

APPLICATIONS OF MATRICES AND DETERMINANTS

Find the adjoint of matrices:
(i) $\left[\begin{array}{ll}3 & -1 \\ 2 & -4\end{array}\right]$; (ii) $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 3\end{array}\right) ;\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 3\end{array}\right]$.

Solution:

(i) $A=\left[\begin{array}{ll}3 & -1 \\ 2 & -4\end{array}\right]$.
the matric of cofactor $[A i j]=\left[\begin{array}{cc}-4 & -2 \\ 1 & 3\end{array}\right]$
Therefore $\operatorname{adj} \mathrm{A}=(A i j)^{\top}=\left[\begin{array}{ll}-4 & 1 \\ -2 & 3\end{array}\right]$
(ii) $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 5\end{array}\right]$

Cofactor of 1 is $=+(15-3)=15$
Cofactor of 2 is $=-(0-0)=0$
Co-factor of 3 is $=+(0-10)=-10$
cofactor of 0 is $=-(6-12)=6$
cofactor of 5 is $=+(3-6)-3$
cofactor of 0 is $=-(4-4)=0$
cofactor of 2 is $=+(0-15)=-15$
cofactor of 4 is $=-(0-0)=0$
cofactor of 3 is $=+(5-0)=5$

$$
\text { Aij }=\left[\begin{array}{ccc}
15 & 0 & -10 \\
6 & -3 & 0 \\
-15 & 0 & 5
\end{array}\right]
$$

There fore adj. $\mathrm{A}=\left[\begin{array}{ccc}15 & 6 & -15 \\ 0 & 3 & 0 \\ -10 & 0 & 5\end{array}\right]$
(iil) $A=\left[\begin{array}{lll}2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 1\end{array}\right]$
cofactor of 2 is $=+(1-4)=-3$
cofactor of 5 is $=-(3-2)=-1$
cofactor of 3 is $=+(6-1)=5$
cofactor of 3 is $=-(5-6)=1$
cofactor of 1 is $=+(2-3)=-1$
cofactor of 2 is $=-(4-5)=1$
cofactor of 1 is $=+(10-3)=7$
cofactor of 2 is $=-(4-6)=5$
cofactor of 1 is $=+(2-15)=-13$

$$
\mathrm{Aij}=\left[\begin{array}{ccc}
-3 & -1 & 5 \\
1 & -1 & 1 \\
7 & 5 & -13
\end{array}\right]
$$

There fore adj. $A=\left[\begin{array}{ccc}-3 & 1 & 7 \\ -1 & -1 & 5 \\ 5 & 1 & -13\end{array}\right]$
2.Find the adjoint of the matrix $A=\left[\begin{array}{cc}1 & 2 \\ 3 & -5\end{array}\right]$. and verify the result. $A(\operatorname{adj} . A)=(\operatorname{adj} . A) A=|A| I_{2}$ Solution $A=\left[\begin{array}{cc}1 & 2 \\ 3 & -5\end{array}\right]$.

$$
\text { the matrix of cofactor }[A i j]=\left[\begin{array}{cc}
-5 & -3 \\
-2 & 1
\end{array}\right]
$$

$$
\text { There fore } \operatorname{adjA}=(A i j)^{\top}=\left[\begin{array}{cc}
-5 & -2 \\
-3 & 1
\end{array}\right]
$$

$$
\begin{aligned}
A(\operatorname{adj} \cdot A) & =\left[\begin{array}{cc}
1 & 2 \\
3 & -5
\end{array}\right]\left[\begin{array}{cc}
-5 & -2 \\
-3 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-11 & 0 \\
0 & -11
\end{array}\right]=-11\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=|A| I_{2}
\end{aligned}
$$

$$
(\operatorname{adj} . A) A=\left[\begin{array}{cc}
-5 & -2 \\
-3 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
3 & -5
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
-11 & 0 \\
0 & -11
\end{array}\right]=-11\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=|\mathrm{A}| \mathrm{I}_{2}
$$

$$
\text { Hence } A(\operatorname{adj} \cdot A)=(\operatorname{adj} . A) A=|A| I_{2}
$$

3.find the adjoint of matrix $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$ and verify the result.
$A(\operatorname{adj} \cdot A)=(\operatorname{adj} . A) A=|A| I$.

Solution:

$$
\begin{aligned}
A & =\left[\begin{array}{lll}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right] \\
|A| & =\left|\begin{array}{lll}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right| \\
& =3(-3+4)+3(2-0)+(-2-0) \\
& =3+6-8=1
\end{aligned}
$$

Cofactor of 2 is $=+(-3+4)=1$
Cofactor of 5 is $=-(2-0)=-2$

$$
\text { cofactor of } 3 \text { is }=+(-2-0)=-2
$$

$$
\text { cofactor of } 3 \text { is }=-(-3+4)=-1
$$

$$
\text { cofactor of } 1 \text { is }=+(3-0)=3
$$

$$
\text { cofactor of } 2 \text { is }=-(-3+0)=3
$$

$$
\text { cofactor of } 1 \text { is }=+(-12+12)=0
$$

$$
\text { cofactor of } 2 \text { is }=-(12-8)=-4
$$

$$
\text { cofactor of } 1 \text { is }=+(-9+6)=-3
$$

$$
\mathrm{Aij}=\left[\begin{array}{ccc}
1 & -2 & -2 \\
-1 & 3 & 3 \\
0 & -4 & -3
\end{array}\right]
$$

$$
\begin{aligned}
\text { Therefore adj.A } & =\left[\begin{array}{ccc}
1 & -1 & 0 \\
-2 & 3 & -4 \\
-2 & 3 & -3
\end{array}\right] \\
\text { A(adj.A) } & =\left[\begin{array}{lll}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 0 \\
-2 & 3 & -4 \\
-2 & 3 & -3
\end{array}\right] \\
& \left.=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=(1) \right\rvert\,=A ~ I \\
\text { (adj.A)A } & =\left[\begin{array}{ccc}
1 & -1 \\
-2 & 3 & -4 \\
-2 & 3 & -3
\end{array}\right]\left[\begin{array}{lll}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=(1) I=|A| ~ I
\end{aligned}
$$

Hence $A(\operatorname{adj} . A)=(\operatorname{adj} \cdot A) A=|A| I_{3}$ Hence proved.
4.Find the inverse of each of the following matrices:
(i) $\left[\begin{array}{ccc}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$,(ii) $\left[\begin{array}{lll}1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1\end{array}\right]$,(iii) $\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]$,
(iv) $\left[\begin{array}{ccc}8 & -1 & -3 \\ -5 & 1 & 2 \\ 10 & -1 & -4\end{array}\right],(v)\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$

Solution:

$$
\begin{aligned}
& \text { (i)A }=\left[\begin{array}{ccc}
1 & 0 & 3 \\
2 & 1 & -1 \\
1 & -1 & 1
\end{array}\right] \\
|A| & =\left|\begin{array}{ccc}
1 & 0 & 3 \\
2 & 1 & -1 \\
1 & -1 & 1
\end{array}\right| \\
& =1(1-1)-0(2+1)+3(-2-1) \\
& =-9 \neq 0
\end{aligned}
$$

Co-factor of 1 is $=+(1-1)=0$
Co-factor of 0 is $=-(2+1)=-3$
Co-factor of 3 is $=+(-2-1)=-3$
Co-factor of 2 is $=-(0+3)=-3$
Co-factor of 1 is $=+(1-3)=-2$
Co-factor of -1 is $=-(-1-0)=1$
Co-factor of 1 is $=+(0-3)=-3$
Co-factor of -1 is $=-(-1-6)=7$
Co-factor of 1 is $=+(1-0)=1$

$$
\mathrm{Aij}=\left[\begin{array}{ccc}
0 & -3 & -3 \\
-3 & -2 & 1 \\
-3 & 7 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \text { There fore adj.A }=(A i j) T=\left[\begin{array}{ccc}
0 & -3 & -3 \\
-3 & -2 & 7 \\
-3 & 1 & 1
\end{array}\right] \\
& \mathrm{A}^{1}=\frac{1}{|A|}(\operatorname{adj} \cdot \mathrm{A})=\frac{1}{-9}\left[\begin{array}{ccc}
0 & -3 & -3 \\
-3 & -2 & 7 \\
-3 & 1 & 1
\end{array}\right]=\frac{1}{9}\left[\begin{array}{ccc}
0 & 3 & 3 \\
3 & 2 & -7 \\
3 & -1 & -1
\end{array}\right] \\
& \text { (ii) Solution: } \quad \text { (i) } A=\left[\begin{array}{lll}
1 & 3 & 7 \\
4 & 2 & 3 \\
1 & 2 & 1
\end{array}\right] \\
& |A|=\left|\begin{array}{lll}
1 & 3 & 7 \\
4 & 2 & 3 \\
1 & 2 & 1
\end{array}\right| \\
& =1(2-6)-3(4-3)+7(8-2) \\
& =-4-3+42=35 \neq 0 \\
& \text { Cofactor of } 1 \text { is }=+(2-6)=-4 \\
& \text { co -factor of } 3 \text { is =- }(4-3)=-1 \\
& \text { co- factor of } 7 \text { is }=+(8-2)=6 \\
& \text { co-factor of } 4 \text { is }=-(3-14)=11 \\
& \text { co-factor of } 2 \text { is }=+(1-7)=-6 \\
& \text { co-factor of } 3 \text { is }=-(2-3)=1 \\
& \text { co-factor of } 1 \text { is }=+(9-14)=-5
\end{aligned}
$$

$$
\begin{aligned}
& \text { co-factor of } 2 \text { is }=-(3-28)=25 \\
& \text { co-factor of } 1 \text { is }=+(2-12)=-10 \\
& \text { Aij }=\left[\begin{array}{ccc}
-4 & -1 & 6 \\
11 & -6 & 1 \\
-5 & 25 & -10
\end{array}\right] \\
& \text { Therefore adj. } A=\left[\begin{array}{ccc}
-4 & 11 & -5 \\
-1 & -6 & 25 \\
6 & 1 & -10
\end{array}\right] \\
& A^{-1}=\frac{1}{A}(\operatorname{adj} \cdot A)=\frac{1}{35}\left[\begin{array}{ccc}
-4 & 11 & -5 \\
-1 & -6 & 25 \\
6 & 1 & -10
\end{array}\right] \\
& \text { (iii) Solution: } \\
& \text { (iii) } A=\left[\begin{array}{ccc}
1 & 2 & -2 \\
-1 & 3 & 0 \\
0 & -2 & 1
\end{array}\right] \\
& |A|=\left|\begin{array}{ccc}
1 & 2 & -2 \\
-1 & 3 & 0 \\
0 & -2 & 1
\end{array}\right| \\
& =1(3-0)-2(-1-0)+(2-0) \\
& =3+2-4=1 \\
& \text { Cofactor of } 1 \text { is }=+(3-0)=3 \\
& \text { Cofactor of } 2 \text { is }=-(-1-0)=1
\end{aligned}
$$

$$
\begin{aligned}
|A| & \left|\begin{array}{ccc}
8 & -1 & -3 \\
-5 & 1 & 2 \\
10 & -1 & -4
\end{array}\right| \\
& =8(-4+2)+1(20-20)-3(5-10) \\
& =-16+0+15=-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cofactor of } 8 \text { is }=+(-4+2)=-2 \\
& \text { Cofactor of }-1 \text { is }=-(20-20)=0 \\
& \text { cofactor of }-3 \text { is }=+(3-10)=-5 \\
& \text { cofactor of }-5 \text { is }=-(4-3)=-1 \\
& \text { cofactor of } 1 \text { is }=+(-32+30)=-2 \\
& \text { cofactor of } 2 \text { is }=-(-8+10)=-2 \\
& \text { cofactor of } 10 \text { is }=+(-2+3)=1 \\
& \text { cofactor of }-1 \text { is }=-(16-15)=-1 \\
& \text { cofactor of }-4 \text { is }=+(8-5)=3 \\
& \text { [Aij] }=\left[\begin{array}{ccc}
-2 & 0 & -5 \\
-1 & -2 & -2 \\
1 & -1 & 3
\end{array}\right] \\
& \text { (adj. A) }=(\text { Aij }) T=\left[\begin{array}{ccc}
-2 & -1 & 1 \\
0 & -2 & -1 \\
-5 & -2 & 3
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& A^{-1}=\frac{1}{\left|\frac{1}{A}\right|}(\operatorname{adj} . A)=\frac{1}{-1}\left[\begin{array}{ccc}
-2 & -1 & 1 \\
0 & -2 & -1 \\
-5 & -2 & 3
\end{array}\right] \\
& A^{-1}=\frac{1}{\left|\frac{1}{A}\right|}(\operatorname{adj} . A)=\left[\begin{array}{ccc}
2 & 1 & -1 \\
0 & 2 & 1 \\
5 & 2 & -3
\end{array}\right] \\
& \begin{aligned}
\text { (v) }|A|=\left[\begin{array}{ccc}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right] \\
|A|=\left|\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right| \\
=2(6-2)-2(2-1)+1(2-3) \\
=8-2-1=5
\end{aligned}
\end{aligned}
$$

Cofactor of 2 is $=+(6-2)=4$
Cofactor of 2 is $=-(2-1)=-1$
cofactor of 1 is $=+(2-3)=-1$
cofactor of 1 is $=-(2-2)=-2$
cofactor of 3 is $=+(4-1)=3$
cofactor of 1 is $=-(4-2)=-2$

$$
\begin{aligned}
& \text { cofactor of } 1 \text { is }=+(2-3)=-1 \\
& \text { cofactor of } 2 \text { is }=-(2-1)=-2 \\
& \text { cofactor of } 2 \text { is }=+(6-2)=4 \\
& {\left[\text { Aij] }=\left[\begin{array}{ccc}
4 & -1 & -1 \\
-2 & 3 & -2 \\
-1 & -1 & 4
\end{array}\right]\right.} \\
& (\operatorname{adj} . A)=(A i j) T=\left[\begin{array}{ccc}
4 & -2 & -1 \\
-1 & 3 & -1 \\
-1 & -2 & 4
\end{array}\right] \\
& A^{-1}=\frac{1}{\mid A}(\operatorname{adj} . A)=\frac{1}{5}\left[\begin{array}{ccc}
4 & -2 & -1 \\
-1 & 3 & -1 \\
-1 & -2 & 4
\end{array}\right] \\
& \text { 5. if } A=\left[\begin{array}{ll}
5 & 2 \\
7 & 3
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right] \text { verify that (i) }(A B)^{-1}=B^{-1} A^{-1} \\
& \text { (ii) }(A B)^{\top}=B^{\top} A^{\top} \\
& \text { Solution: (i) } \\
& A=\left[\begin{array}{ll}
5 & 2 \\
7 & 3
\end{array}\right] ; \quad B=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right] \\
& A B=\left[\begin{array}{ll}
5 & 2 \\
7 & 3
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
10-2 & -5-2 \\
14-3 & -7+3
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { adj } \cdot A=\left[\begin{array}{cc}
3 & -2 \\
-7 & 5
\end{array}\right] \\
& A^{-1}=\left|\frac{1}{A}\right|(\operatorname{adJ} \cdot A)=\left[\begin{array}{cc}
3 & -2 \\
-7 & 5
\end{array}\right]
\end{aligned}
$$

$[A i j]=\left[\begin{array}{cc}3 & -7 \\ -2 & 5\end{array}\right]$

$$
|A|=\left|\begin{array}{ll}
5 & 2 \\
7 & 3
\end{array}\right|=15-14=1
$$

To find $A{ }^{1}$
To find B^{-1}

$$
|B|=\left|\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right|=2-1=1
$$

$$
[B i j]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
$$

$$
\operatorname{adj} \cdot B=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
$$

$$
\mathrm{B}^{-1}=\frac{1}{|B|}(\operatorname{adj} \cdot \mathrm{B})=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
$$

$$
\begin{aligned}
& \text { 6.find the inverse of the matrix } A=\left[\begin{array}{lll}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right] \\
& \begin{aligned}
& A=\left[\begin{array}{lll}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right] \\
& \begin{array}{|l}
A
\end{array} \left\lvert\, \begin{array}{cc|c}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right. \\
&=3(-3+4)+3(2-0)+4(-2-0) \\
&=3+6-8=1
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cofactor of } 3 \text { is }=+(-3+4)=1 \\
& \text { Cofactor of }-3 \text { is }=-(2-0)=-2 \\
& \text { Cofactor of } 4 \text { is }=+(-2-0)=-2 \\
& \text { Cofactor of } 2 \text { is }=-(-3+4)=-1 \\
& \text { cofactor of }-3 \text { is }=+(3-0)=3 \\
& \text { cofactor of } 4 \text { is }=-(-3-0)=3 \\
& \text { cofactor of } 0 \text { is }=+(-12+12)=0 \\
& \text { cofactor of }-1 \text { is }=-(12-8)=-4 \\
& \text { cofactor of } 1 \text { is }=+(-9+6)=-3
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{Aij}=\left[\begin{array}{ccc}
1 & -2 & -2 \\
-1 & 3 & 3 \\
0 & -4 & -3
\end{array}\right] \\
\text { (adj. A) }=(\mathrm{Aij}) T=\left[\begin{array}{ccc}
-1 & -1 & 0 \\
-2 & 3 & -4 \\
-2 & 3 & -3
\end{array}\right] \\
\mathrm{A}^{1}=1 \frac{1}{A}(\operatorname{adj} . \mathrm{A})=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-2 & 3 & -4 \\
-2 & 3 & -3
\end{array}\right]
\end{gathered}
$$

To find that $A^{3}=A^{-1}$

$$
\begin{aligned}
A^{2} & =\left[\begin{array}{lll}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{lll}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
9-6+0 & -9+9-4 & 12-12+4 \\
6-6+0 & -6+9-4 & 8-12+4 \\
0-2+0 & 0+3-1 & 0-4+1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
3 & -4 & 4 \\
0 & -1 & 0 \\
-2 & 2 & -3
\end{array}\right] \\
A^{3} & =\left[\begin{array}{ccc}
3 & -4 & 4 \\
0 & -1 & 0 \\
-2 & 2 & -3
\end{array}\right]\left[\begin{array}{lll}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
9-8+0 & -9+12-4 & 12-16+4 \\
0-2+0 & 0+3+0 & 0-4+0 \\
-6+4+0 & 6-6+3 & -8+8-3
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
1 & -1 & 0 \\
-2 & 3 & -4 \\
-2 & 3 & -3
\end{array}\right] \\
& A^{3}=A^{-1} \\
& \text { 7). Show that the adjoint of } A=\left[\begin{array}{ccc}
-1 & -2 & -2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right] \text { is } 3 A^{\top} \\
& A
\end{aligned}
$$

$$
\text { (Adj. A) }=[A i j] T=
$$

$$
\left[\begin{array}{ccc}
-3 & 6 & 6 \tag{1}\\
-6 & 3 & -6 \\
-6 & -6 & 3
\end{array}\right]
$$

$$
3 A^{\top}=3\left[\begin{array}{ccc}
-1 & 2 & 2 \\
-2 & 1 & -2 \\
-2 & -2 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
-3 & 6 & 6 \\
-6 & 3 & -6 \\
-6 & -6 & 3
\end{array}\right] \ldots \ldots(2)
$$

There for (Adj. A) $=3 A^{\top}$ from (1) and (2).

$$
\begin{aligned}
& 8 \text {.show that the adjoint of } A=\left[\begin{array}{ccc}
-4 & -3 & -3 \\
1 & 0 & 1 \\
4 & 4 & 3
\end{array}\right] \text { is } A \text { itself. } \\
& \qquad A=\left[\begin{array}{ccc}
-4 & -3 & -3 \\
1 & 0 & 1 \\
4 & 4 & 3
\end{array}\right] \\
& \text { Cofactor of }-4 \text { is }=+(0-4)=-4 \\
& \text { Cofactor of }-3 \text { is }=-(3-4)=1 \\
& \text { Cofactor of }-3 \text { is }=+(4-0)=4 \\
& \text { Cofactor of } 1 \text { is }=-(-9+12)=-3 \\
& \text { Cofactor } r \text { of } 0 \text { is }=+(-12+12)=0 \\
& \text { cofactor of } 1 \text { is }=-(-16+12)=4 \\
& \text { cofactor of } 4 \text { is }=+(-3+0)=-3 \\
& \text { cofactor of } 4 \text { is }=-(-4+3)=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { cofactor of } 3 \text { is }=+(0+3)=3 \\
& {[A i j]=\left[\begin{array}{lll}
-4 & 1 & 4 \\
-3 & 0 & 4 \\
-3 & 1 & 3
\end{array}\right]} \\
& \text { Adj. } A=(A i j)^{\top}=\left[\begin{array}{lll}
-4 & 1 & 4 \\
-3 & 0 & 4 \\
-3 & 1 & 3
\end{array}\right]^{\top} \\
& =\left[\begin{array}{ccc}
-4 & -3 & -3 \\
1 & 0 & 1 \\
4 & 4 & 3
\end{array}\right]=\mathrm{A} \\
& \text { 9. If } A=\frac{1}{3}\left[\begin{array}{ccc}
2 & 2 & -1 \\
-2 & 1 & 2 \\
1 & -2 & 2
\end{array}\right] \text {; P.T } A^{1}=A^{\top} \\
& A=\frac{1}{3}\left[\begin{array}{ccc}
2 & 2 & 1 \\
-2 & 1 & 2 \\
1 & -2 & 2
\end{array}\right]=\left[\begin{array}{ccc}
\frac{2}{3} & \frac{2}{3} & \frac{1}{2} \\
\frac{-2}{3} & \frac{1}{3} & \frac{2}{3} \\
\frac{1}{3} & \frac{-2}{3} & \frac{2}{3}
\end{array}\right] \\
& |A|=\frac{1}{27}\left|\begin{array}{lll}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right| \\
& =\frac{1}{27}[12+12+3]=1 \\
& \text { Cofactor of } 3 \text { is }=+(2+4)=6 \\
& \text { Cofactor of }-3 \text { is }=-(-4-2)=6
\end{aligned}
$$

$$
\text { Cofactor of4 is }=+(4+-1)=3
$$

$$
\text { Cofactor of } 2 \text { is }=-(4+2)=-6
$$

$$
\text { cofactor of }-3 \text { is }=+(4-1)=3
$$

$$
\text { cofactor of } 4 \text { is }=-(-4-2)=6
$$

$$
\text { cofactor of } 0 \text { is }=+(4-1)=3
$$

$$
\text { cofactor of }-1 \text { is }=-(4+2)=-6
$$

$$
\text { cofactor of } 1 \text { is }=+(4+2)=6
$$

$$
[\mathrm{Aij}]=\frac{1}{9}\left[\begin{array}{ccc}
6 & 6 & 3 \\
-6 & 3 & 6 \\
3 & -6 & 6
\end{array}\right]
$$

$$
\begin{aligned}
&(\operatorname{adj} . A)=(A i j) T=\frac{1}{9}\left[\begin{array}{ccc}
6 & -6 & 3 \\
6 & 3 & -6 \\
3 & 6 & 6
\end{array}\right] \\
&=\frac{1}{3}\left[\begin{array}{ccc}
2 & -2 & 1 \\
2 & 1 & -2 \\
1 & 2 & 2
\end{array}\right] \\
& \mathrm{A}^{-1}=\frac{1}{A}(\operatorname{adj} \cdot \mathrm{~A})=\frac{1}{3}\left[\begin{array}{ccc}
2 & -2 & 1 \\
2 & 1 & -2 \\
1 & 2 & 2
\end{array}\right]=\mathrm{A}^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 10. For } A=\left[\begin{array}{ccc}
-1 & 2 & -2 \\
4 & -3 & 4 \\
4 & -4 & 5
\end{array}\right] \text {, show that } A=A^{1} \\
& \begin{aligned}
& A=\left[\begin{array}{ccc}
-1 & 2 & -2 \\
4 & -3 & 4 \\
4 & -4 & 5
\end{array}\right] \\
& \begin{aligned}
& A \mid=\left|\begin{array}{ccc}
-1 & 2 & -2 \\
4 & -3 & 4 \\
4 & -4 & 5
\end{array}\right| \\
&=-1(-15+16)-2(20-16)-2(-16+12) \\
&=-1-8+8=-1 \\
& \text { Cofactor of }-1 \text { is }=+(-15+16)=1 \\
& \text { Cofactor of } 2 \text { is }=-(20-16)=-4 \\
& \text { Cofactor of }-2 \text { is }=+(-16+12)=-4 \\
& \text { Cofactor of } 4 \text { is }=-(10-8)=-2
\end{aligned} \\
& \text { cofactor of }-3 \text { is }=+(-5+8)=3 \\
& \text { cofactor of } 4 \text { is }=-(4-8)=4 \\
& \text { cofactor of } 4 \text { is }=+(8-6)=2 \\
& \text { cofactor of }-4 \text { is }=-(-4+8)=-4
\end{aligned} \\
& \text { cofactor of } 5 \text { is }=+(3-8)=-5
\end{aligned}
$$

$$
\begin{gathered}
\text { Aij }=\left[\begin{array}{ccc}
1 & -4 & -4 \\
-2 & 3 & 4 \\
2 & -4 & -5
\end{array}\right] \\
(\operatorname{adj} . A)=(\text { Aij }) T=\left[\begin{array}{ccc}
1 & -2 & 2 \\
-4 & 3 & -4 \\
-4 & 4 & -5
\end{array}\right] \\
A^{-1} \frac{1}{|A|}(\operatorname{adj} . A)=\frac{1}{-1}\left[\begin{array}{ccc}
1 & -2 & 2 \\
-4 & 3 & -4 \\
-4 & 4 & -5
\end{array}\right] \\
A^{-1}=\left[\begin{array}{ccc}
-1 & 2 & -2 \\
4 & -3 & 4 \\
4 & -4 & 5
\end{array}\right]
\end{gathered}
$$

