

РらатमझमはLa
TRAVAIL BEYOND EXCELLENCE

QUIZ - (Kinematics I)

Instruction: Correct answer +2 wrong -1

Time: 30 minutes

Marks: 40

1. Initial velocity of a particle moving along a straight line is $10 \mathrm{~m} / \mathrm{s}$ and retardation is $2 \mathrm{~m} / \mathrm{s}^{2}$. The distance covered by it in $5^{\text {th }}$ second of the motion is
(A) 1 m
(B) 50 m
(C) 19 m
(D) 85 m
2. For the v-t graph, distance travelled by body in 5 sec . is
(A) 20 m
(B) 40 m
(C) 80 m
(D) 100 m

3. The graph represents displacement of two particles with time. Ratio of velocity of A to velocity of B is
(A) $\sqrt{3}: 1$
(B) $1: 1$
(C) $1: 2$
(D) $1: \sqrt{3}$

4. A particle is projected with v_{0} at angle of 30° with vertical. Its average velocity for its time of flight is
(A) $v_{0} \sin 30$
(B) $v_{0} \cos 30$
(C) $v_{0} \tan 30$
(D) none of the above
5. Two vectors having magnitudes 8,10 can have maximum \& minimum value of magnitude of their resultant as
(A) 12, 6
(B) 10, 3
(C) 18, 2
(D) none of these
6. At what angle should the two forces $2 P$ and $\sqrt{2} P$ act so that the resultant force is $P \sqrt{10}$
(A) 45°
(B) 60°
(C) 90°
(D) 120°
7. Two billiard balls are rolling on a flat table. One has velocity component $\mathrm{v}_{\mathrm{x}}=1 \mathrm{~m} / \mathrm{sec}$, $v_{y}=\sqrt{3} \mathrm{~m} / \mathrm{s}$ and the other has components $v_{x}^{\prime}=2 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{y}}^{\prime}=2 \mathrm{~m} / \mathrm{s}$ along two perpendicular direction. If both the balls start moving form same point, then angle between their path is
(A) 60°
(B) 45°
(C) 22.5°
(D) 15°
8. A particle undergoes three successive displacements given by $\overrightarrow{\mathrm{s}}_{1}=\sqrt{2} \mathrm{~m}$ North-East $\overrightarrow{\mathrm{s}}_{2}=2 \mathrm{~m}$ due south and $\overrightarrow{\mathrm{s}}_{3}=4 \mathrm{~m}, 30^{\circ}$ north of west, then magnitude of net displacement.
(A) $\sqrt{14+4 \sqrt{3}}$
(B) $\sqrt{14-4 \sqrt{3}}$
(C) $\sqrt{14}$
(D) none of these

РらatमझमはLa
TRAVAIL BEYOND EXCELLENCE
9. A particle is projected horizontally in air at a height of 25 m from the ground with a speed of $10 \mathrm{~m} / \mathrm{s}$. The speed of the particle after 2 seconds will be
(A) $10 \mathrm{~m} / \mathrm{s}$
(B) $22.4 \mathrm{~m} / \mathrm{s}$
(C) $25 \mathrm{~m} / \mathrm{s}$
(D) $28.4 \mathrm{~m} / \mathrm{s}$
10. A ball is projected from ground with a speed of $20 \mathrm{~m} / \mathrm{s}$ at an angle of 45° with horizontal. There is a wall of 25 m height at a distance of 10 m from the projection point. The ball will hit the wall at a height of
(A) 5 m
(B) 7.5 m
(C) 10 m
(D) 12.5 m
11. A river 500 m wide is flowing with $5 \mathrm{~m} / \mathrm{s}$. A swimmer, whose velocity in still water $4 \mathrm{~m} / \mathrm{s}$ swims at an angle of 60° with normal to the river. The time taken by the swimmer to reach the opposite bank is
(A) 125 sec .
(B) $\frac{500}{3} \mathrm{sec}$.
(C) 250 sec .
(D) 100 sec .
12. Three persons P, Q and R of same mass travel with same speed u along an equilateral triangle of side 'd' such that each one faces the other always. After how much time will they meet each other :
(A) d/ u seconds
(B) $2 \mathrm{~d} / 3 \mathrm{u}$ seconds
(C) $2 \mathrm{~d} / \sqrt{3} \mathrm{u}$ seconds
(D) $\mathrm{d} / \sqrt{3} \mathrm{u}$ seconds

13. A person is moving in a circle of radius r with constant speed v. The change in velocity in moving from A to B is
(A) $2 v \cos 40^{\circ}$
(B) $2 v \sin 40^{\circ}$
(C) $2 v \cos 20^{\circ}$
(D) $2 v \sin 20^{\circ}$

14. Two particles of same mass are projected from same place with same velocity u, such that their ranges are same. If h_{1} and h_{2} are the maximum heights attained by them, then the relation between h_{1}, h_{2} and R is
(A) $R=h_{1} h_{2}$
(B) $R^{2}=16 h_{1} h_{2}$
(C) $R^{2}=h_{1} / h_{2}$
(d) $R^{2}=h_{1}^{2} / h_{2}^{2}$
15. A body is projected with velocity v_{0} at an angle of projection θ. The radius of curvature of trajectory at the point of projection is
(A) $\frac{v_{0}^{2} \sin ^{2} \theta}{g}$
(B) $\frac{v_{0}^{2} \cos ^{2} \theta}{g}$
(C) $\frac{v_{0}^{2}}{g \sin \theta}$
(D) $\frac{v_{0}^{2}}{g \cos \theta}$
16. The distance travelled by a body and the time ' t ' are related by $\mathrm{x}=4-3 \mathrm{t}+2 \mathrm{t}^{2}$. The average velocity in a time interval of 1 to 4 sec is
(A) $7 \mathrm{~m} / \mathrm{s}$
(B) $10 \mathrm{~m} / \mathrm{s}$
(C) $15 \mathrm{~m} / \mathrm{s}$
(D) none of these
17. In the last second of its free ball a body covers $3 / 4$ of its total path. The ball falls from a height of
(A) 200 m
(B) 100 m
(C) 10 m
(D) 20 m

TRAVAIL BEYOND EXCELLENCE
18. A stone is dropped from a balloon ascending with velocity $2 \mathrm{~m} / \mathrm{s}$ from a height of 20 m . The time of flight of the stone is
(A) 1 sec .
(B) 2 sec .
(C) 4 sec .
(D) data insufficient
19. A body moving with a uniform acceleration has velocities of u and v when passing through points A and B in its path. The velocity of the body midway between A and B is
(A) $\frac{u+v}{2}$
(B) $\sqrt{\frac{u^{2}+v^{2}}{2}}$
(C) $\sqrt{u v}$
(D) None of these
20. The relative velocity of a car 'A' with respect to car B is $30 \sqrt{2} \mathrm{~m} / \mathrm{s}$ due North-East. The velocity of car ' B ' is $20 \mathrm{~m} / \mathrm{s}$ due south. The relative velocity of car ' C ' with respect to car ' A ' is $10 \sqrt{ } 2 \mathrm{~m} / \mathrm{s}$ due North-West. The speed of car C and the direction (in terms of angle it makes with the east).
(A) $20 \sqrt{ } 2 \mathrm{~m} / \mathrm{s}, 45^{\circ}$
(B) $20 \sqrt{ } 2 \mathrm{~m} / \mathrm{s}, 135^{\circ}$
(C) $10 \sqrt{ } 2 \mathrm{~m} / \mathrm{s}, 45^{\circ}$
(D) $10 \sqrt{ } 2 \mathrm{~m} / \mathrm{s}, 135^{\circ}$

