
ADVANCE ARRAY FUNCTIONS

� Array_keys() :

It returns the keys of input array in form of

new array where the are stored as values.

The keys of new array are automatically

incremented ingers, started from 0.

Array_values() :

It works exactly same as Array_keys()

functions excepts that stored values are values

from original array.

ADVANCE ARRAY FUNCTIONS

� Array_conut_values() :

This function take as array as arguments and

returns new array.

In new array all the values from original array

(passed array) will become the keys of returned(passed array) will become the keys of returned

array(new array) and the new values are the number of

times the old value occurs in original array.

ADVANCE ARRAY FUNCTIONS

Array_flip() :

This functions changes the keys of array into

values and values into keys.

Array_reverse():

Returns new array with key/values pair in

reverse order.

ADVANCE ARRAY FUNCTIONS

Merging array :Merging array :

array_merge(array1,array2)

This functions takes two or more arguments and
returns renumbered new array.

Array_pad() :

It create some leading or following increasingIt create some leading or following increasing
size of array.

It takes input array as first argument, number
of element to incrase as second argument and value to
assigned as third element.

if second argument is positive then element will
pad to end of array, if negative number then element
will pad at starting of array.

if second argument is smaller then size of array
then no padding will occurs.

STACK AND QUEUES

Stack and queue are data structure, frequently

used in computer science.

Stack :

� A stack is a container that stores values and supports

LIFO(Last In First Out) behavior.LIFO(Last In First Out) behavior.

� This means that stack maintains an order of value

stored.

Act of adding into stack is Pushing in to stack.

Act of taking off the top is called poping the stack.

STACK AND QUEUES

Queue :

Queue is similar to the stack, but its behavior is

FIFO (First In First Out).

Array_push() : This function takes an initial arrayArray_push() : This function takes an initial array

argument and then any number of elements to push into

the stack

The elements will in inserted at end of array from

left to right.

Array_pop() : it takes an array and removes the element

at end, returning it.

EXPLODE()

explode() is used to split a string into pieces.

Cutting of the string depending upon a substring or a

single character, and returns the chunked form of the

string as an array.string as an array.

For example you have a string

$text="Ali,Jeff,Joel,Cortex,Charly";

$arr = explode(",", $text);

IMPLODE()

function implode() is oppisite to the explode function.

It rejoins any array elements and returns the resulting
string, which may be put in a variable.

Your have an arrayYour have an array
$arr = Array("Ali","Jeff","Joel","Cortex","Charly");

and you wish to combine it in a string, by putting a
seperator '/' between each element of the array.

$str = implode("/",$arr);

Now $str will be Ali/Jeff/Joel/Cortex/Charly

EXTRACT() FUNCTION

The extract() function imports variables into the local

symbol table from an array.

This function uses array keys as variable names and

values as variable values. values as variable values.

For each element it will create a variable in the current

symbol table.

This function returns the number of variables extracted

on success.

EXTRACT() FUNCTION CONT.

Syntax

extract(array, extract_rules, prefix)

array : Required. Specifies the array to use

extract_rules : Optional. extract_rules : Optional.

Desc : The extract() function checks for invalid variable

names and collisions with existing variable names. This

parameter specifies how invalid and colliding names

are treated.

EXTRACT() FUNCTION CONT.

Possible values:

•EXTR_OVERWRITE - Default. On collision, the existing
variable is overwritten

•EXTR_SKIP - On collision, the existing variable is not •EXTR_SKIP - On collision, the existing variable is not
overwritten

•EXTR_PREFIX_SAME - On collision, the variable name
will be given a prefix

•EXTR_PREFIX_ALL - All variable names will be given a
prefix

Continue….

EXTRACT() FUNCTION CONT.

•EXTR_PREFIX_INVALID - Only invalid or numeric
variable names will be given a prefix

•EXTR_IF_EXISTS - Only overwrite existing variables in
the current symbol table, otherwise do nothing

•EXTR_PREFIX_IF_EXISTS - Only add prefix to
variables if the same variable exists in the current
symbol table

•EXTR_REFS - Extracts variables as references. The
imported variables are still referencing the values of the
array parameter

EXTRACT() FUNCTION CONT.

•Optional.

•Description :

If EXTR_PREFIX_SAME, EXTR_PREFIX_ALL, If EXTR_PREFIX_SAME, EXTR_PREFIX_ALL,

EXTR_PREFIX_INVALID or EXTR_PREFIX_IF_EXISTS

are used in the extract_rules parameter, a specified

prefix is required. This parameter specifies the prefix.

The prefix is automatically separated from the array

key by an underscore character.