Find the adjoint of matrices:
(i) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$; (ii) $\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 3\end{array}\right)$;

Solution:
(i) $\mathrm{A}=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$.
the matrix of cofactor $[A i j]=\left[\begin{array}{cc}d & -c \\ -b & a\end{array}\right]$

Therefore $\operatorname{adj} \mathrm{A}=(A i j)^{\mathrm{T}}=\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$

$$
\text { (ii) } \mathrm{A}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right] \quad \begin{aligned}
& \text { cofactor of } 1 \text { is }=+(6-3)=3 \\
& \text { cofactor of } 1 \text { is }=-(3+6)=-9 \\
& \text { cofactor of } 1 \text { is }=+(-1-4)=-5 \\
& \text { cofactor of } 1 \text { is }=-(3+1)=-4 \\
& \text { cofactor of } 2 \text { is }=+(3-2)=1 \\
& \text { cofactor of }-3 \text { is }=-(-1-2)=3 \\
& \text { cofactor of } 2 \text { is }=+(-3-2)=-5 \\
& \text { cofactor of }-1 \quad \text { is }=-(-3-1)=4 \\
& \text { cofactor of } 3 \text { is }=+(2-1)=1
\end{aligned}
$$

$$
\mathrm{Aij}=\left[\begin{array}{ccc}
3 & -9 & -5 \\
-4 & 1 & 3 \\
-5 & 4 & 1
\end{array}\right]
$$

$$
\text { There fore adj.A }=\left[\begin{array}{ccc}
3 & -4 & -5 \\
-9 & 1 & 4 \\
-5 & 3 & 1
\end{array}\right]
$$

2. Find the adjoint of the matrix $A=\left[\begin{array}{cc}-1 & 2 \\ 1 & -4\end{array}\right]$. and verify the result. $\mathrm{A}(\operatorname{adj} . \mathrm{A})=(\operatorname{adj} . \mathrm{A}) \mathrm{A}=|\mathrm{A}| \mathrm{I}_{2}$

$$
\begin{gathered}
\text { Solution } \mathrm{A}=\left[\begin{array}{cc}
-1 & 2 \\
1 & -4
\end{array}\right] . \mathrm{A}=\left[\left.\begin{array}{cc}
-1 & 2 \\
1 & -4
\end{array} \right\rvert\,=4-2=2\right. \\
\text { the matrix of cofactor }[\text { Aij }]=\left[\begin{array}{cc}
-4 & -1 \\
-2 & -1
\end{array}\right] \\
\text { There fore adjA=(Aij) }{ }^{\mathrm{T}}=\left[\begin{array}{ll}
-4 & -2 \\
-1 & -1
\end{array}\right] \\
\mathrm{A}\left(\text { adj.A) }=\left[\begin{array}{cc}
-1 & 2 \\
1 & -4
\end{array}\right]\left[\begin{array}{ll}
-4 & -2 \\
-1 & -1
\end{array}\right]\right. \\
=\begin{array}{c}
=2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=|\mathrm{A}| \mathrm{I}_{2} \\
\text { (adj.A)A }=\left[\begin{array}{cc}
-4 & -2 \\
-1 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & 2 \\
1 & -4
\end{array}\right] \\
=\left[\begin{array}{cc}
2 & 0 \\
0 & 2
\end{array}\right]=2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=|\mathrm{A}| \mathrm{I}_{2}
\end{array} \\
\text { Hence } \mathrm{A}(\operatorname{adj} . \mathrm{A})=(\operatorname{adj} . \mathrm{A}) \mathrm{A}=|\mathrm{A}| \mathrm{I}_{2}
\end{gathered}
$$

3.find the adjoint of matrix $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right]$ and verify the result.

$$
\mathrm{A}(\operatorname{adj} . \mathrm{A})=(\operatorname{adj} . \mathrm{A}) \mathrm{A}=|\mathrm{A}| \mathrm{I} .
$$

Solution:

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right] \\
|A|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right|
\end{gathered}
$$

$$
\begin{aligned}
& =1(6-3)-1(3+6)+1(-1-4) \\
& =3-9-5=-11
\end{aligned}
$$

cofactor of 1 is $=+(6-3)=3$ cofactor of 1 is $=-(3+6)=-9$ cofactor of 1 is $=+(-1-4)=-5$
cofactor of 1 is $=-(3+1)=-4$ cofactor of 2 is $=+(3-2)=1$ cofactor of -3 is $=-(-1-2)=3$ cofactor of 2 is $=+(-3-2)=-5$ cofactor of $-1 \quad$ is $=-(-3-1)=4$ cofactor of 3 is $=+(2-1)=1$

$$
\mathrm{Aij}=\left[\begin{array}{ccc}
3 & -9 & -5 \\
-4 & 1 & 3 \\
-5 & 4 & 1
\end{array}\right]
$$

There fore adj.A $=\left[\begin{array}{ccc}3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1\end{array}\right]$

$$
\mathrm{A}(\operatorname{adj} . \mathrm{A})=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]\left[\begin{array}{ccc}
3 & -4 & -5 \\
-9 & 1 & 4 \\
-5 & 3 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \mathrm{AB}=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
1 & 2
\end{array}\right] \\
& \begin{array}{l}
=\left[\begin{array}{ll}
0+2 & -1+4 \\
0+1 & -1+2
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right] \\
\text { To find } A^{1}
\end{array} \\
& |\mathrm{AB}|=\left|\begin{array}{cc}
2 & 3 \\
1 & 1
\end{array}\right|=2-3=-1 \\
& {[\text { Aij }]=\left[\begin{array}{cc}
1 & -1 \\
-2 & 1
\end{array}\right]} \\
& \quad \operatorname{adj} . \mathrm{A}=\left[\begin{array}{cc}
1 & -2 \\
-1 & 1
\end{array}\right] \\
& \mathrm{A}^{-1}=\frac{1}{|\bar{A}|} \operatorname{adj} . \mathrm{A}=\left[\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right]
\end{aligned}
$$

To find B^{-1}

$$
\begin{gathered}
|\mathrm{B}|=\left|\begin{array}{cc}
0 & -1 \\
1 & 2
\end{array}\right|=0+1=1 \\
{[B i j]=\left[\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right]} \\
\text { adj . } \mathrm{B}=\left[\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right] \\
\mathrm{B}^{-1}=\frac{1}{|B|} \operatorname{adj} \cdot \mathrm{B}=\left[\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right]
\end{gathered}
$$

To find $(A B)^{-1}$

$$
|\mathrm{AB}|=\left|\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right|=2-3=1
$$

Matrix of cofactor $\operatorname{of}(\mathrm{AB})=\left[\begin{array}{cc}-1 & 1 \\ 3 & -2\end{array}\right]$
Therefore adj. $(\mathrm{AB})=\left[\begin{array}{cc}-1 & 3 \\ 1 & -2\end{array}\right]$
Therefore $(\mathrm{AB})^{-1}=\frac{1}{|A B|}(\operatorname{adj} \mathrm{AB})=\left[\begin{array}{cc}-1 & 3 \\ 1 & -2\end{array}\right]$
$B^{-1} A^{-1}=\left[\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right]\left[\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right]=\left[\begin{array}{cc}-1 & 3 \\ 1 & -2\end{array}\right]$
From (1) and) (2) $(\mathrm{AB})^{-1}=\mathrm{B}^{\top} \mathrm{A}^{+}$

EXERCISE 1:2

Solve by matrix inversion method each of the following system of linear equations:
1.(i) $2 x-y=7,3 x-2 y=11$

Solution: $\quad 2 x-y=7$

$$
3 x-2 y=11
$$

$$
\mathrm{AX}=\mathrm{B}
$$

$$
A=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right]
$$

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
7 & 3 \\
2 & 1
\end{array}\right] \\
& |\mathrm{A}|=\left|\begin{array}{ll}
7 & 3 \\
2 & 1
\end{array}\right|=7-6=1 \\
& X=A^{-1} \mathrm{~B} . \\
& (\mathrm{Aij})=\left[\begin{array}{cc}
1 & -2 \\
-3 & 7
\end{array}\right] \\
& \text { Adj.A }=(\mathrm{Aij})^{\top}=\left[\begin{array}{cc}
1 & -3 \\
-2 & 7
\end{array}\right] \\
& \mathrm{A}^{-1}=\frac{1}{A} \left\lvert\,(\mathrm{adj} \cdot \mathrm{~A})=\left[\begin{array}{cc}
1 & -3 \\
-2 & 7
\end{array}\right]\right. \\
& X=\left[\begin{array}{cc}
1 & -3 \\
-2 & 7
\end{array}\right]\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1+0 \\
2+0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \\
& X=-1, y=2 .
\end{aligned}
$$

2. $x+y+z=9,2 x+5 y+7 z=52,2 x+y-z=0$.

Solution: $\quad x+y+z=9$

$$
2 x+5 y+7 z=52
$$

$$
2 x+y-z=0
$$

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 5 & 7 \\
2 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
9 \\
52 \\
0
\end{array}\right]
$$

It is of the form $A X=B$,

$$
\left[\begin{array}{ccc}
2 & -1 & 1 \\
3 & 1 & -5 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
7 \\
13 \\
5
\end{array}\right]
$$

It is of the form $A X=B$,

$$
\begin{aligned}
& X=A^{-1} B . \\
A & =\left[\begin{array}{ccc}
2 & -1 & 1 \\
3 & 1 & -5 \\
1 & 1 & 1
\end{array}\right] \\
|A| & =\left|\begin{array}{ccc}
2 & -1 & 1 \\
3 & 1 & -5 \\
1 & 1 & 1
\end{array}\right| \\
& =2(1+5)+1(3+5)+1(3-1) \\
& =12+8+2=22
\end{aligned}
$$

$$
\text { Cofactor of } 2 \text { is }=+(1+5)=6
$$

$$
\text { Cofactor of }-1 \text { is }=-(3+5)=-8
$$

$$
\text { Cofactor of } 1 \text { is }=+(3-1)=2
$$

$$
\text { Cofactor of } 3 \text { is }=-(-1-1)=2
$$

$$
\text { Cofactor of } 1 \text { is }=+(2-1)=1
$$

$$
\text { Cofactor of }-5 \text { is }=-(2+1)=-3
$$

$$
\text { Cofactor of } 1 \text { is }=+(5-1)=4
$$

$$
\text { Cofactor of } 1 \text { is }=-(-10-3)=13
$$

$$
\begin{aligned}
& \text { Cofactor of } 1 \text { is }=+(2+3)=5 \\
& \mathrm{Aij}=\left[\begin{array}{ccc}
6 & -8 & 2 \\
2 & 1 & -3 \\
4 & 13 & 5
\end{array}\right] \\
& (\operatorname{adj} . A)=(A i j) T=\left[\begin{array}{ccc}
6 & 2 & 4 \\
-8 & 1 & 13 \\
2 & -3 & 5
\end{array}\right] \\
& A^{-1}=\frac{1}{|A|}(\operatorname{adj} . A)=\frac{1}{22}\left[\begin{array}{ccc}
6 & 2 & 4 \\
-8 & 1 & 13 \\
2 & -3 & 5
\end{array}\right] \\
& X=\frac{1}{22}\left[\begin{array}{ccc}
6 & 2 & 4 \\
-8 & 1 & 13 \\
2 & -3 & 5
\end{array}\right]\left[\begin{array}{c}
7 \\
13 \\
5
\end{array}\right] \\
& =\frac{1}{22}\left[\begin{array}{c}
42+26+20 \\
-56+13+65 \\
14-39+25
\end{array}\right) \\
& =\frac{1}{22}\left(\begin{array}{c}
88 \\
22 \\
0
\end{array}\right)=\left[\begin{array}{c}
4 \\
1 \\
0
\end{array}\right] \\
& X=4, y=1, z=0 \\
& \text { 5. } x-3 y-8 z+10=0, \quad 3 x+y=4, \quad 2 x+5 y+6 z=13 \\
& \text { Solution: } \quad x-3 y-8 z+10=0 \\
& 3 x+y=4 \\
& 2 x+5 y+6 z=13
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
1 & -3 & -8 \\
3 & 1 & 0 \\
2 & 5 & 6
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-10 \\
4 \\
13
\end{array}\right]
$$

It is of the form $A X=B$,

$$
\begin{aligned}
& X=A^{-1} B . \\
|A| & =\left[\begin{array}{ccc}
1 & -3 & -8 \\
3 & 1 & 0 \\
2 & 5 & 6
\end{array}\right] \\
A & =\left|\begin{array}{ccc}
1 & -3 & -8 \\
3 & 1 & 0 \\
2 & 5 & 6
\end{array}\right| \\
& =1(6-0)+3(18-0)-8(15-2) \\
& =6+54-104=-44
\end{aligned}
$$

$$
\text { Cofactor of1 is }=+(6-0)=6
$$

$$
\text { Cofactor of }-3 \text { is }=-(18-0)=-18
$$

$$
\text { Cofactor of }-8 \text { is }=+(15-2)=13
$$

Cofactor of3 is $=-(-40+18)=-22$
Cofactor of1 is $=+(6+16)=22$
Cofactor of 0 is $=-(5+6)=-11$
Cofactor of 2 is $=+(0+8)=8$

Cofactor of 5 is $=-(0+24)=-24$
Cofactor of 6 is $=+(1+9)=10$

$$
\mathrm{Aij}=\left[\begin{array}{ccc}
6 & -18 & 13 \\
-22 & 22 & -11 \\
8 & -24 & 10
\end{array}\right]
$$

$$
\begin{aligned}
&(\operatorname{adj} . A)=(A i j) T=\left[\begin{array}{ccc}
6 & -22 & 8 \\
-18 & 22 & -24 \\
13 & -11 & 10
\end{array}\right] \\
& A^{-1} \frac{1}{|A|}(\operatorname{adj} . A)=\frac{1}{-44}\left[\begin{array}{ccc}
6 & -22 & 8 \\
-18 & 22 & -24 \\
13 & -11 & 10
\end{array}\right] \\
& X=\frac{1}{-44}\left[\begin{array}{ccc}
6 & -22 & 8 \\
-18 & 22 & -24 \\
13 & -11 & 10
\end{array}\right]\left[\begin{array}{c}
-10 \\
4 \\
13
\end{array}\right] \\
&=\frac{1}{-44}\left[\begin{array}{c}
-44 \\
-44 \\
-44
\end{array}\right] \\
&=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& X=1, y=1, z=1 .
\end{aligned}
$$

Solve by matrix inversion method each of the following system of linear equations: $x+y=3,2 x+3 y=8$

Solution :

$$
x+y=3
$$

$$
\begin{aligned}
& 2 x+3 y=8 \\
& A X=B \\
& A=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right] \\
& \left(\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right)\binom{x}{y}=\binom{7}{11} \\
& |\mathrm{~A}|=\left|\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right|=3-2=1 \\
& X=A^{1} B \text {. } \\
& (A i j)=\left[\begin{array}{cc}
3 & -2 \\
-1 & 1
\end{array}\right] \\
& \text { Adj. } \mathrm{A}=(\mathrm{Aij})^{\mathrm{T}}=\left[\begin{array}{cc}
3 & -1 \\
-2 & 1
\end{array}\right] \\
& \mathrm{A}^{-1}=\frac{1}{|A|}(\operatorname{adj} . \mathrm{A})=\left[\begin{array}{cc}
3 & -1 \\
-2 & 1
\end{array}\right] \\
& \begin{array}{l}
x=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right]\left[\begin{array}{c}
7 \\
11
\end{array}\right)=\binom{14-11}{21-22}=\binom{1}{2} . ~
\end{array} \\
& \mathrm{x}=1, \mathrm{y}=2 \\
& \text { 2. } 2 x-y+3 z=9, x+y+z=6, x-y+z=2 \text {. } \\
& \text { Solution : } \\
& 2 x-y+3 z=9 \\
& x+y+z=6 \\
& x-y+z=2 .
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
2 & -1 & 3 \\
1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
9 \\
6 \\
2
\end{array}\right]
$$

It is of the form $\mathrm{AX}=\mathrm{B}$,

$$
\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 & -1 & 3 \\
1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right] \\
& \qquad \begin{aligned}
&|A|=\left|\begin{array}{ccc}
2 & -1 & 3 \\
1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right| \\
&=2(1+1)+1(1-1)+3(-1-1) \\
&=4+0-6=-2 \neq 0
\end{aligned}
\end{aligned}
$$

Cofactor of 2 is $=+(1+1)=2$
Cofactor of -1 is $=-(1-1)=0$
Cofactor of 3 is $=+(-1-1)=-2$
Cofactor of 1 is $=-(-1+3)=-2$
Cofactor of 1 is $=+(2-3)=-1$
Cofactor of 1 is $=-(-2+1)=1$
Cofactor of 1 is $=+(-1-3)=-4$
Cofactor of -1 is $=-(2-3)=1$
Cofactor of 1 is $=+(2+1)=3$

$$
\begin{aligned}
& \mathrm{Aij}=\left[\begin{array}{ccc}
2 & 0 & -2 \\
-2 & -1 & 1 \\
-4 & 1 & 3
\end{array}\right] \\
& (\text { adj. A })=(A i j) T=\left[\begin{array}{ccc}
2 & -2 & -4 \\
0 & -1 & 1 \\
-2 & 1 & 3
\end{array}\right] \\
& A^{-1} \stackrel{1}{|A|}(\operatorname{adj} . A)=\frac{1}{-2}\left[\begin{array}{ccc}
2 & -2 & -4 \\
0 & -1 & 1 \\
-2 & 1 & 3
\end{array}\right] \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{-2}\left[\begin{array}{ccc}
2 & -2 & -4 \\
0 & -1 & 1 \\
-2 & 1 & 3
\end{array}\right]\left[\begin{array}{c}
9 \\
6
\end{array}\right]=\frac{1}{-2}\left(\begin{array}{l}
-2 \\
-4 \\
-6
\end{array}\right]=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \\
& \mathrm{x}=1, \mathrm{y}=2, \mathrm{z}=3
\end{aligned}
$$

Find the rank of the following matrices:

1. $\left[\begin{array}{ccc}1 & 1 & -1 \\ 3 & -2 & 3 \\ 2 & -3 & 4\end{array}\right]$

Solution: $\quad A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 3 & -2 & 3 \\ 2 & -3 & 4\end{array}\right]$

$$
\mathrm{R} 2 \rightarrow \mathrm{R}_{2}-3 \mathrm{R}_{1} ; \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-2 \mathrm{R}_{1}
$$

$$
\sim\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & -5 & 6 \\
0 & -5 & 6
\end{array}\right]
$$

$$
\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}
$$

$$
\sim\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & -5 & 6 \\
0 & 0 & 0
\end{array}\right]
$$

The last equivalent matrix is in the echelon form. it has two non zero rows.

$$
\text { Therefore } p(A)=2
$$

2). $\left[\begin{array}{ccc}6 & 12 & 6 \\ 1 & 2 & 1 \\ 4 & 8 & 4\end{array}\right]$

Solution: $\quad A=\left[\begin{array}{ccc}6 & 12 & 6 \\ 1 & 2 & 1 \\ 4 & 8 & 4\end{array}\right]$

$$
\mathrm{R} 1 \rightarrow \frac{1}{6} \mathrm{R} 1 ; \mathrm{R}_{3} \rightarrow \frac{1}{4} \mathrm{R} 3
$$

$$
\sim\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 2 & 1 \\
1 & 2 & 1
\end{array}\right]
$$

$$
\mathrm{R} 2 \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} ; \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}
$$

$$
\sim\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & -5 & 6 \\
0 & 0 & 0
\end{array}\right]
$$

The last equivalent matrix is in the echelon form. it has two non zero rows.

