ALGEBRA OF MATRICES

1.1 MATRIX

DEFINITION A set of mn numbers arranged in the form of a rectangular array of m rows and n columns is called an $m \times n$ matrix (to be read as ' m ' by ' n ' matrix).

An $m \times n$ matrix is usually written as

$$
\mathrm{A}=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & a_{1 j} & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots a_{2 j} & a_{2 n} \\
a_{a i 1} & a_{i 2} & a_{i 3} & a_{i j} & a_{i n} \\
: & ; & : & : & : \\
a_{m 1} & a_{m 2} & a_{m 3} & a_{m j} & a_{m n}
\end{array}\right]_{m \times n}
$$

In compact form the above matrix is represented by

$$
A=\left\lfloor a_{i j}\right\rfloor_{m \times n} \text { or } A=\left\lfloor a_{i j}\right\rfloor
$$

The numbers a_{11}, a_{12}, \ldots etc. are known as Elements of the matrix \mathbf{A}. The element $a_{i j}$ belongs to $i^{\text {th }}$ row and $j^{\text {th }}$ column and is called the $(i, j)^{\text {th }}$ element of the matrix $\mathrm{A}=\left[a_{i j}\right]$. Thus, in the element $a_{i j}$ the first subscript I always denotes the number of rows and the second subscript j , number of columns in which the element occurs.

Following are some examples of matrices
(i) $A=\left[\begin{array}{ccc}2 & 3 & 8 \\ 1 & -6 & 3 \\ 4 & 0 & 3\end{array}\right]$ is a matrix having 3 rows and 3 columns. So the order of the matrix is $=3 \times 3$ such that $a_{11}=2, a_{12}=3, a_{13}=8, a_{21}=1, a_{22}=-6, a_{23}=3$, $a_{31}=4, a_{31}=0, a_{33}=3$.
(ii) $\quad B=\left[\begin{array}{cc}\sin x & \cos x \\ \cos x & -\sin x\end{array}\right]$ is a matrix having 2 rows and 2 columns. So the order of the matrix is $=3 \times 3$ such that $a_{11}=\sin x, a_{12}=\cos x, a_{21}=\cos x$, $a_{22}=-\sin x$

Types of Matrix

1. Row Matrix

A matrix having only one row is called a row matrix.
e.g. $A=\left[\begin{array}{llll}1 & -3 & 0 & 4\end{array}\right]_{1 \times 4}$ is a row matrix of order 1×4

2. Column Matrix

A matrix having only one column is called a column matrix.
e.g. $B=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]_{3 \times 1}$ is a row matrix of order 3×1

3. Square Matrix

In these square matrix, the number of rows is equal to the number of columns.
e.g. $\left[\begin{array}{ll}1 & 2 \\ 5 & 8\end{array}\right]_{2 \times 2}$ and $\left[\begin{array}{ccc}1 & 1 & 3 \\ 4 & 0 & 3 \\ 5 & -1 & 8\end{array}\right]_{3 \times 3}$

In these square matrices, $\quad m=n$
Elements $a_{i j}$ of a square matrix for which $\mathrm{i}=\mathrm{j}$ are called diagonal elements and line along which they lie is called principal diagonal of the matrix.

4. Null Matrix or Zero Matrix

The $m \times n$ matrix whose elements are all 0 is called null matrix (or zero matrix) of the type $m \times n$. It is denoted by \mathbf{O}.
e.g. $\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]_{3 \times 4}$ is zero matrix of type 3×4.
5. Diagonal Matrix

A square is called diagonal matrix if elements above and below the principal diagonal are all zero.
e.g. $A=\left[\begin{array}{cccc}a_{11} & 0 & 0 & 0 \\ 0 & a_{22} & 0 & 0 \\ 0 & 0 & a_{33} & 0 \\ 0 & 0 & 0 & a_{44}\end{array}\right]$
is a diagonal matrix, to be denoted by $\mathrm{A}=\operatorname{diag}\left[a_{11}, a_{22}, a_{33}, a_{44}\right]$.

6. Scalar Matrix

A diagonal matrix in which all the diagonal elements are equal is called scalar matrix.
e.g. $A=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right]_{3 \beta}$ is a scalar matrix of order 3.

7. Identity Matrix or Unit Matrix

A square matrix each of whose diagonal elements is 1 and each of whose non-diagonal elements is equal to 0 is called a identity matrix or unit matrix. It is denoted by \mathbf{I}_{n} when n is order of the matrix.
e.g. $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]_{3 \times 3}, I_{4}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]_{4 \times 4}$ are unit matrices of order

2,3, 4 respectively.

8. Triangular Matrix

It is of two types

(a). Upper Triangular Matrix

In this square matrix, all the elements below the principal diagonal are zero.
e.g. $\left[\begin{array}{cccc}a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44}\end{array}\right]$

(b) Lower Triangular Matrix

In this square matrix, all the elements above the principal diagonal are zero.
e.g. $\left[\begin{array}{cccc}a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44}\end{array}\right]$

