarrow$ Any constant $)$

$$
\begin{gathered}
\frac{d y}{d x}=\frac{d(n(x)}{d x}=k \frac{d(x)}{d x}=k \\
\frac{e y-3 x}{d x}=3 \\
\frac{d y}{d x}=?=3
\end{gathered}
$$

$$
\frac{d y}{d x}=\frac{d x}{d x}=1\left|\begin{array}{cc}
1 \text { isp } e m=1
\end{array}\right|
$$

(iv) $y=x^{n} \quad(n \rightarrow$ some constant)

$$
\begin{aligned}
& \text { (iv) } y=x \\
& \frac{d y}{d x}=\frac{d\left(x^{n}\right)}{d x}=n x^{n-1}
\end{aligned}
$$

Basic Formulae in Differentiation

$$
\begin{aligned}
& y=x^{n} \frac{d y}{d x}=\frac{d\left(x^{n}\right)}{d x}=n \\
& x^{n-1}(v) y=x \rightarrow \frac{d y}{d x}=\frac{d x}{d x} \\
&=L x^{(1-1} \\
&=1 . x^{0}=L
\end{aligned}
$$

(i) $y=x^{2} \rightarrow \frac{d y}{d x}=2 x^{2-1}=2 x$
(ii) $y=x^{3} \rightarrow d y=3 x^{3-1}=3 x^{2}$
(vi) $y=1 \Rightarrow \frac{d y}{d x}=\frac{d 1}{d x}=\frac{d x^{x}}{d x}$ $=0 x^{\sigma-1}=0$
(iii) $y=x^{4} \rightarrow \frac{d x}{d x}=4 x^{3}$
(iv) $y=x^{5} \rightarrow \frac{d y}{d x}=5 x^{4}$
(vii) $y=\sqrt{x} \Rightarrow \frac{d y}{d x}=\frac{d\left(x^{1 / 2}\right)}{d x}$

$$
\begin{aligned}
& =\frac{1}{2} x^{\left(\frac{1}{2} / 2-1\right)}\left(-\frac{1}{1}\right) \\
& =1 x^{\left(-\frac{1}{2}\right)}
\end{aligned}
$$

Basic Formulae in Differentiation

$$
\begin{aligned}
& \text { (viii) } y=\frac{1}{x} \Rightarrow \frac{d y}{d x}=\frac{d\left(x^{-1}\right)}{d x}=-1 x^{-1-1}=\frac{-1}{x^{2}} \\
& \text { (ix) } y=\frac{1}{\sqrt{x}} \Rightarrow \frac{d\left(x^{-1 / 2}\right)}{d x}=\frac{-1}{2} x^{-\frac{1}{2}-1}=\frac{-1}{2} x^{-3 / 2}=\frac{-1}{2 x^{3 / 2}}=\frac{-1}{2 x \sqrt{x}} \\
& (x) y=\left(\frac{1}{x^{5 / 3}}\right) \Rightarrow \frac{\left.d\left(x^{-5 / 3}\right)=\frac{-5}{d x} x^{-\frac{5}{3}-1}=\frac{-5}{3} x^{-8 / 3}=\frac{-5}{3 \times 8 / 3}\right)}{d x^{2}=2 x} \\
& (x i)^{*} \sqrt{H}=x^{2}+2 x+1=(x+1)^{2}
\end{aligned}
$$

Thank You!