Therefore $p(A)=1$

$$
\text { 5. } \begin{aligned}
&\left(\begin{array}{cccc}
1 & 2 & -1 & 3 \\
4 & 4 & 1 & -2 \\
3 & 6 & 3 & -7
\end{array}\right) \\
& \text { let } A=\left(\begin{array}{cccc}
1 & 2 & -1 & 3 \\
4 & 4 & 1 & -2 \\
3 & 6 & 3 & -7
\end{array}\right) \\
& \sim\left(\begin{array}{cccc}
1 & 2 & -1 & 3 \\
0 & 0 & 3 & -8 \\
0 & 0 & 6 & -16
\end{array}\right) R_{2} \rightarrow R_{2}-2 R_{1}, R_{3} \rightarrow R_{3}-3 R_{1} \\
& \sim\left(\begin{array}{cccc}
1 & 2 & -1 & 3 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right) R_{3} \rightarrow R_{3}-2 R_{2}
\end{aligned}
$$

The last equivalent matrix is in the echelon form. it has two non zero rows. Therefore $p(A)=1$
6. $\left(\begin{array}{cccc}1 & -2 & 3 & 4 \\ -2 & 4 & -1 & -3 \\ -1 & 2 & 7 & -6\end{array}\right)$

$$
\text { let } \begin{aligned}
A= & \left(\begin{array}{cccc}
1 & -2 & 3 & 4 \\
-2 & 4 & -1 & -3 \\
-1 & 2 & 7 & -6
\end{array}\right) \\
R_{2} & \rightarrow R_{2}+2 R_{1} ; R_{3} \rightarrow
\end{aligned} R_{3}+R_{1} 1
$$

$$
\begin{aligned}
& \sim\left(\begin{array}{cccc}
1 & -2 & 3 & 4 \\
0 & 0 & 5 & 5 \\
0 & 0 & 10 & 10
\end{array}\right) \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-2 \mathrm{R}_{2} \\
& \sim\left(\begin{array}{cccc}
1 & -2 & 3 & 4 \\
0 & 0 & 5 & 5 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

The last equivalent matrix is in the echelon form. it has two non zero rows. Therefore $p(A)=2$.

1 find the rank of the matrix $\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3\end{array}\right]$

Solution: $\quad A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3\end{array}\right]$

$$
\mathrm{R} 2 \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1} ; \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{1}
$$

$$
\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & -5 & 6 \\
0 & 0 & 0
\end{array}\right]
$$

The last equivalent matrix is in the echelon form . it has two non zero rows is 2 .

Therefore $\mathrm{p}(\mathrm{A})=2$

2 . find the rank of the matrix: $\left(\begin{array}{cccc}1 & 2 & 3-1 \\ 2 & 4 & 6 & -2 \\ 3 & 6 & 9-3\end{array}\right)$
$\left.44\right|^{\text {BHARATHIDHASANAR MATRIC HIGHER SECONDARY SCHOOL,ARAKKONAM - } 12^{\text {th }} \text { MATHS } 6 \& 10 \text { MARKS }}$

$$
\begin{aligned}
& \text { solution : } A=\left(\begin{array}{llll}
1 & 2 & 3-1 \\
2 & 4 & 6 & -2 \\
3 & 6 & 9-3
\end{array}\right) \\
& R_{2} \rightarrow R_{2}-2 R_{1} \xrightarrow{R_{3} \rightarrow R_{3}-2 R_{1}} \\
& \sim\left(\begin{array}{lll}
1 & 2 & 3-1 \\
2 & 4 & 6-2 \\
3 & 6 & 9-3
\end{array}\right)
\end{aligned}
$$

The last equivalent matrix is in the echelon form. it has one non zero rows .

Therefore $\mathrm{p}(\mathrm{A})=1$
3. find the rank of the matrix: $\quad\left(\begin{array}{cccc}4 & 2 & 1 & 3 \\ 6 & 3 & 4 & 7 \\ 2 & 1 & 0 & 1\end{array}\right)$
solution : $A=\left(\begin{array}{llll}4 & 2 & 1 & 3 \\ 6 & 3 & 4 & 7 \\ 2 & 1 & 0 & 1\end{array}\right)$

$$
\left(\begin{array}{llll}
1 & 2 & 4 & 3 \\
4 & 3 & 6 & 7 \\
0 & 1 & 2 & 1
\end{array}\right) \quad \sim \mathrm{C} 1 \leftrightarrow \mathrm{C} 3
$$

$$
\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}
$$

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 2 & 4 & 3 \\
0 & -5 & -10 & -5 \\
0 & 1 & 2 & 1
\end{array}\right) \\
& \mathrm{R}_{2} \rightarrow \frac{1}{-5} \\
& \left(\begin{array}{cccc}
1 & 2 & 4 & 3 \\
0 & 1 & 2 & 1 \\
0 & 1 & 2 & 1
\end{array}\right) \\
& \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}
\end{aligned}
$$

$$
\left(\begin{array}{llll}
1 & 2 & 4 & 3 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The last equivalent matrix is in the echelon form. it has two non zero rows .

Therefore $\mathrm{p}(\mathrm{A})=2$

1.4 (1) (Cramer's rule method) \longrightarrow (Determinant Method)

Consider the system of non homogeneous equations of
$a_{11} x+a_{12} y=b_{1}$
$a_{21} x+a_{22} y=b_{2}$

$$
\text { let } \begin{aligned}
\Delta & =\left(\begin{array}{ll}
a 11 & a 12 \\
a 21 & a 22
\end{array}\right) \\
\Delta \mathrm{x} & =\left(\begin{array}{ll}
b 1 & a 12 \\
b 2 & a 22
\end{array}\right) \\
\Delta \mathrm{y} & =\left(\begin{array}{ll}
a 11 & b 1 \\
a 12 & b 2
\end{array}\right)
\end{aligned}
$$

Then $\mathrm{x}=\frac{\Delta x}{\Delta} ; \mathrm{y}=\frac{\Delta y}{\Delta}$ find $\mathrm{x}=$ value and $\mathrm{y}=$ value
Example: solve the following non homogeneous system of linear equations by determinant method.

1. $3 x+2 y=5 ; x+3 y=4$

Solution: $\quad 3 x+2 y=5$
$x+3 y=4$

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ll}
3 & 2 \\
1 & 3
\end{array}\right| \\
& =9-2=7
\end{aligned}
$$

$$
\begin{aligned}
\Delta x & =\left|\begin{array}{ll}
5 & 2 \\
4 & 3
\end{array}\right| \\
& =15-8=7
\end{aligned}
$$

$$
\Delta y=\left|\begin{array}{ll}
3 & 5 \\
1 & 4
\end{array}\right|
$$

$$
=12-5=7
$$

Then $\mathrm{x}=\frac{\Delta x}{\Delta}=\frac{7}{7}=1$

$$
\mathrm{y}=\frac{\Delta y}{\Delta}=\frac{7}{7}=1
$$

find $x=1$ and $y=1$
2. $2 x+3 y=5 ; 4 x+6 y=12$

Solution: $\quad 2 x+3 y=5$
$4 x+6 y=12$

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ll}
2 & 3 \\
4 & 6
\end{array}\right| \\
& =12-12=0 \\
\Delta x & =\left|\begin{array}{cc}
5 & 3 \\
12 & 6
\end{array}\right| \\
& =30-36=-6=0 \\
\Delta y & =\left|\begin{array}{cc}
2 & 5 \\
4 & 12
\end{array}\right| \\
& =24-20=4=0
\end{aligned}
$$

Since $\Delta=0 ; \Delta \neq 0$ and the system is inconsistent.
3. $\begin{gathered} \\ 4 x+5 y=9 ; ~ \\ 8 x+10 y=18\end{gathered}$

Solution: $\quad 4 x+5 y=9$

$$
8 x+10 y=18
$$

$$
\begin{aligned}
\Delta & =\left|\begin{array}{cc}
4 & 5 \\
8 & 10
\end{array}\right| \\
& =40-40=0 \\
\Delta x & =\left|\begin{array}{cc}
9 & 5 \\
18 & 10
\end{array}\right| \\
& =90-90=0
\end{aligned}
$$

$$
\Delta y=\left|\begin{array}{cc}
4 & 9 \\
8 & 18
\end{array}\right|
$$

$$
=72-72=0
$$

Since $\Delta=\Delta x=\Delta y=0$
And at least one of the coefficients is non zero the system is consistent and has many solutions.

$$
\text { Let } \mathrm{y}=\mathrm{k} \text {.then } \mathrm{x}=\frac{9-5 k}{4} \text {. }
$$

Therefore the solution set is $(x, y)=\left(\frac{9-5 k}{4}, k\right) \quad$ where $k € R$
4. $X+Y+Z=4 ; X-Y+Z=2 ; 2 X+Y-Z=1$

Solution: $\quad X+Y+Z=4$

$$
X-Y+Z=2
$$

$$
2 X+Y-Z=1
$$

$$
\Delta z=\left|\begin{array}{ccc}
1 & 1 & 4 \\
1 & -1 & 2 \\
2 & 1 & 1
\end{array}\right|
$$

$$
=1(-1-2)-1(1-4)+4(1+2)
$$

$$
=-3+3+12=12
$$

$$
\text { Then } \mathrm{x}=\frac{\Delta x}{\Delta}=\frac{6}{6}=1
$$

$$
\begin{aligned}
\Delta x & =\left|\begin{array}{lll}
4 & 1 & -1 \\
0 & 1 & -2 \\
4 & 2 & -3
\end{array}\right| \\
& =4(-3+4)-1(0+8)-1(0-4) \\
& =4-8+4=0
\end{aligned}
$$

$$
\begin{aligned}
& \Delta y=\left|\begin{array}{lll}
2 & 4 & -1 \\
1 & 0 & -2 \\
3 & 4 & -3
\end{array}\right| \\
&=2(0+8)-4(-3+6)-1(4-0) \\
&=16-12-4=0 \\
& \begin{aligned}
\Delta z & =\left|\begin{array}{lll}
2 & 1 & 4 \\
1 & 1 & 0 \\
3 & 2 & 4
\end{array}\right| \\
& =2(4-0)-1(4-0)+4(2-3) \\
& =8-4-4=0
\end{aligned}
\end{aligned}
$$

Since $\Delta=\Delta x=\Delta y=\Delta z=0$.the system is consistent and has many solution .also all
2×2 minor of $\Delta \neq 0$. The system is reduced to equation.

$$
\begin{gathered}
\text { Let } \mathrm{z}=\mathrm{k} \\
2 \mathrm{x}+\mathrm{y}-\mathrm{k}=4 \quad 2 \mathrm{x}+\mathrm{y}=4+\mathrm{k} \\
\mathrm{x}+\mathrm{y}-2 \mathrm{k}=0 \quad \mathrm{x}+\mathrm{y}=2 \mathrm{k} \\
\Delta=\left|\begin{array}{cc}
2 & 1 \\
1 & 1
\end{array}\right| \\
=2-1=1 \\
\Delta \mathrm{x}=\left|\begin{array}{cc}
4+k & 1 \\
2 k & 1
\end{array}\right|
\end{gathered}
$$

$$
=4+\mathrm{k}-2 \mathrm{k}=4-\mathrm{k}
$$

$$
\Delta \mathrm{y}=\left|\begin{array}{cc}
2 & 4+k \\
1 & 2 k
\end{array}\right|
$$

$$
=4 k-4-k=3 k-4
$$

Then $\mathrm{x}=\frac{\Delta x}{\Delta}=\frac{4-k}{1}=4-\mathrm{k}$

$$
=\frac{\Delta y}{\Delta}=\frac{3 k-4}{1}=3 \mathrm{k}-4
$$

$x=4-k$ and $y=3 k-4$ and $z=k$ solution set is ($4-k, 3 k-4, k$) where $k € R$
6. $3 x+y-z=2 ; 2 x-y+2 z=6 ; 2 x+y-2 z=-2$
Solution:

$$
\begin{gathered}
3 x+y-z=2 \\
2 x-y+2 z=6 \\
2 x+y-2 z=-2
\end{gathered}
$$

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ccc}
3 & 1 & -1 \\
2 & -1 & 2 \\
2 & 1 & -2
\end{array}\right| \\
& =3(2-2)-1(-4-4)-1(2+2) \\
& =0+8-4=4
\end{aligned}
$$

$$
\Delta x=\left|\begin{array}{ccc}
2 & 1 & -1 \\
6 & -1 & 2 \\
-2 & 1 & -2
\end{array}\right|
$$

$$
\begin{aligned}
\Delta z & =\left|\begin{array}{ccc}
1 & 2 & 6 \\
3 & 3 & 3 \\
2 & 1 & -3
\end{array}\right| \\
& =1(-9-3)-2(-9-6)+6(3-6) \\
& =-12+30-18=0
\end{aligned}
$$

$$
\begin{aligned}
\Delta y & =\left|\begin{array}{ccc}
1 & 6 & 1 \\
3 & 3 & -1 \\
2 & -3 & -2
\end{array}\right| \\
& =1(-6-3)-6(-6+2)+1(-9-6) \\
& =-9+24-15=0
\end{aligned}
$$

Since $\Delta=\Delta x=\Delta y=\Delta z=0$.the system is consistent and has many solution .also all
2×2 minor of $\Delta \neq 0$. The system is reduced to equation.

$$
\begin{aligned}
& \text { Let } \mathrm{z}=\mathrm{k} \\
& x+2 y+k=6 \quad x+2 y=6-k \\
& 3 x+3 y-k=3 \quad 3 x+3 y=3+k \\
& \Delta=\left|\begin{array}{ll}
1 & 2 \\
3 & 3
\end{array}\right| \\
& =3-6=-3 \\
& \Delta x=\left|\begin{array}{ll}
6-k & 2 \\
3+k & 3
\end{array}\right| \\
& =18-3 \mathrm{k}-6-2 \mathrm{k}=12-5 \mathrm{k} \\
& \Delta \mathrm{y}=\left|\begin{array}{ll}
1 & 6-k \\
3 & 3+k
\end{array}\right| \\
& =3+k-18+3 k=4 k-15
\end{aligned}
$$

$$
\begin{gathered}
\text { Then } \mathrm{x}=\frac{\Delta x}{\Delta}=\frac{12-5 k}{-3}=\frac{5 k-12}{3} \\
=\frac{\Delta y}{\Delta}=\frac{4 k-15}{-3}=\frac{15-4 k}{3} \\
\mathrm{x}=\frac{5 k-12}{3} \text { and } \mathrm{y}=\frac{15-4 k}{3} \text { and } \mathrm{z}=\mathrm{k}
\end{gathered}
$$ solution set is $\left(\frac{5 k-12}{3}, \frac{15-4 k}{3}, k\right)$ where $k € R$.

8. $2 x-y+z=2 ; \quad 6 x-3 y+3 z=6 ; \quad 4 x-2 y+2 z=4$

$$
\text { solution : } 2 x-y+z=2
$$

$$
\begin{aligned}
& 6 x-3 y+3 z=6 \\
& 4 x-2 y+2 z=4 \\
& \Delta=\left|\begin{array}{lll}
2 & -1 & 1 \\
6 & -3 & 3 \\
4 & -2 & 2
\end{array}\right| \\
& =2(-6+6)+1(12-12)+1(-12+12) \\
& =0 \\
& \Delta x=\left|\begin{array}{lll}
2 & -1 & 1 \\
6 & -3 & 3 \\
4 & -2 & 2
\end{array}\right| \\
& =2(-6+6)+1(12-12)+1(-12+12) \\
& =0 \\
& \Delta y=\left|\begin{array}{lll}
2 & 2 & 1 \\
6 & 6 & 3 \\
4 & 4 & 2
\end{array}\right| \\
& =2(-12+12)-2(12-12)+1(24+24) \\
& =0 \\
& \Delta z=\left|\begin{array}{lll}
2 & -1 & 2 \\
6 & -3 & 6 \\
4 & -2 & 4
\end{array}\right| \\
& =2(-12+12)+1(24-24)+1(-12+12) \\
& =0 \\
& \Delta=\Delta x=\Delta y=\Delta z=0
\end{aligned}
$$

all (2x2) minor are also zeros . but atleast one of Aij in Δ is non zero.
the system is consistent and has many solution. all the three equation reduce to one solution. $2 x-y+z=2$

$$
\text { put } z=k \text { then } 2 x-y=2-k
$$

$$
\begin{aligned}
& \text { let } \mathrm{y}=\mathrm{s}, \text { then } \mathrm{x}=\left(\frac{2-k+s}{2}, s, k\right) \quad \text { where } \mathrm{s}, \mathrm{k} \in R \\
& \text { 9. } \frac{1}{x}+\frac{2}{y}-\frac{1}{z}=1 ; \frac{2}{x}+\frac{4}{y}+\frac{1}{z}=5 ; \quad \frac{3}{x}-\frac{2}{y}-\frac{2}{z}
\end{aligned}
$$

$$
\text { solution : let } \frac{1}{x}=a ; \frac{1}{y}=b ; \frac{1}{z}=c
$$

$$
a+2 b-c=1
$$

$$
2 a+4 b+c=5
$$

$$
3 a-2 b-2 c=0
$$

$$
\begin{aligned}
& \Delta=\left|\begin{array}{ccc}
1 & 2 & -1 \\
2 & 4 & 1 \\
3 & -2 & -2
\end{array}\right| \\
& \\
& =1(-8+2)-2(-4-3)-1(-4-12) \\
& \\
& =-6+14+16=24 \\
& \begin{aligned}
\Delta a & =\left|\begin{array}{ccc}
1 & 2 & -1 \\
5 & 4 & 1 \\
0 & -2 & -2
\end{array}\right| \\
& =1(-8+2)-2(-10-0)-1(-10-0) \\
& =-6+20+10=24
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta b=\left|\begin{array}{ccc}
1 & 1 & -1 \\
2 & 5 & 1 \\
3 & 0 & -2
\end{array}\right| \\
& =1(-10-0)-1(-4-3)-1(0-15) \\
& =-10+7+15=12 \\
& \begin{aligned}
\Delta c & =\left|\begin{array}{ccc}
1 & 2 & 1 \\
2 & 4 & 5 \\
3 & -2 & 0
\end{array}\right| \\
& =1(0+10)-2(0-15)+1(-4-12)
\end{aligned} \\
& =10+30-16=24 \\
& \text { a }=\frac{\Delta a}{\Delta}=\frac{24}{24}=1=>\frac{1}{x}=1=>x=1 \\
& \mathrm{~b}=\frac{\Delta b}{\Delta}=\frac{12}{24}=\frac{1}{2}=>\frac{1}{y}=\frac{1}{2}=>y=2 \\
& c=\frac{\Delta c}{\Delta}=\frac{24}{24}=1=>\frac{1}{z}=1=>z=1
\end{aligned}
$$

10. a small seminar hall hold 100 chars . three different colours (red, blue, and green) of chairs are available . the cost of red chairs is Rs . 240 , cost of the blue chairs is Rs 260 the cost of the green chairs is Rs . 300. the total cost of the chairs if Rs.25,000. find atleast 3 different solution of the number of chairs in each colour to be purchased.
solution: let x, y, z be the no. of red, blue, green chairs.

$$
\begin{aligned}
& \text { given that } x+y+z=100 \\
& 240 x+x 260 y+300 z=25000 \\
& \div 20
\end{aligned}
$$

$$
\left.\begin{gathered}
12 \mathrm{x}+13 \mathrm{y}+15 \mathrm{z}=1250 \\
\mathrm{x}+\mathrm{y}=100-\mathrm{k} \\
\mathrm{x}+\mathrm{y}=1250-15 \mathrm{k} \\
\Delta=\left|\begin{array}{cc}
1 & 1 \\
12 & 13
\end{array}\right|=13-12=1 \\
\Delta x=\left|\begin{array}{cc}
100-k & 1 \\
1250-15 k & 13
\end{array}\right| \\
=1300-13 \mathrm{k}-1250+15 \mathrm{k} \\
=50+2 \mathrm{k} \\
=\frac{1250-15 \mathrm{k}-1200+12 \mathrm{k}}{12} 1250-15 k
\end{gathered} \right\rvert\,
$$

the solution set is $(50+2 \mathrm{k}, 50-3 \mathrm{k}, \mathrm{k}) \quad$ where $\mathrm{s}, \mathrm{k} \in R$.

$$
x+2 y+z=7 ; 2 x-y+2 z=4 ; \quad x+y-2 z=-1
$$

Solution: $\quad x+2 y+z=7$

$$
2 x-y+2 z=4
$$

solution is $(\mathrm{x}, \mathrm{y}, \mathrm{z})=(1,2,2)$

$$
\text { . } x+y+2 z=6 ; 3 x+y-z=2 ; \quad 4 x+2 y+z=8
$$

Solution: $\quad x+y+2 z=6$

$$
\begin{gathered}
3 x+y-z=2 \\
4 x+2 y+z=8
\end{gathered}
$$

$$
\Delta=\left|\begin{array}{ccc}
1 & 1 & 2 \\
3 & 1 & -1 \\
4 & 2 & 1
\end{array}\right|=0
$$

$$
\Delta \mathrm{x}=\left|\begin{array}{ccc}
6 & 1 & 2 \\
2 & 1 & -1 \\
8 & 2 & 1
\end{array}\right|=0
$$

$$
\begin{gathered}
\Delta y=\left|\begin{array}{rrr}
1 & 6 & 2 \\
3 & 2 & -1 \\
4 & 8 & 1
\end{array}\right| \\
=0
\end{gathered}
$$

$$
\begin{aligned}
\Delta z & =\left|\begin{array}{lll}
1 & 1 & 6 \\
3 & 1 & 2 \\
4 & 2 & 8
\end{array}\right| \\
& =0
\end{aligned}
$$

Since $\Delta=\Delta x=\Delta y=\Delta z=0$.the system is consistent and has many solution .also all
2×2 minor of $\Delta \neq 0$. The system is reduced to equation.
Let $\mathrm{z}=\mathrm{k}$

$$
\begin{gathered}
\mathrm{x}+\mathrm{y}+2 \mathrm{k}=6 \quad \mathrm{x}+\mathrm{y}=6-2 \mathrm{k} \\
3 \mathrm{x}+\mathrm{y}-\mathrm{k}=2 \quad 3 \mathrm{x}+\mathrm{y}=2+\mathrm{k} \\
\Delta=\left|\begin{array}{cc}
1 & 1 \\
3 & 1
\end{array}\right| \\
=1-3=-2 \\
\Delta \mathrm{x}=\left|\begin{array}{cc}
6-2 k & 1 \\
2+k & 1
\end{array}\right| \\
=6-2 \mathrm{k}-2-\mathrm{k}=4-3 \mathrm{k} \\
\Delta \mathrm{y}=\left|\begin{array}{cc}
1 & 6-2 k \\
3 & 2+k
\end{array}\right| \\
=2+\mathrm{k}-18+16 \mathrm{k}=7 \mathrm{k}-16
\end{gathered}
$$

Then $\mathrm{x}=\frac{\Delta x}{\Delta}=\frac{4-3 k}{-2}=\frac{3 k-4}{2}$

$$
=\frac{\Delta y}{\Delta}=\frac{7 k-16}{-2}=\frac{16-7 k}{2}
$$

$$
\mathrm{x}=\frac{3 k-4}{2} \text { and } \mathrm{y}=\frac{16-7 k}{2} \text { and } \mathrm{z}=\mathrm{k}
$$

solution set is $\left(\frac{3 k-4}{2}, \frac{16-7 k}{2}, \mathrm{k}\right)$ where $\mathrm{k} \in \mathrm{R}$.
. $x+y+2 z=4 ; \quad 2 x+2 y+4 z=8 ; \quad 3 x+3 y+6 z=12$
solution : $\quad x+y+2 z=4$

$$
\begin{gathered}
2 x+2 y+4 z=8 \\
3 x+3 y+6 z=12
\end{gathered}
$$

$$
\begin{aligned}
& \Delta=\left|\begin{array}{lll}
1 & 1 & 2 \\
2 & 2 & 4 \\
3 & 3 & 6
\end{array}\right| \\
& =0 \\
& \Delta x=\left|\begin{array}{lll}
4 & 1 & 2 \\
8 & 2 & 4 \\
12 & 3 & 6
\end{array}\right| \\
& =0 \\
& \Delta y=\left|\begin{array}{lll}
1 & 4 & 2 \\
2 & 8 & 4 \\
3 & 12 & 6
\end{array}\right| \\
& \Delta z=\left|\begin{array}{lll}
1 & 1 & 4 \\
2 & 2 & 8 \\
3 & 3 & 12
\end{array}\right| \\
& =2(-12+12)+1(24-24)+1(-12+12) \\
& \Delta=0
\end{aligned} \quad \begin{aligned}
\Delta x=\Delta y=\Delta z \quad=0
\end{aligned}
$$

all (2x2) minor are also zeros . but atleast one of Aij in Δ is non zero.
the system is consistent and has many solution. all the three equation reduce to one solution. $\quad x+y+2 z=4$

$$
\text { put } \mathrm{x}=\mathrm{s} \text { then } \mathrm{s}+\mathrm{t}+2 \mathrm{z}=4 \Rightarrow \mathrm{z}=\frac{4-\mathrm{s}-\mathrm{t}}{2}
$$

$$
\text { let } \mathrm{y}=\mathrm{t}, \text { then } \mathrm{x}=\left(s, t, \frac{4-s-t}{2}\right) \quad \text { where } \mathrm{s}, \mathrm{k} \in R
$$

. A bag contain 3 types of coins namely Re. 1 ,Re. 2 , Re. 5 .there are 30 coins amounting to Re. 100 in total. find the number of coins in each category .
solution: let x, y, z be the no. of coins in each Re. $1, \operatorname{Re} .2$, Re. 5.

$$
\begin{aligned}
& \text { given that } \quad x+y+z=30 \\
& x+2 y+5 z=100 \\
& x+y=30-k \\
& \mathrm{x}+\mathrm{y}=100-5 \mathrm{k} \\
& \Delta=\left|\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right| \quad=2-1=1 \\
& \Delta x=\left|\begin{array}{cc}
30-k & 1 \\
100-5 k & 2
\end{array}\right| \\
& =2(30-\mathrm{k})-(100-5 \mathrm{k}) \\
& =3 \mathrm{k}-40 \\
& \Delta y=\left|\begin{array}{cc}
1 & 30-k \\
1 & 100-5 k
\end{array}\right| \\
& =(100-5 \mathrm{k})-(30-\mathrm{k}) \\
& =70-4 \mathrm{k} \\
& \mathrm{x}=\frac{\Delta x}{\Delta}=\frac{3 \mathrm{k}-40}{1}=3 \mathrm{k}-40 \\
& \mathrm{y}=\frac{\Delta y}{\Delta}=\frac{70-4 \mathrm{k}}{1}=70-4 \mathrm{k}
\end{aligned}
$$

$$
\mathrm{z}=\mathrm{k}
$$

the solution set is $(\mathrm{x}, \mathrm{y} \mathrm{z})=(3 \mathrm{k}-40,70-4 \mathrm{k}, \mathrm{k}) \quad$ where $\mathrm{s}, \mathrm{k} \in R$.

Since the number of coins is a non - negative integer , $k=0,1,3 \ldots$
Moreover $3 \mathrm{k}-40 \geq 0,70-4 \mathrm{k} \geq 0,=>14 \leq \mathrm{x} \leq 17$
The possible solution are $(2,14,14)(5,10,15)(8,6,16)(11,2,17)$.

EXERCISE : 1.5

examine the consistency of the following of the equations. if it is consistent then solve the sums .(using by rank method)
$4 x+3 y+6 z=25 ; x+5 y+7 z=13 ; 2 x+9 y+z=1$
solution :

$$
\begin{gathered}
4 x+3 y+6 z=25 \\
x+5 y+7 z=13 \\
2 x+9 y+z=1 \\
\mathrm{~A}=\left[\begin{array}{lll}
4 & 3 & 6 \\
1 & 5 & 7 \\
2 & 9 & 1
\end{array}\right] \\
(\mathrm{A}, \mathrm{~B})=\left[\begin{array}{lll}
4 & 3 & 625 \\
1 & 5 & 713 \\
2 & 9 & 1
\end{array}\right] \sim \\
(\mathrm{A}, \mathrm{~B})=\left[\begin{array}{lll}
1 & 5 & 713 \\
4 & 3 & 625 \\
2 & 9 & 1
\end{array}\right] \quad \mathrm{R}_{1} \leftrightarrow \mathrm{R}_{2} \\
\text { BHARATHIDHASANAR MATRIC HIGHER SECONDARY SCHOOL,ARAKKONAM - 12 }{ }^{\text {nh }} \text { MATHS } 6 \& 10 \text { MARKS }
\end{gathered}
$$

$R_{2} \rightarrow R_{2}-4 R_{1} \quad ; \quad R \rightarrow R_{3}-2 R_{1}$

$$
\sim\left[\begin{array}{cccc}
1 & 5 & 7 & 13 \\
0 & -17 & -22 & -27 \\
0 & -1 & -13 & -25
\end{array}\right]
$$

$$
R_{2} \rightarrow\left(-R_{2}\right) \quad ; \quad R_{3} \rightarrow\left(-R_{3}\right)
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{ccc}
1 & 5 & 713 \\
0 & 17 & 2227 \\
0 & 1 & 1325
\end{array}\right] \\
& \mathrm{R}_{2} \leftrightarrow \mathrm{R}_{3}
\end{aligned}
$$

$$
\sim\left[\begin{array}{ccc}
1 & 5 & 713 \\
0 & 1 & 1325 \\
0 & 17 & 2227
\end{array}\right]
$$

$$
R_{3} \rightarrow R_{3}-17 R_{1}
$$

$$
\sim\left[\begin{array}{cccc}
1 & 5 & 7 & 13 \\
0 & 1 & 13 & 25 \\
0 & 0 & -199 & -398
\end{array}\right]
$$

$$
=>\rho(\mathrm{A}, \mathrm{~B})=3 \text { and also } \rho(\mathrm{A})=3=\text { no. of unknowns }
$$

hence the system is consistent and has unique solution.

$$
\begin{array}{ccc}
-199 z=-398 & y+13 z=25 & x+5 y+7 z=13 \\
z=2 & y+26=25 & x-5+14=13 \\
y=-1 &
\end{array}
$$

solution is $x=4, y=-1, z=2$
(ii) $x-3 y-8 z=-10 ; 3 x+y-4 z=0 ; 2 x+5 y+6 z-13=0$

$$
R_{2} \rightarrow R_{2}-3 R_{1} \quad ; \quad R_{3} \rightarrow R_{3}-2 R_{1}
$$

$$
\sim\left[\begin{array}{cccc}
1 & -3 & -8 & -10 \\
0 & 10 & 20 & 30 \\
0 & 11 & 22 & 33
\end{array}\right]
$$

$$
R_{2} \rightarrow\left(R_{2} \div 10\right) \quad ; \quad R_{3} \rightarrow\left(-R_{3} \div 11\right)
$$

$$
\sim\left[\begin{array}{cccc}
1 & -3 & -8 & -10 \\
0 & 1 & 2 & 3 \\
0 & 1 & 2 & 3
\end{array}\right]
$$

$$
R_{3} \rightarrow R_{3}-R_{2}
$$

$$
\sim\left[\begin{array}{cccc}
1 & -3 & -8 & -10 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
=>\rho(\mathrm{A}, \mathrm{~B})=2 \text { and also } \rho(\mathrm{A}) \neq \text { no. of unknowns. }
$$

hence the system is consistent and has unique solution.

$$
\text { let } z=k
$$

$$
\begin{aligned}
& \text { solution : } \quad x-3 y-8 z=-10 \\
& 3 x+y-4 z=0 \\
& 2 x+5 y+6 z-13=0 \\
& A=\left[\begin{array}{ccc}
1 & -3 & -8 \\
3 & 1 & -4 \\
2 & 5 & 6
\end{array}\right] \\
& (A, B)=\left[\begin{array}{cccc}
1 & -3 & -8 & -10 \\
3 & 1 & -4 & 0 \\
2 & 5 & 6 & 13
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
x-3 y=-10+8 k \\
=>3 x-9 y=-30+24 k \\
3 x-9 y=-30+24 k \\
3 x+y=4 k \\
(-)(-)(-) \\
-10 y=-30+20 k \\
y=-2 k+3 \\
x=-10+8 k+3(-2 k+3) \\
x=2 k-1
\end{gathered}
$$

The solution set is $(2 \mathrm{k}-1,-2 \mathrm{k}+3, \mathrm{k})$, where $\mathrm{k} \in R$.
(iii). $x+y+z=7$; $x+2 y+3 z=18 ; y+2 z=6$.
solution : $x+y+z=7$

$$
\begin{aligned}
& x+2 y+3 z=18 \\
& y+2 z=6
\end{aligned}
$$

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
0 & 1 & 2
\end{array}\right]
$$

$$
(A, B)=\left[\begin{array}{ccc}
1 & 1 & 17 \\
1 & 2 & 318 \\
0 & 1 & 26
\end{array}\right]
$$

$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$
hence the system is inconsistent and has no solution.

$$
\text { (iv) } . x-4 y+7 z=14 ; 3 x+8 y-2 z=13 ; 7 x-8 y+26 z=5
$$

$$
\text { solution: } \quad x-4 y+7 z=14
$$

$$
3 x+8 y-2 z=13
$$

$$
7 x-8 y+26 z=5
$$

$$
A=\left[\begin{array}{ccc}
1 & -4 & 7 \\
3 & 8 & -2 \\
7 & -8 & 26
\end{array}\right]
$$

$$
(A, B)=\left[\begin{array}{cccc}
1 & -4 & 7 & 14 \\
3 & 8 & -213 \\
7 & -8 & 26 & 5
\end{array}\right]
$$

$$
R_{2} \rightarrow R_{2}-3 R_{1} \quad R_{3} \rightarrow R_{3}-7 R_{1}
$$

$$
\sim\left[\begin{array}{cccc}
1 & -4 & 7 & 14 \\
0 & 20 & -23 & -29 \\
0 & 20 & -23 & -93
\end{array}\right] \mathrm{R}_{3}-\mathrm{R}_{2}
$$

$$
\sim\left[\begin{array}{cccc}
1 & -4 & 7 & 14 \\
0 & 20 & -23 & -29 \\
0 & 0 & 0 & -64
\end{array}\right] \quad R_{3} \rightarrow R_{3}-R_{1}
$$

$$
=>\rho(\mathrm{A}, \mathrm{~B})=3 \text { and also } \rho(\mathrm{A})=2 .
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{lll}
1 & 1 & 17 \\
0 & 1 & 211 \\
0 & 0 & 26
\end{array}\right] \xrightarrow{R_{3}} R_{3}-R_{2} \\
& \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 7 \\
0 & 1 & 2 & 11 \\
0 & 0 & 0 & -5
\end{array}\right] \\
& =>\rho(\mathrm{A}, \mathrm{~B})=3 \text { and also } \rho(\mathrm{A})=2 \text {. }
\end{aligned}
$$

hence the system is inconsistent and has no solution.
$(\mathrm{V}) \mathrm{X}+\mathrm{Y}-\mathrm{Z}=1 ; 2 \mathrm{X}+2 \mathrm{Y}-2 \mathrm{Z}=2 ;-3 \mathrm{X}-3 \mathrm{Y}+3 \mathrm{Z}=-3$
solution : $\quad X+Y-Z=1$

$$
\begin{aligned}
2 X+2 Y-2 Z=2 & =>\text { dividing by } 2 \\
-3 X-3 Y+3 Z=-3 & \Rightarrow>\text { dividing by }-3
\end{aligned}
$$

all three equation are one and the same.
there is only one equation in three unknowns.
hence the system is consistent but has many solution.

$$
\text { let } \begin{aligned}
\mathrm{z} & =\mathrm{k}_{2} ; \mathrm{y}=\mathrm{k}_{1} \text { then } \\
\mathrm{x} & +\mathrm{y}-\mathrm{z}=1 \\
\mathrm{x} & =1-\mathrm{k}_{1}+\mathrm{k}_{2} \\
\mathrm{x} & =\left(1-\mathrm{k}_{1}+\mathrm{k}_{2}, \mathrm{k}_{1}, \mathrm{k}_{2}\right) \mathrm{k}_{1}, \mathrm{k}_{2} \in R .
\end{aligned}
$$

2. discuss the solution of the system of equation for all values of λ

$$
x+y+z=2 ; 2 x+y-2 z=2 ; \lambda x+y+4 z=2
$$

solution: $\quad x+y+z=2$

$$
2 x+y-2 z=2
$$

$\lambda x+y+4 z=2$

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -2 \\
\lambda & 1 & 4
\end{array}\right]
$$

hence the system is consistent and has many solution.

$$
\begin{array}{r}
\text { let } z=k \\
x+y=2-k \\
2 x+y=2+2 k
\end{array}
$$

$$
-x=-3 k
$$

$$
\begin{aligned}
& |A|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -2 \\
\lambda & 1 & 4
\end{array}\right| \\
& =1(4+2)-1(8+2 \lambda)+1(2-\lambda) \\
& =6-8-2 \lambda+2-\lambda=-3 \lambda \\
& \text { where } \lambda \neq|0|_{\mathrm{A}} \neq 0 \Rightarrow \text { the system has unique solution. } \\
& \text { let } \lambda=0 \text {. then } A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -2 \\
0 & 1 & 4
\end{array}\right] \\
& (A, B) \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 2 \\
2 & 1 & -2 & 2 \\
\lambda & 1 & 4 & 2
\end{array}\right] \\
& (A, B) \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 2 \\
2 & -1 & -4 & -2 \\
0 & 1 & 4 & 2
\end{array}\right] R 2 \rightarrow R_{2}-2 R_{1} \\
& \mathrm{R}_{2} \rightarrow \mathrm{R}_{2} \mathrm{X}(-1) ; \mathrm{R}_{3} \rightarrow \mathrm{R}_{2}+\mathrm{R}_{3} \\
& (A, B) \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 2 \\
2 & 1 & 4 & 2 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& =>\rho(\mathrm{A}, \mathrm{~B})=2 \text { and also } \rho(\mathrm{A})=2 \neq \text { no .of unknowns. }
\end{aligned}
$$

$$
x=3 k
$$

hence $y=2-4 k$
Therefore solution is $(3 \mathrm{k}, 2-4 \mathrm{k}, \mathrm{k}), \mathrm{k} \in R$.
3.for what value of k, the system of equations. $k x+y+z=1$;
$x+k y+z=1 ;$
$x+y+k z=1$ have (i) unique solution, (ii) more then one solution and (iii) no solution.
solution: $\quad k x+y+z=1$

$$
\begin{aligned}
& x+k y+z=1 \\
& x+y+k z=1 \\
& A= {\left[\begin{array}{ccc}
K & 1 & 1 \\
1 & K & 1 \\
1 & 1 & K
\end{array}\right] ; \quad(A, B)=\left[\begin{array}{cccc}
K & 1 & 1 & 1 \\
1 & K & 1 & 1 \\
1 & 1 & K & 1
\end{array}\right] } \\
& A= K\left(K^{2}-1\right)-1(K-1)+1(1-K) \\
&= K\left(K^{2}-1\right)-1(K-1)-1(K-1) \\
&=(K-1)(K(K+1)-1-1) \\
&=(K-1)\left(K^{2}+K-2\right) \\
&=(K-1)(K+2)(K-1)=(K-1)^{2}(K+2) \\
& \Rightarrow(K-1)^{2} \quad(K+2)=0 \quad \text { then } k=1,-2
\end{aligned}
$$

suppose $k \neq 1$ and $k \neq-2$ theln $A \neq 0$
$=>$ the system is consistent and has unique solution .
(ii) let $k=1$. then the system reduces to a single equation

73
hence the system is inconsistent and has no solution.

vector algebra

1. Find $\vec{a} \cdot \vec{b}$ when $\vec{a}=2 \overrightarrow{2}+\vec{j}-\vec{k}$ and $b=\overrightarrow{6 i}-3 \vec{j}+2 \vec{k}$

Solution: $\vec{a}=2 \vec{i}+2 \vec{j}-\vec{k}$ and $\vec{b}=\overrightarrow{6 i}-\overrightarrow{3 j}+2 \vec{k}$

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =(2)(6)+(2)(-3)+(-1)(2) \\
& =12-6-2=4
\end{aligned}
$$

2. If $\vec{a}=\vec{i}+\vec{j}+2 \vec{k}$ and $\vec{b}=3 \vec{i}+2 \vec{j}-\vec{k}$ find $(\vec{a}+3 \vec{b}) \cdot(2 \vec{a}-\vec{b})$

Solution

$$
\begin{aligned}
& \vec{a}=\vec{i}+\vec{j}+2 \vec{k}, \quad \vec{b}=\vec{i}+2 \vec{j}-\vec{k} \\
& \vec{a}+\overrightarrow{3 b}=(\vec{i}+\vec{j}+2 k)+3(3 i \vec{i}+\vec{j} \overrightarrow{-k}) \\
& =(\vec{i}+\vec{j}+\overrightarrow{2 k})+(\vec{i}+\overrightarrow{6 j}-\overrightarrow{3 k}) \\
& =(1 \overrightarrow{0 i}+7 j-\vec{k}) \\
& \overrightarrow{2 a}-\vec{b}=2(\vec{i}+\vec{j}+\overrightarrow{2 k})-(3 i+\overrightarrow{i j}-\vec{k}) \\
& (\vec{a}+\overrightarrow{3 b})(\overrightarrow{2 a}-\vec{b})=(\overrightarrow{10 i}+\vec{i} \overrightarrow{-k}) \cdot(\overrightarrow{-i}+\overrightarrow{5 k}) \\
& =-10-5=-15
\end{aligned}
$$

3. find λ so that the vectors $2 i+\overrightarrow{\lambda j}+\overrightarrow{k a n d} \vec{i}-2 j+\vec{k}$ are perpendicular to each other.

Solution: \quad Let $\vec{a}=\overrightarrow{2 i}+\overrightarrow{\lambda j}+\vec{k}$

$$
\vec{b}=\vec{i}-\overrightarrow{2 j}+\vec{k}
$$

Since a and b are perpendicular $\vec{a} \cdot \vec{b}=0$

$$
\begin{aligned}
& (2)(1)+(\lambda)(-2)+(1)(1)=0 \\
& 2-2 \lambda+1=0=\lambda=\frac{3}{2}
\end{aligned}
$$

4. Find the value of m for which the vectors $\vec{a}=\overrightarrow{i j}+2 \vec{j}+\overrightarrow{9 k}$ and $\overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{i}}+\overrightarrow{\mathrm{mj}}+3 \overrightarrow{\mathrm{k}}$ are (i) perpendicular, 9ii) parallel.

Solution:

$$
\begin{array}{r}
\vec{a}=3 i+2 \vec{j}+\vec{k} \\
\vec{b}=\vec{i}+\overrightarrow{m j}+3 \vec{k}
\end{array}
$$

(i) If they are perpendicular $\vec{a} \cdot \vec{b}=0$

Hence (3) (1) + (2) (m) + (9) (3) = 0

$$
\begin{gathered}
3+2 m+27=0 \\
=m=-15
\end{gathered}
$$

(ii) If they are parallel, $\frac{3}{1}=\frac{2}{m}=\frac{9}{3}$

$$
>\quad=9 m=6 \Rightarrow m=\frac{2}{3}
$$

5. Find the angles which the vector $\vec{i}-\vec{j}+\sqrt{2} \vec{k}$ makes with the coordinate axes.

Solution: \quad Let $\vec{F}=\vec{i}-\vec{j}+\sqrt{2} \vec{k}$

$$
|F|=\sqrt{(1)^{2}(-1)^{2}+(\sqrt{1})^{2}}=2
$$

Hence direction cosines I, m, n of F are

$$
I=\frac{a}{|F|}=\frac{1}{2}, \mathrm{~m}=\frac{b}{|F|}=\frac{1}{2}, \mathrm{n}=\frac{c}{|F|}=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}
$$

Let α, β and γ are the angles at which r makes with x -axis, y -axis and z-axis, then

$$
\begin{aligned}
& \cos \alpha=I=\frac{1}{2} \Rightarrow \lambda \alpha=\frac{\pi}{3} \\
& \cos \beta=\mathrm{m}=\frac{1}{2} \Rightarrow \beta=\pi-\frac{\pi}{3}=\frac{2 \pi}{3} \\
& \cos \gamma=\mathrm{n}=\frac{1}{\sqrt{2}} \Rightarrow \gamma=\frac{\pi}{4}
\end{aligned}
$$

6. Show that the vector $\vec{i}+\vec{j}+\vec{k}$ is equally inclined with the coordinate axes.

Solution:

$$
\begin{aligned}
& \vec{F}=\vec{i}+\vec{j}+\vec{k} \\
& |F|=\sqrt{(1) 2+(1) 2+(1) 2}=\sqrt{3}
\end{aligned}
$$

Hence the direction cosines I, m, n of F are

$$
I=\frac{a}{|F|}=\frac{1}{\sqrt{3}}, \mathrm{~m}=\frac{b}{|F|}=\frac{1}{\sqrt{3}}, \mathrm{n}=\frac{\mathrm{c}}{|\mathrm{~F}|}=\frac{1}{\sqrt{3}}
$$

Let α, β and γ be the angles at which \bar{r} is inclined to x-axis and z-axis.
Then, $\cos \alpha=\frac{1}{\sqrt{3}}, \cos \beta=\frac{1}{\sqrt{3}}, \cos \gamma=\frac{1}{\sqrt{3}}$
` $\alpha=\beta=\gamma=\cos ^{-1} \frac{1}{\sqrt{3}} \quad(\quad)$
7. If \hat{a} and \hat{b} are unit vectors inclined at an angle θ, then prove that
(i) $\cos \frac{\theta}{2}=\frac{1}{2}|\hat{a}+\hat{b}|$ and (ii) $\tan \frac{\theta}{2}=\frac{|\hat{a}-\hat{b}|}{|\hat{a}+\hat{b}|}$

Solution: (i)

$$
\begin{aligned}
|\hat{a}+\hat{b}|^{2} & =|a|^{2}+|b|^{2}+2|a, b| \\
& =1+1+2|a||b| \cos \theta \\
& =2+2(1)(1) \cos \theta \quad=2+2 \cos \theta \\
& =2(1+\cos \theta)=2\left(2 \cos ^{2} \frac{\theta}{2}\right]
\end{aligned}
$$

$$
|\hat{a}+\hat{b}|^{2}=4 \cos ^{2} \frac{\theta}{2}
$$

$$
\frac{1}{4}|\hat{a}+\hat{b}|^{2}=\cos ^{2} \frac{\theta}{2}
$$

$$
\frac{1}{2}|\hat{a}+\hat{b}|=\cos \frac{\theta}{2}
$$

(ii) From the above result, we get $|\hat{a}+\hat{b}|=2 \cos \frac{\theta}{2}$, $|\hat{a}-\hat{b}|=2 \sin \frac{\theta}{2}$ then $\tan \frac{\theta}{2}=\frac{|\hat{a}-\hat{b}|}{|\hat{a}+\hat{b}|}$.
8. If the sum of two unit vectors is a unit vector prove that the magnitude of their difference is $\sqrt{3}$.

Solution: Let $\hat{a}+\hat{b}=\hat{c}$ given $|\hat{c}|=1$, also a, b are unit vectors.
To prove that: $\quad|a-b|=\sqrt{3}$

$$
\overrightarrow{(a+b}) \cdot \vec{a}+\vec{b})=\vec{a} \cdot \vec{a}+\overrightarrow{2 a} \cdot \vec{b}+\vec{b} \cdot \vec{b}
$$

$$
\begin{aligned}
& |c|^{2}=|a|^{2}+2 a \cdot b+|b|^{2} \\
& =1=|a|^{2}+2(a . b)+|b|^{2} \\
& =>|a|^{2}+|b|^{2}=1-2(a . b) \\
& \Rightarrow 2=1-2 \text { (a.b) } \\
& 1=-2(a . b) \\
& \text { Now, } \overrightarrow{(a-b)}=a . a-2(a . b)+b . b \\
& |\vec{a}-\vec{b}|^{2}=|a|^{2}+\mid b^{12}-2(a . b) \\
& =1+1+1 \\
& \text { = } 3 \\
& =>|\vec{a}-\vec{b}|=\sqrt{3} \text {. }
\end{aligned}
$$

9. If a, b, c are three mutually perpendicular unit vectors, then prove that

$$
|\vec{a}+\vec{b}+\vec{c}|=\sqrt{3}
$$

Solution: Given $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular unit vectors.

11. Let \vec{u}, \vec{v} and \vec{w} be vector such that $\vec{u}+\vec{v}+\vec{w}=0$.

If $|\vec{u}|=3, \vec{v} \mid=4$ and $|\vec{w}|=5$ then find $\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{u}$

Solution:

$$
\begin{aligned}
&(\vec{u}+\vec{v}+\vec{w}) \cdot(\vec{u}+\vec{v}+\vec{w})=|\vec{u}|^{2}+|\vec{v}|^{2}+|\vec{w}|^{2}+2(\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}+\vec{w} \cdot \vec{u}) \\
& \Rightarrow 0=9+16+25+2(\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}+\vec{w} \cdot \vec{u}) \\
& \Rightarrow 2(\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}+\vec{w} \cdot \vec{u})=-50 \\
& \vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}+\vec{w} \cdot \vec{u}=-25 .
\end{aligned}
$$

12. Show that the vectors $\overrightarrow{3 i}-\overrightarrow{2 j}+\vec{k}, \vec{i}-3 j+\overrightarrow{5 k}$ and $\overrightarrow{2} i+\vec{j}-4 \vec{k}$ form a right angled triangle.

Solution: Let $\vec{a}=3 \vec{i}-\overrightarrow{2 j}+\vec{k}$

$$
\begin{aligned}
& \quad \vec{b}=\vec{i}-3 \vec{j}+\overrightarrow{5 k} \\
& \text { and } \vec{c}=\overrightarrow{2 i}+\vec{j}-\overrightarrow{4 k} \\
& \vec{a} \cdot \vec{b}=(3)(1)+(-2)(-3)+(1)(5)=3+6+5=14 \\
& \text { b. } c=(1)(2)+(-3)(1)+(5)(-4)=2-3-20=-21 \\
& \text { c } \cdot a=(3)(2)+(-2)(1)+(1)(-4)=6-2-4=0
\end{aligned}
$$

$$
\Rightarrow \mathrm{c} \text { and } \mathrm{a} \text { are perpendicular to each other. }
$$

Also,

$$
\begin{aligned}
\vec{b}+\vec{c} & =\vec{i}-3 \vec{j}+5 \vec{k})+(2 \vec{i}+\vec{j}-4 \vec{k}) \\
& =3 \vec{i}-2 \vec{j}+\vec{k}=\vec{a}
\end{aligned}
$$

Hence the vectors form a right angled triangle.
Another method:

$$
|\vec{a}|=\sqrt{(3)^{2}+(-2)^{2}+(1)^{2}}=\sqrt{9+4+1}=\sqrt{14}
$$

$$
\begin{aligned}
& |\vec{b}|=\sqrt{(1)^{2}+(-3)^{2}+(5)^{2}}=\sqrt{1+9+25}=\sqrt{35} \\
& |\vec{c}|=\sqrt{(2)^{2}+(1)^{2}+(-4)^{2}}=\sqrt{4+1+16=\sqrt{21}}
\end{aligned}
$$

Since

$$
|\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{c}|^{2}
$$

The vectors form a right angled triangle.
13Show that the points whose position vectors $4 \vec{i}-3 j+k, 2 i-4 j+\vec{j}$, $\vec{i}-\vec{j}$ Form a right angled triangle.

Solution: Let $\overline{O A}=\overrightarrow{4 i}-3 \vec{j}+\vec{k}$

$$
\begin{aligned}
& \overline{\mathrm{OB}}=\overrightarrow{2 \mathrm{i}}-4 \vec{j}+\overrightarrow{5 \mathrm{k}} \quad \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{i}}-\vec{j} \\
& \overline{A B}=\overline{O B}-\overline{O A} \\
& =2 \vec{i}-\overrightarrow{4 j}+5 \vec{k}-(\overrightarrow{4 i}-3 \vec{j}+\vec{k})=2 \vec{i}-\vec{j}+4 \vec{k} \\
& \overline{\mathrm{BC}}=\overline{\mathrm{OC}}-\overline{\mathrm{OB}} \\
& =(\vec{i}-\vec{j})-(2 i-3 \vec{j}+\overrightarrow{5 k})-\vec{i}+3 j-5 \vec{k} \\
& \overline{C A}=\overline{O A}-\overline{O C} \\
& =(4 i \mathrm{i}-3 \mathrm{j}+\vec{k})-(\vec{i}-\vec{j})=3 \vec{i}-2 \vec{j}+\vec{k} \\
& |\overline{A B}|=\sqrt{(-2)^{2}+(-1)^{2}+(4)^{2}}=\sqrt{4+1+16}=\sqrt{21} \\
& |\overline{\mathrm{BC}}|=\sqrt{(-1)^{2}+(3)^{2}+(-5)^{2}}=\sqrt{1+9+25}=\sqrt{35} \\
& |\overline{C A}|=\sqrt{(3)^{2}+(-2)^{2}+(1)^{2}}=\sqrt{9+4+1}=\sqrt{41} \\
& |\overline{B C}|^{2}=|\overline{A B}|^{2}+|\overline{C A}|^{2} \\
& \Rightarrow 35=21+14 \quad \Rightarrow 35=35
\end{aligned}
$$

$$
\Rightarrow \text { The triangle is right angled. } \quad \overline{\mathrm{AB}}+\overline{\mathrm{BC}}=\overline{\mathrm{AC}} .
$$

14. Find the projection of
(i) $\vec{i}-\vec{j}$ on z-axis, (ii) $\vec{i}+\overrightarrow{2 j}-\overrightarrow{2 k}$ on $\overrightarrow{2 i}-\vec{j}+5 \vec{k}$, (iii) $\overrightarrow{i i}+\vec{j}-\vec{k}$ on $\overrightarrow{4 i}-\vec{j}+\overrightarrow{2 k}$.

Solution: (i) Projection of $\overrightarrow{\mathrm{i}}-\overrightarrow{\mathrm{j}}$ on z-axis $=\frac{\overrightarrow{(i-j)} \overrightarrow{)^{\prime}}}{|\vec{k}|} 0$
(ii) Projection of $\vec{i}+\overrightarrow{2 j}-2 \mathrm{k}$ on $2 \vec{i}-\vec{j}+5 \mathrm{k}$ is $\frac{\overrightarrow{(i+2 j}+2 \vec{k})(\overrightarrow{2 i}-\vec{j}+5 \vec{k})}{\mid \overrightarrow{\mid 2 i}-\vec{j}+5 \overrightarrow{k \mid}}$

$$
=\frac{2-2-10}{\sqrt{4+1+25}}=\frac{-10}{\sqrt{30}}
$$

(iii) Projection of $3 \mathrm{i}+\mathrm{j}-\overrightarrow{\mathrm{k}}$ on $\overrightarrow{4 \mathrm{i}-\mathrm{j}}+\overrightarrow{2 \mathrm{k}}$ is $\frac{(\overrightarrow{3 i}+\vec{j}-\vec{k}) \cdot(4 \vec{i}-\vec{j}+2 \vec{k})}{|4 \vec{\imath}-\vec{j}+2 \vec{k}|}$

$$
=\frac{12-1-2}{\sqrt{16+1+4}}=\frac{9}{\sqrt{21}}
$$

EXERCISE 2.2

Prove by vector method.

1. If the diagonals of a parallelogram are equal then it is a rectangle.

Solution: Let ABCD be a parallelogram. Let AC and BD be the diagonals

$$
\text { Then } A C=\overrightarrow{B D} \text { (given) }
$$

$$
\begin{aligned}
& \Rightarrow|\overrightarrow{A C}|^{2}=|\overrightarrow{B D}|^{2} \\
& \Rightarrow \overrightarrow{A C} \cdot \overrightarrow{A C}=\overrightarrow{B D} \cdot \overrightarrow{B D}
\end{aligned}
$$

$$
(\overrightarrow{A B}+\overrightarrow{B C}) \cdot(\overrightarrow{A B}+B C) \underset{\rightarrow}{=}(\overrightarrow{B C}+\overrightarrow{C D}) \cdot(\overrightarrow{B C}+\overrightarrow{C D})
$$

$$
=(\overrightarrow{B C}-\overrightarrow{A B}) \cdot(\overrightarrow{B C}-\overrightarrow{A B})
$$

$$
=|\overrightarrow{A B}|^{2}+|\overrightarrow{B C}|^{2}+2 \overrightarrow{A B} \cdot \overrightarrow{B C}=|\overrightarrow{B C}|^{2}+|\overrightarrow{A B}|^{2}-\overrightarrow{B C} \cdot \overrightarrow{A B}
$$

$$
=.>4 \overrightarrow{A B} \cdot \overrightarrow{B C}=0
$$

$$
\text { Hence } \overrightarrow{A B} \text { is perpendicular to } \overrightarrow{B C}
$$

$$
\text { => } A B C D \text { us a rectangle. }
$$

2. The mid point of the hypotenuse of a right angled triangle is equidistant from its vertices.

Solution: Given $A B C$ is a right angled triangle in which $A C$ is the hypotenuse and D is the mid point of $A C$.

$$
\Rightarrow \quad \overrightarrow{A D}=\overrightarrow{D C}
$$

Since B $=90$
$\overrightarrow{A B}, \overrightarrow{B C}=0$
But $\overrightarrow{A B}=\overrightarrow{A D}+\overrightarrow{D B}$
And $\overrightarrow{B C}=\overrightarrow{B D}+\overrightarrow{D C}=-\overrightarrow{D B}+\overrightarrow{A D}$

Hence from (i). $(\overrightarrow{A D}+\overrightarrow{D B}) \cdot(-\overrightarrow{D B}+\overrightarrow{A D})=0$

$$
\begin{aligned}
& \Rightarrow|\overrightarrow{A D}|^{2}-|\overrightarrow{D B}|^{2}=0 \\
& \Rightarrow|\overrightarrow{A D}|=|\overrightarrow{D B}|
\end{aligned}
$$

$$
\text { Hence }|\overrightarrow{A D}|=|D C|=|D B|
$$

D is equidistant from the vertices.
3. The sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of the sides.

Solution: $\quad \overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C}$

$$
\begin{aligned}
\overrightarrow{B D} & =\overrightarrow{B A}+\overrightarrow{A D} \\
& =\overrightarrow{A D}+\overrightarrow{B A}=\overrightarrow{A D}-\overrightarrow{A B} \\
\overrightarrow{A C}^{2}= & (\overrightarrow{A B}+\overrightarrow{B C})^{2} D \\
= & \overrightarrow{A B}^{2}+\overrightarrow{B C}^{2}+2 \overrightarrow{A B} \cdot \overrightarrow{B C} \\
= & \overrightarrow{A B}^{2}+\overrightarrow{B C}^{2}+2 \overrightarrow{A B}+\overrightarrow{A D} \\
\overrightarrow{B D}^{2} & =(\overrightarrow{A D}-\overrightarrow{A B})^{2} \\
& =\overrightarrow{A D^{2}}+\overrightarrow{A B^{2}}-2 \overrightarrow{A B} \cdot \overrightarrow{A D} \\
\overrightarrow{A C}^{2}+ & \overrightarrow{B D}^{2}=\overrightarrow{A B}^{2}+\overrightarrow{B C}^{2}+\overrightarrow{A D}^{2}+\overrightarrow{A B}^{2} \\
& =\overrightarrow{A B}^{2}+\overrightarrow{B C}^{2}+\overrightarrow{D C}^{2}+\overrightarrow{A D}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& O M=O N+N M \\
& \overrightarrow{O M}=\operatorname{COs} \vec{A} \vec{i}+\sin A \vec{j} \\
& \overrightarrow{O L}=\cos \overrightarrow{B i}-\sin \vec{B} \vec{j} \\
& \overrightarrow{O M} \cdot \overrightarrow{O L}=(\cos \overrightarrow{A i}+\sin \overrightarrow{A j}) \cdot(\cos B \vec{i}-\sin \overrightarrow{B j}) \\
& |\overrightarrow{O M}||\overrightarrow{O L}| \cos (A+B)=\cos A \cos B-\sin A \sin B \\
& =>C \cos (A+B)=\cos A \cos B-\sin A \sin B
\end{aligned}
$$

5. Find the work done by the force $\vec{F}=2 \vec{i}+\vec{j}+\vec{k}$ acting on a particle, if the particle is displaced from the point with position vector $2 \vec{i}+2 \vec{j}+2 \vec{k}$ to the point with Position vector $3 \vec{i}+4 \vec{j}+5 \vec{k}$.
Solution: Displacement $\vec{d}=\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$

$$
\begin{aligned}
(\overrightarrow{O A}= & \overrightarrow{2 i}+\vec{j}+\vec{k} ; \overrightarrow{O B}=3 \vec{i}+4 \vec{j}+5 \vec{k}) \\
= & (3 \vec{i}+4 \vec{j}+5 \vec{k})-(2 \vec{i}+2 \vec{j}+2 \vec{k}) \\
= & (\vec{i}+2 \vec{j}+\overrightarrow{3 k}) \\
& =\vec{F} \cdot \vec{d} \\
= & (2 \vec{i}+\vec{j}+\vec{k}) \cdot(\vec{i}+2 \vec{j}+3 \vec{k}) \\
= & 2+2+3=7 \text { units. }
\end{aligned}
$$

6. A force of magnitude 5 units acting parallel of $2 \vec{i}-\vec{j}+\vec{k}$ displaces the point of application from $(1,2,3)$ to $5,3,7)$. Find the work done. Solution: Displacement $=\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$

$$
=(\overrightarrow{O A}=\vec{i}+\overrightarrow{2 j}+3 \vec{k} ; \overrightarrow{O B}=5 \vec{i}+3 \vec{j}+7 \vec{k})
$$

$$
=\quad 4 i \vec{i}+\overrightarrow{j k}
$$

Force of magnitude 5 units acting parallel to $2 \vec{i}-\vec{j}+\vec{k}$

$$
\begin{aligned}
& =5 \frac{\overrightarrow{2 i}-2 \overrightarrow{j+}+\vec{k}}{\sqrt{4+4+1}}=\frac{5}{3}(2 \vec{i}-2 \vec{j}+\vec{k}) \\
& =\frac{10}{3}(4)-\frac{10}{3}(1)+\frac{5}{3}(4) \\
& =\frac{40}{3}-\frac{10}{3}+\frac{20}{3}=\frac{50}{3}
\end{aligned}
$$

7. The constant forces $\overrightarrow{2 i}-5 \vec{j}+6 \vec{k},-\vec{i}+2 \vec{j}-\vec{k}$ and $\overrightarrow{2 i}+\vec{j}$ act on a particle which is displaced from position $4 \vec{i}-3 \vec{j}-2 \vec{k}$ to position $\overrightarrow{6 i}+\vec{j}-3 \vec{k}$. Find the work done.

> Solution: Displacement = Final position - Initial position

$$
\begin{aligned}
& =(\vec{i}+\vec{j}-\overrightarrow{3 k})-(\overrightarrow{4 i}-\vec{j}-\overrightarrow{2 k}) \\
& =2 \vec{i}+4 \vec{j}-\vec{k} \\
& \text { Total forces }=(2 i-\vec{j}+\overrightarrow{6 k})+(-i \vec{i}+\vec{j}-\vec{k})+(\overrightarrow{2} i+7 j) \\
& =(3 \vec{i}+4 \vec{j}+\overrightarrow{5 k}) \\
& \text { Work done } \quad=\vec{F} \cdot \vec{d} \\
& =(3 \vec{i}+4 \vec{j}+\overrightarrow{5 k}) \cdot(2 \vec{i}+\vec{j}-\vec{k}) \\
& =6+16-5=17
\end{aligned}
$$

8. Forces of magnitudes 3 and 4 units acting in directions $\vec{i}+2 \vec{j}+3 \vec{k}$ and $\overrightarrow{3}-2 \vec{j}+6 \vec{k}$ respectively act on a particle which is displaced from the point $(2,2,-1)$ to $(4,3,10$. Find the work done by the forces.

Solution: Displacement $=$ Final position - Initial positions

$$
\begin{aligned}
= & (4 \vec{i}+\overrightarrow{3 j}+\vec{k})-(2 \vec{i}+2 \vec{j}-\vec{k}) \\
= & \overrightarrow{2 i}+\vec{j}+2 \vec{k} \\
\text { Forces are }= & 3\left(\frac{6 i+2 \vec{j}+3 k}{\sqrt{36+4+9}}\right) \text { and } 4\left(\frac{3 i+2 \vec{j}+\overrightarrow{6 k}}{\sqrt{9+4+36}}\right) \\
= & \frac{3}{7}(6 \vec{i}+2 \vec{j}+3 \vec{k}) \text { and } \frac{4}{7}(3 \vec{i}-2 \vec{j}+6 \vec{k}) \\
\text { Sum of the forces }= & \frac{3}{7}(6 \vec{i}+2 \vec{j}+3 \vec{k})+\frac{4}{7}(3 \vec{i}-2 \vec{j}+6 \vec{k}) \\
& =\frac{1}{7}(18 \vec{i}+6 \vec{j}+9 \vec{k})+\frac{1}{7}(12 \vec{i}-8 \vec{j}+2 \vec{k}) \\
& =\frac{1}{7}(30 \vec{i}-2 \vec{j}+33 \vec{k}) \\
\therefore \text { work done }= & \vec{F} \cdot \vec{d} \\
= & \frac{1}{7}(30 \vec{i}-2 \vec{j}+33 \vec{k}) \cdot(2 \vec{i}+\vec{j}+2 \vec{k}) \\
& =\frac{1}{7}[30(2)-2(1)+33(2)] \\
= & \frac{1}{7}[60-2+66]=\frac{124}{7}=\frac{124}{7} \text { units. }
\end{aligned}
$$

SOLUTIONS OF EXERCISE - 2.3

1. Find the magnitude of $a \times \vec{b}$ if $\vec{a}=2 \vec{i}+\vec{k}, \vec{b}=\vec{i}+\vec{j}+\vec{k}$ Solution: Let $\vec{a}=2 \vec{i}+\vec{k} ; \vec{b}=\vec{i}+\vec{j}+\vec{k}$

$$
\begin{aligned}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & 0 & 1 \\
1 & 1 & 1
\end{array}\right| \\
& =\vec{i}(0-1) \vec{j}(2-1)+\vec{k}(2-0) \\
& =-\vec{i}-\vec{j}+\overrightarrow{2 k}
\end{aligned}
$$

$$
\therefore|\mathrm{a} \times \mathrm{b}|=\sqrt{(-1)^{2}+(-1)^{2}+(2)^{2}}=\sqrt{1+1+4}=\sqrt{6}
$$

2. If $|\vec{a}|=3,|\vec{b}|=4$ and $\vec{a} \cdot \vec{b}=9$ then find $|\vec{a} \times \vec{b}|$

$$
\text { Solution: } \quad \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
$$

$\therefore 9=3 \times 4 \cos \theta$
Hence $\sin \theta=\sqrt{1-\cos ^{2} \theta}$

$$
\begin{aligned}
= & \sqrt{1} \frac{\sqrt{9}}{16}=\frac{\sqrt{7}}{4} \\
& |\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta \\
& |\vec{a} \times \vec{b}|=3 \times 4 \times \frac{\sqrt{7}}{4}=3 \sqrt{7}
\end{aligned}
$$

3. Find the unit vectors perpendicular to the plane containing the vectors $\vec{i} \vec{i}+\vec{j}+\vec{k}$ and $\vec{i}+\overrightarrow{2 j}+\vec{k}$.

$$
\begin{aligned}
& \text { Solution: } \vec{a}=\overrightarrow{2 i}+\vec{j}+\vec{k}, \vec{b}=\vec{i}+\overrightarrow{2 j}+\vec{k} \\
& \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & 1 & 1 \\
1 & 2 & 1
\end{array}\right| \\
& =\vec{i}(1-2)-\vec{j}(2-1)+\vec{k}(4-1) \\
& =-\vec{i}-\vec{j}+\overrightarrow{2 k}
\end{aligned}
$$

4. Find the vectors whose length 5 and which are perpendicular to the vectors

$$
\begin{aligned}
& \overrightarrow{\mathrm{a}=3 \vec{i}+\overrightarrow{\mathrm{j}}-\overrightarrow{4 \mathrm{k}} \text { and } \overrightarrow{\mathrm{b}}=\overrightarrow{6 \mathrm{i}}+\overrightarrow{5 \mathrm{j}}-\overrightarrow{2 \mathrm{k} .}} \begin{aligned}
& \text { Solution: } \begin{aligned}
\overrightarrow{\mathrm{a}} & =3 \overrightarrow{\mathrm{i}}+\overrightarrow{\mathrm{j}}-4 \overrightarrow{\mathrm{k}} \\
\overrightarrow{\mathrm{~b}}= & \overrightarrow{\mathrm{i}}+\overrightarrow{5 \mathrm{j}}-\overrightarrow{2 k}
\end{aligned} \\
& \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
3 & 1 & -4 \\
6 & 5 & -2
\end{array}\right| \\
& \quad \vec{i}(-2+20)-\vec{j}(-6+24)+\vec{k}(15-6) \\
&=18 \vec{i}-18 \vec{j}+\overrightarrow{\mathrm{k}}
\end{aligned} \\
& |\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{(18)^{2}+(-18)^{2}+(9)^{2}}
\end{aligned}
$$

$$
=\sqrt{324+324+81}=\sqrt{729}
$$

\therefore Vectors whose length 5 and which are perpendicular to a and b is

$$
\begin{aligned}
& \overrightarrow{\mathrm{n}}=\frac{\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|} \\
&= \frac{5(18 \vec{i}-18 j+\overrightarrow{9 k})}{\sqrt{729}}=\frac{9 \vec{i}-90 \vec{j}+4 \overrightarrow{5 k}}{\sqrt{27}} \\
&=\frac{1 \overrightarrow{0}-10 \vec{j}+\overrightarrow{5 k}}{3}=\frac{10 \vec{i}-10 \vec{j}+5 \vec{k}}{3}
\end{aligned}
$$

5. Find the angle between two vectors \vec{a} and \vec{b} if $|\vec{a} \times \vec{b}|=\vec{a} \cdot \vec{b}$. Solution: $\quad|a \times b|=a . b$

$$
\begin{aligned}
& |a||b| \sin \theta=|a||b| \cos \theta \\
& =>\frac{\sin \theta}{\cos \theta}=>1 \\
\Rightarrow> & \tan \theta=1=>\theta=\frac{\pi}{4}
\end{aligned}
$$

6. If $|\vec{a}|=2,|\vec{b}|=7$ and $\vec{a} \times \vec{b}=3 \vec{i}-\overrightarrow{2 j}+\overrightarrow{6 k}$ find angle between \vec{a} and \vec{b}

$$
\begin{gathered}
\text { Solution: } \vec{a} \times \vec{b}=3 \vec{i}-\overrightarrow{2 j}+\overrightarrow{6 k} \\
\therefore|\vec{a} \times \vec{b}|=\sqrt{9+4+36}=\sqrt{49}=7 \\
|\vec{a}||\vec{b}| \sin \theta=7
\end{gathered}
$$

8. For any three vectors $\vec{a}, \vec{b}, \vec{c}$ show that

$$
\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})=0 .
$$

$$
\text { Solution: } \vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})
$$

$$
\begin{aligned}
= & (\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})+(\vec{b} \times \vec{c})+(\vec{b} \times \vec{a}) \\
& +(\vec{c} \times \vec{a})+(\vec{c} \times \vec{b})
\end{aligned}
$$

$$
\begin{aligned}
& 2 \times 7 \times \sin \theta=7 \\
& \Rightarrow \sin \theta=\frac{1}{2} \Rightarrow>=\frac{\pi}{6} \\
& \text { 7. If } \vec{a}=\vec{i}+3 \vec{j}-2 \vec{k} \text { and } \vec{b}=-\vec{i}+3 \vec{k} \text { then find } \vec{a} \times \vec{b} \text {. Verify that } \\
& \vec{a} \text { and } \vec{b} \\
& \text { Solution: } \quad \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 3 & -2 \\
-1 & 0 & 3
\end{array}\right| \\
& =\vec{i}(9-0) \overrightarrow{-j}(3-2)+\vec{k}(0+3) \\
& =9 \vec{i}-\vec{j}+3 k \\
& \vec{a} \cdot(\vec{a} \times \vec{b})=(\vec{i}+3 \vec{j}-2 \vec{k}) \cdot(\overrightarrow{9 i}-\vec{j}+3 \vec{k}) \\
& =9-3-6=0 \\
& \Rightarrow \vec{a} \text { and }(\vec{a} \times \vec{b}) \text { are perpendicular } \\
& \vec{b} \cdot(\vec{a} \times \vec{b})=(\vec{i}+3 \vec{k}) \cdot(\vec{i}-\vec{j}+3 \vec{k}) \\
& =-9+0+9=0 \\
& \Rightarrow \vec{b} \text { and }(\vec{a} \times \vec{b}) \text { are perpendicular }
\end{aligned}
$$

$$
=\overrightarrow{0}
$$

Since

$$
\begin{aligned}
& (\vec{a} \times \vec{b})=-(\vec{b} \times \vec{a}) \\
& (\vec{a} \times \vec{c})=-(\vec{c} \times \vec{a}) \\
& \text { and } \overrightarrow{(\vec{b} \times \vec{c})}=-(\vec{c} \times \vec{b})
\end{aligned}
$$

9. Let $\vec{a}, \vec{b}, \vec{c}$ be unit vectors such that $\vec{a} \cdot \vec{c}=0$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$. Prove that $\vec{a}= \pm 2(\vec{b} \times \vec{c})$.

Solution: Given : $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \cdot \vec{c}=0$
Angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$
$=>\vec{a}$ is perpendicular to the plane containing \vec{b} and \vec{c} and the angle between \vec{b} and \vec{c} is (in other words $\vec{n}=\vec{a}$)
$\therefore \vec{b} \times \vec{c}=|\vec{b}||\vec{c}| \sin \theta \mathrm{n}$ where θ is the angle between \vec{b} and \vec{c} $=1 \times 1 \sin \frac{\pi}{6} \quad \vec{a}$ since \vec{b}, \vec{c} are unit vectors
$=\frac{1}{2} \quad \vec{a}=>2(\vec{b} \times \vec{c})$ or in general $\vec{a} \pm 2(\vec{b} \times \vec{c})$
10. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$

Show that $\vec{a}-\vec{d}$ and $\vec{b}-\vec{c}$ are parallel.
Solution

$$
\begin{aligned}
(\overrightarrow{a-d}) \times(\vec{b}-\vec{c}) & =(\vec{a} \times \vec{b})-(\vec{a} \times \vec{c})-(\vec{d} \times \vec{b})+(\vec{d} \times \vec{c}) \\
& =(\vec{a} \times \vec{b})-(\vec{a} \times \vec{c})+(\vec{b} \times \vec{d})-(\vec{c} \times \vec{d}) \\
& =0
\end{aligned}
$$

$$
\Rightarrow(\vec{a}-\vec{d}) \text { and }(\vec{b}-\vec{c}) \text { are parallel. }
$$

EXERCISE 2.4

1. Find the area of parallelogram $A B C D$ whose vertices are

$$
A(-5,2,5), B(-3,6,7), C(4,-1,5) \text { and } D(2,-5,3)
$$

Solution:

$$
\begin{aligned}
& \text { Let } O \text { be the point of reference and } \overrightarrow{\mathrm{OA}}=-5 \vec{i}+2 \vec{j}+5 \vec{k} \text {. } \\
& \overrightarrow{\mathrm{OB}}=-3 \overrightarrow{\mathrm{i}}+\overrightarrow{6 j}+\overrightarrow{\mathrm{k}} \quad \overrightarrow{\mathrm{OC}}=4 \mathrm{i}-\vec{j}+5 \mathrm{k} \text { and } \quad \overrightarrow{\mathrm{OD}}=2 \vec{i}-\overrightarrow{\mathrm{j}}+3 \vec{k} \\
& \text { Area of parallelogram } A B C D=|\overrightarrow{A B} \times \overrightarrow{A C}| \\
& \overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=2 \vec{i}+\overrightarrow{4 j}+2 \vec{k} \\
& \overrightarrow{A C}=\overrightarrow{O C}-\overrightarrow{O A}=9 \vec{i}-3 \vec{j} \\
& \overrightarrow{A B} \times \overrightarrow{A C}=\begin{array}{rll}
\vec{i} & \vec{j} & \vec{k} \\
2 & 4 & 2=6 \vec{i}+18 \vec{j}-42 \vec{k}
\end{array} \\
& \begin{array}{lll}
9 & -3 & 0
\end{array} \\
& =6(\vec{i}+\vec{j}-7 \vec{k}) \\
& |\overrightarrow{A B} \times \overrightarrow{A C}|=6 \sqrt{59} \text {. }
\end{aligned}
$$

2. Find the area of the parallelogram whose diagonals are represented by

$$
2 \vec{i}+3 \vec{j}+6 \vec{k} \text { and } 3 \vec{i}-6 \vec{j}+2 \vec{k}
$$

Solution:

$$
\text { Let } \overrightarrow{d_{1}}=\overrightarrow{2 i}+\vec{j} \overrightarrow{6 k} \quad \overrightarrow{d_{2}}=3 i-\overrightarrow{6 j}+\overrightarrow{2 k}
$$

$$
\begin{gathered}
\text { Area of parallelogram }=\frac{1}{2}\left|\overrightarrow{d_{1}} \times \overrightarrow{d_{2}}\right| \\
\begin{aligned}
& \overrightarrow{d_{1}} \times \overrightarrow{d_{2}}=\begin{array}{ll}
\vec{l} \quad & \vec{j} \quad 3 \\
3 & -6
\end{array} \\
&= 7(\overrightarrow{6 i}+2 \vec{j}-3 \vec{k})=7 \times \mid \overrightarrow{6 i t}+14 \vec{j}+21 \vec{k} \\
& \begin{aligned}
& \frac{1}{2}\left|d_{1} \times d_{2}\right|= \frac{7}{2} \sqrt{(6)^{2}}+ \\
&+(2)^{2}+(-3)^{2}
\end{aligned} \\
&=\frac{7}{2} \sqrt{49}=\frac{49}{2} \text { sq. units. }
\end{aligned}
\end{gathered}
$$

3. Find the area of the parallelogram determined by the sides

$$
\vec{i}+2 \vec{j}+\vec{k} \text { and }-3 i-2 \vec{j}+\vec{k}
$$

Solution:

$$
\begin{aligned}
& \text { Let } \vec{a}=\vec{i}+\overrightarrow{2}+3 \vec{k} \text { and } \vec{b}=\vec{i}-\vec{i} j+\vec{k} \\
& \qquad \begin{array}{rll}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 2 & 3 \\
-3 & -2 & 1
\end{array}\right|=\overrightarrow{8 i}-1 \vec{j}+\vec{j} \\
\text { Area }=\vec{a} \times \vec{b} & =\sqrt{(8)^{2}+(-10)^{2}+(-4)^{2}} \\
& =\sqrt{ } 180=6 \sqrt{5} \text { sq. units. }
\end{array}
\end{aligned}
$$

4. Find the area of the triangle whose vertices are ($3,-1,2$), (1, -1, -3) and

$$
(4,-3,1)
$$

Solution:
Let $A B C$ be the given triangle and let $\overrightarrow{O A}=\overrightarrow{3 i}-\vec{j}+\overrightarrow{2 k}$

$$
\begin{gathered}
\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=2 \vec{i}-5 \vec{k} \\
\overrightarrow{A C}=\overrightarrow{O C}-\overrightarrow{O A}=\vec{i}-2 \vec{j}-\vec{k} \\
\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
i & j & k \\
-2 & 0 & -5 \\
1 & -2 & -1
\end{array}\right|=-10 \vec{i}-7 \vec{j}+\vec{k} \\
\frac{1}{2}|A B \times A C|=\frac{1}{2}|-10 i-7 j+4 \vec{k}| \\
=\frac{1}{2} \sqrt{(-10)^{2}+(-7)^{2}+(4)^{2}} \\
=\frac{1}{2} \sqrt{165 s q . ~ u n i t s . ~}
\end{gathered}
$$

5. Prove by vector method that the parallelograms on the same base and between the same parallels are equal in area.

Solution:
Let $A B C D$ be the given parallelogram and
ABCD be the new parallelogram with same
Base $A B$ and between the same parallel lines $\overrightarrow{A B}$ and $\overrightarrow{D C}$ The vector area of $A B C D=\overrightarrow{A B} \times \overrightarrow{A D}$

$$
\begin{aligned}
& =\overrightarrow{A B} \times\left(\overrightarrow{A D} D^{\prime}+\overrightarrow{D D^{\prime}}\right) \\
& =\left(\overrightarrow{A B} \times A^{\prime} D\right)+\overrightarrow{A B}+0
\end{aligned}
$$

$$
\text { i. e. area of } A B C D=\text { area of } A B C D '
$$

6. Prove that twice the area of a parallelogram is equal to the area of another parallelogram formed by taking as its adjacent sides the diagonals of the former parallelogram.

Solution: Let $A B C D$ be the given parallelogram

$$
\begin{aligned}
& \overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C} \\
& \overrightarrow{B D}=\overrightarrow{B C}+\overrightarrow{C D}=\overrightarrow{B C}=\overrightarrow{B C}-\overrightarrow{A B}
\end{aligned}
$$

Area of the parallelogram with $A C$ and $B D$ as adjacent sides

$$
\begin{aligned}
& =\quad|\overrightarrow{A C} \times \overrightarrow{B D}| \\
& =|(\overrightarrow{A B}+\overrightarrow{B C}) \times(\overrightarrow{B C}-\overrightarrow{A B})| \\
& =|\overrightarrow{A B} \times \overrightarrow{B C}-\overrightarrow{A B} \times \overrightarrow{A B}+\overrightarrow{B C} \times \overrightarrow{B C}-\overrightarrow{B C} \times \overrightarrow{A B}| \\
& =|\overrightarrow{A B} \times \overrightarrow{B C}+\overrightarrow{A B} \times \overrightarrow{B C}|=2|\overrightarrow{A B} \times \overrightarrow{B C}| \\
& =2 \text { (area of the parallelogram } A B C D)
\end{aligned}
$$

7. Prove that $\sin (A-B)=\sin A \cos B-\cos A \sin B$.

Solution:

Take the points P and Q on the unit circle with centre at the origin O. Assume that $O P$ and $O Q$ make angles. A and B with x-axis respectively.

$$
\mathrm{POO}=\mathrm{PO} \triangle+\mathrm{QOX} \angle=\mathrm{A}-\mathrm{B}
$$

Clearly the co-ordinates of P and Q are $(\operatorname{sos} A . \sin A)$ and $(\cos B, \sin B)$. Take the unit vectors \vec{i} and \vec{j} along x and axes respectively.

$$
\begin{aligned}
& \overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OM}}+\overrightarrow{\mathrm{MP}} \\
&=\cos \mathrm{A} \overrightarrow{\mathrm{i}}+\sin \mathrm{A} \vec{j} \\
& \overrightarrow{\mathrm{OQ}}=\overrightarrow{\mathrm{OL}}+\overrightarrow{\mathrm{LQ}} \\
&=\cos \overrightarrow{\mathrm{Bi}}+\sin \overrightarrow{\mathrm{Bj}} \\
& \overrightarrow{\mathrm{OQ}} \times \overrightarrow{\mathrm{OP}}=|\overrightarrow{\mathrm{OQ}}| \overrightarrow{\mathrm{OP}} \mid \sin (\mathrm{A}-\mathrm{B}) \vec{k}=\sin (\mathrm{A}-\mathrm{B}) \vec{k} \\
& \mathrm{OQ} \times \mathrm{OP}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\cos B & \sin B & 0 \\
\cos A & \sin A & 0
\end{array}\right|=\vec{k}[\sin a \cos \mathrm{~B}-\cos \mathrm{A} \sin \mathrm{~B}]
\end{aligned}
$$

From (1) and (2)

$$
\sin (A-B)=\sin A \cos B-\cos A \sin B
$$

8. Forces $\overrightarrow{2 i}+7 \vec{j}, \overrightarrow{2 i}-5 \vec{j}+\overrightarrow{6 k}, \vec{i}+\overrightarrow{2 j}-\vec{k}$ act at a point P whose position vector is $\overrightarrow{4 i}-3 \vec{j}-2 \vec{k}$. find the moment of the resultant of three forces acting at P about the point Q whose position vector $\overrightarrow{6 i}+\vec{j}-3 \vec{k}$. Solution: The resultant force $\vec{F}=\overrightarrow{F 1}+\vec{F} 2+\overrightarrow{F 3}$

$$
\begin{aligned}
& \vec{F}=(2 \vec{i}+7 \vec{j})+(2 \vec{i}-\overrightarrow{5 j}+\overrightarrow{6 k})+(-i \vec{i}+2 \vec{j}-\vec{k}) \\
& =\vec{i}+4 \vec{j}+5 \vec{k} \\
& \text { Let } \overrightarrow{O P}=\overrightarrow{4 i}-\overrightarrow{j j}-2 \vec{k} \text { and } \overrightarrow{O Q}=\overrightarrow{6 i}+\vec{j}-3 \vec{k} \\
& \vec{r}=\overrightarrow{O P}-\overrightarrow{O Q} \text { [through (or at) - about] } \\
& =-2 \vec{i}-\vec{j}+\vec{k} \\
& \text { Moment } \vec{M}=\vec{r} \times \vec{F} \\
& =\left|\begin{array}{lll}
\vec{i} & \vec{j} & \vec{k} \\
-2 & -4 & 1 \\
3 & 4 & 5
\end{array}\right| \\
& \vec{M}=-24 i+13 j+4 k
\end{aligned}
$$

9. Show that torque about the point $A(3,-1,3)$ of a force $4 \vec{i}+2 \vec{j}+\vec{k}$ through the point $B(5,2,4)$ is $\vec{i}+2 \vec{j}-8 \vec{k}$.

Solution:

$$
\begin{aligned}
& \text { Let } \vec{F}=4 \vec{i}+2 \vec{j}+k \\
& \text { Let } \overrightarrow{O A}=\vec{i}-\vec{j}+\vec{k} \text { and } \overrightarrow{O B}=\overrightarrow{5 i}+2 \vec{j}+4 \vec{k} \\
& \qquad \vec{r}=\overrightarrow{O B}-\overrightarrow{O A}=2 \vec{i}+\overrightarrow{j j}+\vec{k} \\
& \text { Torque (moment) } \vec{M}=\vec{r} \times \vec{F} \\
& \qquad\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & 3 & 1 \\
4 & 2 & 1
\end{array}\right| \\
& \text { Torque }=\vec{i}+2 \vec{j}-\overrightarrow{8 k}
\end{aligned}
$$

10. Find the magnitude and direction cosines of the moment about the point
(1, $-2,3$) of a force $2 \vec{i}+3 \dot{j}+\overrightarrow{6 k}$ whose line of action passes through the
origin.
Solution:

$$
\begin{aligned}
& \vec{F}=2 \vec{i}+\overrightarrow{3 j}+\overrightarrow{6 k} \\
& \text { Let } \overrightarrow{O P}=\vec{O} \text { AND } \overrightarrow{O A}=\vec{i}-2 \vec{j}+3 \vec{k} \\
& R=\overrightarrow{O P}-\overrightarrow{O A}=-\vec{i}+2 \vec{j}-3 \vec{k} \\
& \vec{M}=\vec{r} \times \vec{F} \\
& \vec{i} \quad \vec{j} \quad \vec{k} \\
& =-1 \quad 2 \quad-3=2 \overrightarrow{1 i}-7 \vec{k} \\
& |\vec{r} \times \vec{F}|=\sqrt{(21)^{2}+(-7)^{2}}=7 \sqrt{ } 10
\end{aligned}
$$

d.c.s of the moment are $\left\{\frac{21}{\sqrt{ } 10}, 0, \frac{-7}{7 \sqrt{ } 10}\right\}$ i.e., $\left\{\frac{3}{\sqrt{10}}, 0, \frac{1}{\sqrt{ } 10}\right\}$

EXERCISE - 2.5

1. Show that vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar if and only if

$$
\begin{aligned}
\vec{a}+\vec{b}, \vec{b}+\vec{c} & \vec{c}+\vec{a} \text { are coplanar } \\
& \Leftrightarrow[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=0 \\
& \Leftrightarrow 2[A B C]=0 \\
& \Leftrightarrow \vec{a}, \vec{b}, \vec{c} \text { are coplanar }
\end{aligned}
$$

2. The volume of a parallelepiped whose edges are represented by $-12 \vec{i}+m \vec{k}, 3 \vec{j}-\vec{k}, \overrightarrow{2} i+\vec{j}-15 k$ is 546 . Find the value of m. Solution: Let $\vec{a}=-12 \vec{i}+\overrightarrow{m k}, \vec{b}=\vec{j} \overrightarrow{-k} \vec{k}, \overrightarrow{2}=\vec{i}+1 \vec{j} k$

$$
\text { Volume of the parallelepiped }=\left[\begin{array}{lll}
a & b & c
\end{array}\right]=546
$$

$$
\begin{array}{lccc}
& -12 & 0 & m \\
\text { i.e., } & 0 & 3 & -1 \\
& 2 & 1 & -15
\end{array}=546
$$

$$
-12(-45+1)+m 90-6)=546
$$

$$
=m=-3
$$

3. Prove that $|[a b c]|=a b c$ if and only a, \vec{b}, \vec{c} are mutually perpendicular.

Solution: $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular $\Leftrightarrow\left|\left[\begin{array}{ll}a & b\end{array}\right]\right|$ is the volume of a cuboids where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the co-terminus edges.

$$
\begin{aligned}
& \Leftrightarrow \left\lvert\,\left[\left.\begin{array}{lll}
a & c
\end{array}|=|\vec{a}|| \vec{b}| | \vec{c} \right\rvert\,\right.\right. \\
& \Leftrightarrow\left|\left[\begin{array}{ll}
a & b
\end{array}\right]\right|=a b c
\end{aligned}
$$

4. Show that the points $(1,3,1),(1,1,-1),(-1,1,1)(2,2,-1)$ are lying on the same plane. (Hint: It is enough to prove any three vectors formed by these four points are coplanar).

Solution: Let $\overrightarrow{O A}=\vec{i}+\vec{j}+\vec{k}, \overrightarrow{O B}=\vec{i}+\vec{j}-\vec{k}, \overrightarrow{O C}=\vec{i}+\vec{j}+\vec{k}$
and $\overrightarrow{O D}=2 \vec{i}+2 \vec{j}-\vec{k}$

$$
\begin{aligned}
& \overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=-2 j-2 \vec{k} \\
& \overrightarrow{A C}=\overrightarrow{O C}-\overrightarrow{O A}=\overrightarrow{2 i}-2 \vec{j} \\
& \overrightarrow{A D}=\overrightarrow{O D}-\overrightarrow{O A}=\vec{i}-\vec{j}-2 \vec{k} \\
&\overrightarrow{[A B}, \overrightarrow{A C}, \overrightarrow{A D}]=\begin{array}{ccc}
0 & -2 & -2 \\
-2 & -2 & 0 \\
1 & -1 & -2
\end{array}
\end{aligned}
$$

Hence the above points are lying on the same plane.
5. If $\vec{a}=2 \vec{i}+3 j-\vec{k}, \vec{b}=-2 i+3 \vec{k}, \vec{c}=\vec{j}-3 \vec{k}$

Verify that $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$
Solution:

$$
\begin{gathered}
\vec{b} \times \overrightarrow{\mathrm{c}}=\left|\begin{array}{ccc}
\vec{i} & \rightarrow & \vec{j} \\
-2 & 0 & 5 \\
0 & +1 & -3
\end{array}\right| \rightarrow 5 \mathrm{i}-6 \mathrm{j}-2 \mathrm{k} \\
\overrightarrow{\mathrm{a}} \times(\vec{b} \times \overrightarrow{\mathrm{c}})=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & 3 & -1 \\
-5 & -6 & -2
\end{array}\right| \\
=12 \vec{i}+9 \vec{j}+3 \vec{k}
\end{gathered}
$$

$$
(\vec{a} \cdot \vec{c})=(2(0)+3(1)+(-1)(-3))=6
$$

$$
\overrightarrow{\text { (a.c }} \overrightarrow{\text { c })} \vec{b}=-1 \overrightarrow{2 i}+30 \vec{k}
$$

$$
\overrightarrow{(a .} \cdot \vec{b})=\{(2)(-2)+(3)(0)+(-1)(5)\}=-9
$$

$$
\overrightarrow{(a .} \vec{b}) \vec{c}=-9 \vec{j}+2 \overrightarrow{7 k}
$$

$$
(\vec{a} . \vec{c}) \vec{b}-(\vec{a} . c) c=-12 \vec{i}+\overrightarrow{9 j}+\overrightarrow{3 k}
$$

$$
\text { Hence } \quad \vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}
$$

$$
\text { 6. Prove that } \vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})=0
$$

Solution:

$$
\begin{aligned}
\text { LHS }= & \vec{a} \times \overrightarrow{(b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b}) \\
& =(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}+(b \cdot \vec{a} \vec{c}-(b . c) a \\
& +(\vec{c} \cdot \vec{b}) \vec{a}-(\vec{c} \cdot \vec{a}) \vec{b} \\
= & 0 \text { R.H.S. }
\end{aligned}
$$

7. If $\vec{a}=2 \vec{i}+3 \vec{j}-5 \vec{k}, \quad \vec{b}=-\vec{i}+\vec{j}+2 \vec{k}$ and

$$
\vec{c}=4 \vec{i}-\overrightarrow{2 j}+3 \vec{k} \text {, show that } \overrightarrow{(a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times(\vec{b} \times \vec{c})
$$

$$
\begin{gathered}
\vec{b} \times \vec{c}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
- & 1 & 2 \\
4 & -2 & 3
\end{array}\right|=7 \mathrm{i}+1 \overrightarrow{\mathrm{j} j}-\overrightarrow{2 k} \\
\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & 3 & -5 \\
7 & 11 & -2
\end{array}\right|=49 \vec{i}-31 \vec{j}+\vec{k} \\
\overrightarrow{(\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \times \overrightarrow{\mathrm{c}} \neq \overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})
\end{gathered}
$$

8. prove that $\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$ iff a and c are collinear.

Where the vector triple product is non zero.
Solution: given $\vec{a} \times \vec{b}) \overrightarrow{\times c}=\overrightarrow{a x}(\vec{b} \times \vec{c})$
\Leftrightarrow
$(\vec{a} \cdot \vec{b}) \vec{c}-(\vec{b} \cdot \vec{c}) \vec{a}=\overrightarrow{(a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$
$\Leftrightarrow(\mathrm{a} . \mathrm{b}) \mathrm{c}=(\mathrm{b} . \mathrm{c}) \mathrm{a}$

$$
\Leftrightarrow \mathrm{a}=\left(\frac{a \cdot b}{c \cdot b}\right) \cdot \mathrm{c}
$$

$\Leftrightarrow a$ and c are collinear.
9. For any vector \vec{a}

$$
\text { Prove that } \vec{i} \times(\vec{a} \times \vec{i})+\vec{j} \times(\vec{a} \times \vec{j})+\vec{k} \times(\vec{a} \times \vec{k})=2 \vec{a}
$$

Solution:

$$
\begin{aligned}
& \text { Let } \vec{a}=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k} \\
& \vec{i} \times(\vec{a} \times \vec{b})=(\vec{i} \cdot \vec{i}) \vec{a}-(\vec{i} \cdot \vec{a}) \vec{i}=\vec{a}-a_{1} \vec{i} \\
& \vec{j} \times(\vec{a} \times \vec{j})=(j \cdot \vec{j}) \vec{a}-(\vec{j} \cdot \vec{a}) \vec{j}=\vec{a}-a_{2}{ }_{2} \\
& \vec{k} \times(\vec{a} \times \vec{k})=(\vec{k} \cdot \vec{k}) \vec{a}=(\vec{k} \cdot a) k=a-a_{3} k \\
& \text { L.H.S. }=\overrightarrow{3 a}-\left(a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}\right) \\
& \quad=2 \vec{a}=\text { R.H.S }
\end{aligned}
$$

10. Prove that $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d}) \overrightarrow{+(\vec{b}} \times \vec{c}) \cdot(\vec{a} \times \vec{b})+(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{d})=0$

Solution:

$$
\begin{aligned}
& \overrightarrow{(\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \cdot \overrightarrow{(\mathrm{c}} \times \overrightarrow{\mathrm{b}}) \quad=\left|\begin{array}{ll}
\vec{a} & \vec{c} \\
\vec{b} & \vec{c}
\end{array}\right|\left|\begin{array}{ll}
\vec{a} & \vec{d} \\
\vec{b} & d
\end{array}\right| \\
& =(\vec{a} \cdot \vec{\Xi})(\vec{b} \cdot \vec{d})-(\vec{b} \cdot \vec{c})(\vec{a} \cdot \vec{d}) \\
& (\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}) \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{d}}) \quad=\left|\begin{array}{ll}
\vec{b} & \vec{d} \\
\vec{c} & \vec{a}
\end{array}\right| \quad\left|\begin{array}{cc}
\vec{b} & \vec{d} \\
\vec{c} & \vec{a}
\end{array}\right| \\
& =(\vec{b} \cdot \vec{a})(\vec{c} \cdot \vec{d})-(\vec{c} \cdot \vec{a})(\vec{b} \cdot \vec{d}) \\
& (\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{d})=\left|\begin{array}{ll}
\vec{c} & \vec{b} \\
\vec{a} & \vec{b}
\end{array}\right| \quad\left|\begin{array}{ll}
\vec{c} & \vec{d} \\
\vec{a} & \vec{d}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
=(\vec{c} \cdot \vec{b}) & (\vec{a} \cdot \vec{d})-(\vec{a} \cdot \vec{b})(\vec{c} \cdot \vec{d}) \\
\text { L.H.S. }= & (a \cdot c)(b \cdot d)-(b \cdot c)(a \cdot d) \\
& +\overrightarrow{(b \cdot \vec{a})}(\vec{c} \cdot \vec{d})-(c \cdot a)(b \cdot d) \\
& (\vec{a} \cdot \vec{b})(\vec{a} \cdot \vec{d})-(\vec{a} \cdot \vec{b})(\vec{c} \cdot \vec{d}) \\
& =0=\text { R.H.S }
\end{aligned}
$$

11. Find ($a \times b)$. $(c \times \vec{d})$ if $\vec{a}=\vec{i}+\vec{j}+\vec{k}$

$$
\vec{b}=2 \vec{i}+\vec{k}, \vec{c}=2 \vec{i}+\vec{j}+\vec{k}, \vec{d}=\vec{i}+\vec{j}+2 \vec{k}
$$

Solution:

$$
\begin{aligned}
& \quad(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d})-(\vec{a} \cdot \vec{d})(\vec{b} \cdot \vec{c}) \\
& \vec{a} \cdot \vec{c}=2+1+1=4 \\
& \vec{b} \cdot \vec{d}=2+0+2=4 \\
& \vec{a} \cdot \vec{d}=1+1+2=4 \\
& \vec{b} \cdot \vec{c}=4+1=5 \\
& \text { L.H.S }=(4)(4)-(4)(5)=-4 \\
& \text { 12. Verify }(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=[\vec{a} \vec{b} \vec{c}] \vec{c}-[\vec{a} \vec{b} \vec{c}] \vec{a} \\
& \quad \text { for } \vec{a}, \vec{b}, \vec{c} \text { and } d \text { in problem } 11 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \left.\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left\lvert\, \begin{array}{lll}
\vec{i} & \vec{j} & \vec{k} \\
1 & 1 & 1 \\
2 & 0 & 1
\end{array}\right.\right] \overrightarrow{\mathrm{i}}+\overrightarrow{\mathrm{j}}-\overrightarrow{\mathrm{k}} \\
& \overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{d}}=\left|\begin{array}{ccc}
\overrightarrow{\vec{c}} & \vec{\jmath} & \vec{k} \\
2 & 1 & 1 \\
1 & 1 & 2
\end{array}\right|=\overrightarrow{\mathrm{i}}-3 \mathrm{j}+\mathrm{k} \\
& (\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 1 & 2 \\
1 & -3 & 1
\end{array}\right|=-\vec{i}-\vec{j} \vec{j}-\overrightarrow{4 k} \\
& \vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 1 \\
2 & 1 & 1
\end{array}\right|=1 \\
& \vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 1 \\
1 & 1 & 2
\end{array}\right|=-2 \\
& \vec{a} \vec{b} \vec{c} \vec{c}-\vec{a} \vec{b} \vec{c} \vec{d}=(-4 \vec{l}-2 \vec{j}-2 \vec{k})-(\vec{i}+\vec{j}+2 \vec{k}) \\
& =-5 \overrightarrow{3}-\vec{j}-4 \vec{k}
\end{aligned}
$$

From (1) and (2)

$$
\begin{aligned}
(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})= & {[\vec{a} \vec{b} \vec{c}] \vec{c}-[\vec{a} \vec{b} \vec{c}] \vec{d} } \\
& \text { EXERCISE-2.6 }
\end{aligned}
$$

1. Find the d.c.s of a vector whose direction rations are 2, 3, - 6 . Solution:

$$
\vec{r}=\sqrt{(2)^{2}+(3)^{2}+(-6)^{2}}=\sqrt{49}=7
$$

d.c.s are $\frac{2}{7}, \frac{3}{7}, \frac{-6}{7}$
2. (i) Can a vector have direction angles $30^{\circ}, 45^{\circ}, 60^{\circ}$.
(ii) Can a vector have direction angles $45^{\circ}, 60^{\circ}, 120^{\circ}$?

Solution:
(i) For direction angles $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$

$$
\begin{aligned}
& \cos ^{2} 30+\cos ^{2} 45+\cos ^{2} 60 \\
& =\frac{3}{4} \frac{1}{2} \frac{1}{4} \neq 1
\end{aligned}
$$

$\therefore 30^{\circ}, 45^{\circ}, 60^{\circ}$ are not possible to be direction angles.
(ii) $\cos ^{2} 45+\cos ^{2} 60+\cos ^{2} 120=\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=1, \quad \therefore$ yes
3. What are the d.c.s of the vector equally inclined to the axes?

Solution:

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 \text { But } \alpha \beta=\gamma
$$

$\therefore \cos ^{2} \gamma=\frac{1}{3} \Rightarrow \cos \alpha \frac{1}{\sqrt{3}}$
\therefore The d.c. 's are $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$
4. A vector \vec{r} has length $35 \sqrt{2}$ and direction ratios $(3,4,5)$ find the direction cosines and components of \vec{r}.

Solution:
The direction rations are $(3,4,5)$

$$
\left.\begin{array}{rl}
\sqrt{3^{2}+4^{2}+5^{2}} & =\sqrt{50}=5 \sqrt{2} \\
\text { d.c.'s } & \text { are }\left(\frac{3}{5 \sqrt{2}} \frac{4}{5 \sqrt{2}} \frac{5}{5 \sqrt{2}}\right) \\
\vec{r} & =35 \sqrt{2}\left(\frac{3 i}{3 i+4 j}+5 \vec{k}\right. \\
5 \sqrt{2}
\end{array}\right) .
$$

5. Find direction cosines of the line joining $(2,-3,1)$ and $(3,1,-2)$. Solution:

$$
\begin{aligned}
& \vec{r}=\vec{a}+1 \quad(\vec{b}-\vec{a}) \\
& \vec{r}=\vec{i}-\overrightarrow{3 j}+\vec{k}+1(-\vec{i}-4 \vec{j}+3 \vec{k})
\end{aligned}
$$

\therefore d.r.'s are $(-1,-4,3)=>\overrightarrow{=} \sqrt{(-1)^{2}+(-4)^{2}}+3^{2}=\sqrt{26}$ Direction cosines $\pm\left(\frac{-1}{\sqrt{26}}, \frac{-4}{\sqrt{26}}, \frac{3}{\sqrt{26}}\right)$
Note: Since any one point can take as the first point, we have directions cosines are \pm ()
6. Find the vector and Cartesian equation of the line through the point $(3,-4,-2)$ and parallel to the vector $\quad 9 \vec{i}+6 \vec{j}+2 \vec{k}$.

Solution:

Vector equation:

$$
\begin{aligned}
& \vec{r}=\vec{a}+i \vec{b} \text { where } \vec{a}=\overrightarrow{3 i}-\overrightarrow{4 j}-2 \vec{k}, \quad \vec{b}=9 \vec{i}+6 \vec{j}+2 \vec{k} \\
& \vec{r}=(\vec{i}-\overrightarrow{4 j}-2 \vec{k})+t(\vec{i}+\overrightarrow{6 j}+2 \vec{k})
\end{aligned}
$$

Cartesian form:

$$
\begin{aligned}
& \frac{x-x_{1}}{l}=\frac{y-y}{m}=\frac{z-z_{1}}{n} \\
& \text { Where }\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)=(3,-4,-2) \\
& (1, \mathrm{~m}, \mathrm{n})=(9,6,2)
\end{aligned}
$$

The equation of the line is

$$
\frac{x-3}{9}=\frac{y+4}{6}=\frac{z+2}{2}
$$

7. Find the vector and Cartesian equation of the line joining the points

$$
(1,-2,1) \text { and }(0,-2,3)
$$

Solution:

$$
\begin{aligned}
& \text { Vector equation: } \vec{r}=\vec{a}+t(\vec{b}-\vec{a}) \\
& \qquad \begin{array}{r}
\text { Where } \vec{a}=\vec{i}-\vec{j}+\vec{k} \\
\vec{b}=\overrightarrow{2 j}+\vec{k} \\
\vec{b}-\vec{a}=\vec{i}+2 \vec{k} \\
\vec{r}=\overrightarrow{(i}-2 \vec{j}+\vec{k})+r(\overrightarrow{-i}+2 \vec{k}) \\
\text { (or) } \vec{r}=(1-t) \vec{a}+\vec{b} \\
\text { i.e., } \vec{r}=(1-t) \overrightarrow{(i}-2 \vec{j}+\vec{k})+t(-2 \vec{j}+\overrightarrow{3 k})
\end{array}
\end{aligned}
$$

Cartesian form:

$$
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2} y}=\frac{z-z}{z_{2}-z_{1}}
$$

Here $\left(x_{1}, y_{1}, z_{1}\right)=(1,-2,1) ;\left(x_{2}, y_{2}, z_{2}\right)=(0,-2,3)$
The equations is $\frac{x-1}{-1}=\frac{y+2}{0}=\frac{z-1}{2}$
8. Find the angle between the following lines.
$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-4}{6} \quad$ and $x+1=\frac{y+2}{2}=\frac{z-4}{2}$
Solution:
The parallel vectors to the lines are $\vec{u}=\vec{i}+3 \vec{j}+6 \vec{k}$ and

$$
\vec{v}=\vec{i}+\overrightarrow{2 j}+\vec{k} \text { respectively }
$$

Let θ be the angle between the given lines

$$
\begin{aligned}
& \cos \theta=\frac{\vec{u}}{|\overrightarrow{u \mid}||v|} \\
& \vec{u} \cdot \vec{v}=20 ;|\vec{u}|=\overrightarrow{7,}|\vec{v}|=3 \\
& \cos \theta=\left(\frac{20}{21}\right) \\
& \theta=\cos ^{-1} \frac{20}{21}
\end{aligned}
$$

9. Find the angle between the lines

$$
\begin{aligned}
& \vec{r}=5 \vec{i}-\vec{j} j+\mu(\vec{i}+4 \vec{j}+2 \vec{k}) \\
& \vec{r}=2 \vec{i}+\vec{k}+\mu(\overrightarrow{3 i}+4 \vec{k})
\end{aligned}
$$

Solution:

The parallel vectors to the lines are

$$
\vec{u}=-\vec{i}+\overrightarrow{4 j}+\overrightarrow{2 k} \text { and } \vec{v}=\vec{i}+4 \vec{k} \text { respectively }
$$

Let θ be the angle between the given lines.

$$
\begin{gathered}
\cos \theta \xrightarrow[|u||\vec{v}|]{\vec{u} \rightarrow} \\
\vec{u} \cdot \vec{v}=5 ;|\vec{u}|=\sqrt{21} \cdot|\vec{v}|=5 \\
\cos \theta=\frac{5}{\sqrt{215}}=\frac{1}{\sqrt{21}} \\
\theta=\cos ^{-1} \frac{1}{\sqrt{21}}
\end{gathered}
$$

EXERCISE - 2.7

1. Find the shortest distance between the parallel lines

$$
\text { (i) } \begin{aligned}
\vec{r} & =(2 \vec{i}+\vec{j}-\vec{k})+t(\vec{i}-2 \vec{j}+3 \vec{k}) \\
\vec{r} & =(\vec{i}-2 \vec{j}+\vec{k})+s(\vec{i}-2 \vec{j}+3 \vec{k})
\end{aligned}
$$

(ii) $\frac{x-1}{-1}=\frac{y}{3}=\frac{z+3}{2}$ and $\frac{x-3}{-1}=\frac{y+1}{3}=\frac{z-1}{2}$

Solution:

(i) Let $\vec{u}=\vec{i}-\overrightarrow{2 j}+\overrightarrow{3 k} . \quad \overrightarrow{a_{1}}=\overrightarrow{2 i}-\vec{j}-\vec{k}$ and $\quad \overrightarrow{a_{2}}=\vec{i}-2 \vec{j}+\vec{k}$

Shortest distance between the lines $\quad \mathrm{d}=\frac{u \mathrm{x}\left(a_{2-} a_{1}\right)}{|u|}$

$$
\left.\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{a}}_{2}-\overrightarrow{\mathrm{a}}_{1}\right)=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & -2 & 3 \\
-1 & \overrightarrow{-1} & 2
\end{array}\right|=\overrightarrow{-i}-\overrightarrow{5 j}-3 \overrightarrow{\mathrm{k}}
$$

$$
\begin{aligned}
& \left|\vec{u} \times\left(\vec{a}_{2}-\vec{a}_{1}\right)\right|=\sqrt{(-1)^{2}(-5)^{2}+(-3)^{2}}=\sqrt{35} \\
& |\vec{u}|=\sqrt{14} \\
& \mathrm{a}=\frac{\mathrm{m}}{\mathrm{~W}}=\text {. } \\
& \text { (ii) Let } \vec{u}=-\vec{i}+3 \vec{j}+2 \vec{k} \text { and } \overrightarrow{a_{1}}=\vec{i}-3 \vec{k} \\
& |\vec{u}|=\sqrt{ } 14 \\
& \overrightarrow{a_{2}}=\overrightarrow{3 i}-\vec{j}+\vec{k} \\
& \overrightarrow{a_{2}}-\overrightarrow{a_{1}}=\vec{i}-\vec{j}-\overrightarrow{4 k} \\
& \overrightarrow{\mathrm{u}} \times\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-1 & 3 & 2 \\
2 & -1 & -4
\end{array}\right|=\overrightarrow{14 i}+\vec{j}-\vec{k} \\
& \left|\vec{u} \times\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)\right|=\sqrt{285} \\
& \therefore d=\frac{\sqrt{285}}{\sqrt{14}}=\sqrt{\frac{285}{14}}
\end{aligned}
$$

2. Show that the following two lines are skew lines:

$$
\begin{aligned}
& \vec{r}=(\vec{i}+5 \vec{j}+7 \vec{k})+t(\vec{i}-2 j+k) \text { and } \\
& \vec{r}=(\vec{i}+\vec{j}+\vec{k})+s(\vec{i}+\overrightarrow{6 j}+7 \vec{k})
\end{aligned}
$$

Solution: Compare the given lines with

$$
\begin{array}{ll}
\vec{r}=\vec{a}_{1}+t \vec{u} & \text { and } \vec{r}=\overrightarrow{a_{2}}+\overrightarrow{s v} \\
\vec{u}=\vec{i}-\overrightarrow{2 j}+\vec{k} & \vec{a}_{1}=3 \vec{i}+5 \vec{j}+7 \vec{k} \\
\vec{v}=7 i+6 j+7 k & \vec{a}_{2}=\vec{i}+\vec{j}+\vec{k}
\end{array}
$$

$$
\begin{gathered}
\vec{a}_{2}-\vec{a}_{1}=-2 \vec{i}-\overrightarrow{4 j}-\overrightarrow{6 k} \\
{\left[\left(\overrightarrow{a_{2}}-\vec{a}_{1}\right) \overrightarrow{\mathrm{u}} \vec{v}\right]=\left|\begin{array}{ccc}
-2 & -4 & -6 \\
1 & -2 & 1 \\
7 & 6 & 7
\end{array}\right|=2(-20)+4(0)-6(20)} \\
\quad=-80 \neq 0 \quad \therefore \text { The above lines are skew lines. }
\end{gathered}
$$

3. Show that the lines $\frac{x-1}{1}=\frac{y+1}{-1}=\frac{z}{3}$ and $\frac{x-2}{1}=\frac{y-1}{2}=\frac{-z-1}{1}$ intersect and ind their point of intersection.

Solution: Condition for intersecting is $d=0$
(i.e.,0 $\left.\left[\left(\mathrm{a}_{2}-\mathrm{a}_{1}\right) \mathrm{u} \mathrm{v}\right)\right]=0$ or $\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2}\end{array}\right|$

Here

$$
\begin{gathered}
\left(x_{1}, y_{1}, z_{1}\right)=(1,-1,0) \\
\left(x_{2}, y_{2}, z_{2}\right)=(2,1,-1) \\
\left(l_{1}, m_{1}, n_{1}\right)=(1,-1,3) \\
\left(l_{2}, m_{2}, n_{2}\right)=(1,2,-1) \\
{\left[\left(\vec{a}_{2}-\vec{a}_{1}\right) \vec{u} \vec{v}\right]=\left|\begin{array}{ccc}
1 & 2 & -1 \\
1 & -1 & 3 \\
1 & 2 & -1
\end{array}\right|=5+8-3=0}
\end{gathered}
$$

Further \vec{u} and \vec{v} are not parallel.
\therefore The lines intersect For point of intersection, take $\frac{x-1}{1}=\frac{y+1}{-1}=\frac{z}{3}$
$=\square$

Any point on this line is of the form $(m+1,-m-1.3 m) \cdot \frac{x-2}{1}=\frac{y-1}{2}=$ $\frac{z+1}{-1}=\mu$.

Any point on this line is of the form $(\mu+2,2 \mu+1,-\mu-1)$

$$
(m+1,-m-1,3 m)=(\mu+2,2 \mu+1,-\mu-1)
$$

$m+1=\mu+2$
$m-\mu=1$
$-m-1=2 \mu=2$
$m-2 \mu=2$
Solving (1) and (2), $\mu=-1, m=0$
\therefore To get the point of intersection either put $\mu=-1$ or $m=0$
\therefore The point of intersection is ($1,-1,0$)
4. Find the shortest distance between the skew lines

$$
\begin{aligned}
& \frac{x-6}{3}=\frac{y-7}{-1}=\frac{z-4}{1} \\
& \quad \text { and } \frac{x}{-3}=\frac{y+9}{2}=\frac{z-2}{4}
\end{aligned}
$$

Solution:
Shortest distance $\overrightarrow{\mathrm{d}}=\frac{\mid \overrightarrow{a_{2}-}-\overrightarrow{a_{1}} \rightarrow \vec{u} \vec{v}}{|\vec{u} \times \vec{v}|}$

$$
\begin{aligned}
\vec{u} & =3 \vec{i}-\vec{j}+\vec{k} \quad a_{1}=\vec{j}+7 \vec{j}+4 \vec{k} \\
\vec{v} & =3 \vec{i}+2 \vec{j}+\overrightarrow{4 k} \quad a_{2}=\overrightarrow{9 j}+2 \vec{k}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{a_{2}}-\overrightarrow{a_{1}}=-\vec{i}-16 \vec{j}-2 \vec{k} \\
& \vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
3 & -1 & 1 \\
-3 & 2 & 4
\end{array}\right|=-\vec{i}-1 \vec{j}+3 \vec{k} \\
& |\vec{u} \times \vec{v}|=\sqrt{270} \\
& {\left[\left(\vec{a}_{2}-\vec{a}_{1}\right) \vec{u} \vec{v}\right]=\left|\begin{array}{ccc}
-6 & -16 & -2 \\
3 & -1 & 1 \\
-3 & 2 & 4
\end{array}\right|} \\
& \text { or }\left(\vec{a}_{1}-\vec{a}_{1}\right)(\vec{u} \times \vec{v})=36+240-6=270 \\
& \therefore \quad d \xrightarrow{=} \frac{270}{\sqrt{270}}=\sqrt{270} \\
& =3 \sqrt{30}
\end{aligned}
$$

5. Show that ($2,-1,3$), ($1,-1,0$) and ($3,-1,6$) are collinear. Solution:

The equation passing through $(2,-1,3)$ and $(1,-1,0)$ is

$$
\frac{x-2}{-1}=\frac{y+1}{0}=\frac{z-3}{-3} \mathrm{~m} \text { (say) }
$$

Any point on this line is of the form $(-m+2,-1,-3 m+3)$
The point ($3,-1,60$ is obtained by putting $m=-1$)
\therefore The third point lies on the same line. Hence three points are collinear.
6. If the points $(m, 0,3),(1,3,-1)$ and $9-5,-3,7)$ are collinear then find m.

Solution:
Since the three points are collinear, the position vector of three points are coplanar.

$$
\begin{aligned}
& \text { Let } \vec{a}=\overrightarrow{m i}+3 \vec{k}, \quad \vec{b}=\vec{i}+\overrightarrow{3 j}-\vec{k} \quad \text { and } \vec{c}=-\overrightarrow{5 i} \quad-\vec{j} j+7 \vec{k} \\
& \overrightarrow{\left[\begin{array}{lll}
a & \vec{b} & \vec{c}]
\end{array}\right.} \begin{array}{l}
=\left|\begin{array}{ccc}
m & 0 & 3 \\
1 & 3 & -1 \\
-5 & -3 & 7
\end{array}\right|=0 \\
18 m+36=0 \Rightarrow m=-2 .
\end{array}
\end{aligned}
$$

EXERCISE - 2.8

1. Find the vector and Cartesian equations of a plane which is at a distance of 18 units from the origin and which is normal to the vector $2 \vec{i}+7 \vec{j}+8 \vec{k}$
Solution: Here $p=18$ and $\vec{n}=\vec{i}+7 \vec{j}+3 \vec{k}$
$\therefore \mathrm{n}=\frac{n}{|n|}=\frac{2 i \rightarrow 7 j+8 k}{\sqrt{117} \rightarrow}$
Hence the required vector equation of the plane is $\vec{r} \cdot \vec{n}=p$

$$
\vec{r} \quad \frac{2 i+7 \vec{j}+8 k}{\sqrt{117}}=18
$$

Cartesian form:

$$
\begin{aligned}
& \vec{r} \cdot(2 \vec{i}+7 \vec{j}+9 \vec{k})=18 \sqrt{117} \\
& \quad \text { r. }(2 i+7 j+8 k)=54 \sqrt{13} \\
& (\overrightarrow{x i}+\overrightarrow{y j}+z \vec{k}) \cdot(2 \vec{i}+7 \vec{j}+\overrightarrow{8 k})=54 \sqrt{13} \text { i.e., } 2 x+7 y+8 z=54 \sqrt{13}
\end{aligned}
$$

2. Find the unit normal vectors to the plane $2 x-y+2 z=5$.

Solution:

$$
2 x-y+2 z=5 \Leftrightarrow(\overrightarrow{x i}+y \vec{j}+z \vec{k}) \cdot(2 \vec{i}-\vec{j}+\overrightarrow{2 k})=5
$$

Here $\vec{n}=\overrightarrow{2 i}-\vec{j}+2 \vec{k}$
Unit normal vectors $\pm \mathrm{n}= \pm \frac{\vec{n}}{|\vec{n}|}= \pm \frac{2 \vec{i}-\vec{j}+2 \vec{k}}{3}$
3. Find the length of the perpendicular from the origin to the plane

$$
\vec{r} \cdot(3 \vec{i}+4 \vec{j}+12 \vec{k})=26
$$

Solution: Write the given equation in the form of $\vec{r} . \quad \vec{n}=p$

$$
\begin{aligned}
& \text { Given } \vec{r} \cdot(3 \vec{i}+4 \vec{j}+12 \vec{k})=26 \Rightarrow \vec{r} \cdot\left(\frac{3 \vec{i}+4 \vec{j}+12 \vec{k}}{\sqrt{169}}\right)=\frac{26}{\sqrt{169}} \\
& =>\vec{r} . \cdot\left(\frac{3 \vec{i}+4 \vec{j}+12 \vec{k}}{13}\right)=2
\end{aligned}
$$

\therefore Length of the perpendicular from origin $p=2$
4. The foot of the perpendicular draw from the origin to a plane is $(8,-4,3)$. Find the equation of the plane.

Solution:

The required plane passing through the point a $(8,-4,3)$ and is perpendicular

to OA

$$
\therefore \vec{a}=8 \vec{i}-\vec{j}+3 \vec{k} \text { and } \vec{n}=\overrightarrow{O A}=8 \vec{i}-\overrightarrow{4 j}+3 \vec{k}
$$

\therefore the required equation of the plane is $\vec{r} \cdot \vec{n}=\vec{a} \cdot \vec{n}$
r. $(8 \vec{i}-4 \vec{j}+3 \vec{k})=(\overrightarrow{8} i-4 \vec{j}+3 \vec{k}) . \quad(8 \vec{i}-4 \vec{j}+3 k)$

The vector form is \vec{r}. $(\overrightarrow{8} i-4 \vec{j}+3 \vec{k})=89$
Cartesian form: $(\vec{x} i+\vec{y} j+\vec{z}) \cdot(\overrightarrow{8 i}-4 \vec{j}+3 \vec{k})=89$

$$
\Rightarrow 8 x-4 y+3 z=89
$$

5. Find the equation of the plane through the point whose p.v. is

$$
\overrightarrow{2 i}-\vec{j}+\vec{k} \text { and perpendicular to the vector } \overrightarrow{4 i}+\overrightarrow{2 j}-3 \vec{k} \text {. }
$$

Solution:

The required equation of the plane through $2 \vec{i}-\vec{j}+\vec{k}$ and perpendicular to $\overrightarrow{4} i+\overrightarrow{2} j-3 \vec{k}$ is

$$
\text { Here } \vec{a}=2 \vec{i}-\vec{j}+\vec{k} \text { and } \vec{n}=4 \vec{i}+\overrightarrow{2} j-3 \vec{k}
$$

$$
\begin{aligned}
& \vec{r} .(4 \vec{i}+2 \vec{j}-3 \vec{k})=(\overrightarrow{2 i}-\vec{j}+\vec{k}) \quad(4 \vec{i}+2 \vec{j}-3 \vec{k}) \\
& \text { i.e., } r(4 \vec{i}+2 \vec{j}-3 \vec{k})=3
\end{aligned}
$$

The Cartesian form is $(x \vec{i}+\vec{y} j+2 \vec{k})(4 \vec{i}+1 \overrightarrow{2} j-3 \vec{k})=3$

EXERCISE - 2.9

1. Find the equation of the plane which contains the two lines
$\frac{x+1}{2}=\frac{y-2}{-3}=\frac{z-3}{4}$ and $\frac{x-4}{3}=\frac{y-1}{2}=z-8$
Solution:
The required equation of the plane through $\mathrm{A}(-1,2,3)$ and parallel to

$$
\begin{aligned}
& \vec{u}=\overrightarrow{i j}-3 \vec{j}+4 \vec{k} \text { and } \vec{v}=3 \vec{i}+2 \vec{j}+1 \vec{k} \\
& \text { The required equation is } \vec{r}=\vec{a}+s \vec{u}+t \vec{v} \\
& \vec{r}=(\vec{i}+2 \vec{j}+3 \vec{k})+s(2 \vec{i}-3 \vec{j}+4 \vec{k})+t(\overrightarrow{3 i}+2 \vec{j}+\vec{k})
\end{aligned}
$$

Cartesian form:

$$
\left(x_{1}, y_{1}, z_{1}\right) \text { is }(-1,2,3) ;\left(l_{1}, m_{1}, n_{1}\right) \text { is }(2,-3,4)\left(l_{2}, m_{2}, n_{2}\right) \text { is }(3,2,1)
$$

The equation of the plane is $\left|\begin{array}{ccc}x-x_{1} & y-y_{1} & z-z_{1} \\ l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2}\end{array}\right|=0$

$$
\begin{aligned}
& \text { i.e., } \quad\left|\begin{array}{ccc}
x+1 & y-2 & z-3 \\
2 & -3 & 4 \\
3 & 2 & 1
\end{array}\right|=0 \\
& \Rightarrow 11 x-10 y-13 z+70=0
\end{aligned}
$$

This is the required equation in Cartesian form.
Note: The above plane can be determined by passing through

$$
(-1,2,3),(4,1,8) \text { and parallel to } 2 \vec{i}-3 \vec{j}+4 \vec{k} \text { or } \vec{i}+2 \vec{j}+\vec{k}
$$

2. Can you draw a plane through the given two lines? Justify your answer.

$$
\begin{aligned}
& \vec{r}=(\vec{i}+2 \vec{j}-4 \vec{k})+t(2 \vec{i}+3 \vec{j}+6 \vec{k}) \text { and } \\
& \vec{r}=(3 \vec{i}+3 \vec{j}+5 \vec{k})+s(2 \vec{i}+3 \vec{j}+8 \vec{k})
\end{aligned}
$$

Solution:
Comparing with $\vec{r}=\overrightarrow{a_{1}}+t \vec{u} ; \vec{r}=\overrightarrow{a_{2}}+s \vec{v}$ we get

$$
\begin{aligned}
& \overrightarrow{a_{1}}=\vec{i}+2 \vec{j}-4 \vec{k} \\
& \text { and } \overrightarrow{a_{2}}=3 \vec{i}+3 \vec{j}-5 \vec{k} \\
& \vec{u}=2 \vec{i}+\overrightarrow{3 j}+\overrightarrow{6 k} \\
& \text { and } \vec{v}=-2 \vec{i}+3 \vec{j}+\overrightarrow{8 k} \\
& {\left[\overrightarrow{\left(a_{2}\right.}-\overrightarrow{\left.a_{1}\right)} \vec{u} \vec{v}\right]=\left|\begin{array}{ccc}
2 & 1 & -1 \\
2 & 3 & 6 \\
-2 & 3 & 8
\end{array}\right|=-28 \neq 0}
\end{aligned}
$$

These lines are not intersecting and u, v are not parallel.
\therefore they are skew lines. We can't draw a plane through the given two lines.

3. Find the point of intersection of the line

$$
\vec{r}=(\vec{j}-\vec{k})+s(2 \vec{i}-\vec{j}+\vec{k}) \text { and } x z-p \text {-lane }
$$

Solution:

Cartesian equation of the given line is $\frac{X-0}{2}=\frac{Y-1}{-1}=\frac{Z+1}{1}$
Equation of $x z$ plane is $y=0$

$$
\therefore \frac{x}{2}=\frac{-1}{-1}=\frac{z+1}{1} \Rightarrow \mathrm{x}=2, \mathrm{z}=0
$$

\therefore The required point is $(2,0,0)$
4. Find the meeting point of the line

$$
\begin{aligned}
& \vec{r}=(2 \vec{i}+\vec{j}-3 \vec{k})+t(2 \vec{i}-\vec{j}-\vec{k}) \text { and the plane } \\
& x-2 y+3 z+7=0
\end{aligned}
$$

Solution:

Cartesian form of the line is $\frac{x-2}{2}=\frac{y-2}{-1}=\frac{z+3}{-1}=m$ (say)
Any point on this line is of the form $(2 m+2,-m,-m-3)$
This point lie on the plane $x-2 y+3 y+7=0$
$(2 m+20-2(-m+1)+3(-m-3)+7=0$

$$
\Rightarrow m=2
$$

\therefore The point is $(6,-4,-5)$
5. Find the distance from the origin to the plane

$$
\overrightarrow{r .}(\overrightarrow{2 i}-\vec{j}+\overrightarrow{5 k})=7
$$

Solution:

Cartesian form of the plane is $2 x-y+5 z-7=0$
Distance from the origin to the plane $a x+b y+c z+d=0$ is

$$
\left\lvert\, \frac{d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right.
$$

$$
=\frac{-7}{\sqrt{30}}=\frac{7}{\sqrt{30}}
$$

6 . Find the distance between the parallel planes

Solution:

Distance between two parallel planes

$$
\begin{aligned}
& a x+b y+c z+d_{1}=0 \\
& a x+b y+c z+d_{2}=0 \\
& \vec{d}=\frac{\mid \overrightarrow{d_{1}}-\overrightarrow{d_{2} \mid}}{\sqrt{a^{2}}+b^{2}+c^{2}}
\end{aligned}
$$

The given planes are $x-y+3 z+5=0$ and $x-y+3 z+\frac{7}{2}=0$

$$
\overrightarrow{\mathrm{d}}=\frac{\left\lvert\, 5-\frac{7}{2}\right.}{\sqrt{(1)^{2}}+(-1)^{2}+(3)^{2}}=\frac{\frac{3}{2}}{\sqrt{11}}=\frac{3}{2 \sqrt{11}}
$$

EXERCISE - 2.10

1. Find the angle between the following planes:
(i) $2 x+y-z=9$ and $x+2 y+z=7$
(ii) $2 x-3 y+4 z=1$ and $-x+y=4$
(iii) $\vec{r} \cdot(\overrightarrow{3 i}+\vec{j}+\vec{k})=7$ and $\vec{r} \cdot(\vec{i}+\overrightarrow{4} j-\overrightarrow{2 k})=10$

Solution:

(i) The normals to the given planes are $n_{1}=2 \vec{i}+\vec{j}-\vec{k}$

$$
\text { and } n_{2}=\vec{i}+2 \vec{j}+\vec{k}
$$

Let θ be the angle between the planes then

$$
\cos \theta=\frac{\overrightarrow{n_{1}} \overrightarrow{n_{2}}}{\overrightarrow{n_{1}} \mid \overrightarrow{n_{2} \mid}}=\frac{(2 \overrightarrow{i+j}-\vec{k})}{\sqrt{6}} \frac{(\vec{i}+\vec{j}-\vec{k})}{\sqrt{6}}
$$

$$
=\frac{6}{\sqrt{6} \sqrt{6}}=\frac{1}{2}
$$

$$
=>\theta \frac{\pi}{3}
$$

(ii) The normals to the given planes are $n_{1}=2 \vec{i}-3 \vec{j}+\vec{k}$ and $\mathrm{n}_{2}=\mathrm{i}+\mathrm{j}$

Let θ be the angle between the planes, then

$$
\begin{aligned}
& \cos \theta= \left.\frac{\overrightarrow{n_{1}}}{\left|\overrightarrow{n_{1}}\right|} \right\rvert\, \overrightarrow{n_{2}} \\
&=\frac{-5}{\sqrt{58}}=>\theta \quad \cos ^{-1} \frac{(2 \vec{i}+3 \vec{j}+\vec{k})}{\sqrt{59}} \cdot \frac{(\overrightarrow{-i+j})}{\sqrt{2}} \\
&
\end{aligned}
$$

(iii) The normals to the given planes are $\overrightarrow{n_{1}}=3 \vec{i}+\vec{j}-\vec{k}$ and

$$
n_{2}=\vec{i}+4 \vec{j}-2 \vec{k}
$$

Let θ be the angle between the planes then

$$
\begin{aligned}
\cos \theta & =\frac{\overrightarrow{n_{1}}}{\overrightarrow{n_{1}} \mid} \frac{\overrightarrow{n_{2}}}{\mid \overrightarrow{n_{2} \mid}}=\frac{9}{\sqrt{11 \sqrt{21}}}=\frac{9}{\sqrt{231}} \\
=>\theta & =\cos ^{-1}\left(\frac{9}{\sqrt{231}}\right)
\end{aligned}
$$

2. Show that the following planes are at right angles.

$$
\vec{r} \cdot(\vec{i} \vec{i}-\vec{j}+\vec{k})=15 \text { and } \vec{r} .(\vec{i}-\vec{j}-3 \vec{k})=3
$$

Solution:

The normals to the given plane are

$$
\overrightarrow{n_{1}}=2 \vec{i}-\vec{j}+\vec{k} \text { and } \overrightarrow{n_{2}}=\vec{i}-\vec{j}-3 \vec{k}
$$

=> The normals are perpendicular.
=> The planes are at right angles.
3. The planes $\vec{r} \cdot(\vec{i}+\mu \vec{j}-3 k)=10$ and r. $(\mu \vec{i}+3 \vec{j}+k)=5$ are perpendicular. Find μ.

Solution:

The normals to the given planes are

$$
\begin{aligned}
& \overrightarrow{n_{1}}=\overrightarrow{21}+\vec{\mu} \mathrm{j}-\overrightarrow{3 \mathrm{k}} \text { and } \overrightarrow{\mathrm{n}_{2}}=\vec{\mu} \mathrm{i}+\overrightarrow{3} \mathrm{j}+\overrightarrow{\mathrm{k}} \\
& \text { Since the planes are perpendicular } \overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}=0 \\
& \quad=>\vec{n}_{1} \cdot \overrightarrow{n_{2}}=2 \mu+3 \mu-3=0 \\
& \quad=5 \mu=9=>\mu=\frac{3}{5}
\end{aligned}
$$

4. Find the angle between the line $\frac{x-2}{3}=\frac{y+1}{-1}=\frac{z-3}{-2}$ and the plane

$$
3 x+4 y+z+5=0
$$

Solution:

The normal to the given plane is $\vec{n}=3 \vec{i}+\overrightarrow{4 j}+\vec{k}$
The parallel vector to the line $\vec{b}=\overrightarrow{3 i}-\vec{j}-2 \vec{k}$
Let θ be the angle between the line and plane. Then

$$
\begin{aligned}
& \sin \theta=\overrightarrow{\vec{b}} \cdot \vec{n} \\
& \overrightarrow{|\vec{b}| \overrightarrow{n \mid}} \\
& \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{n}}=(3)(3)+(-1)(4)+(-2)(1) \\
& |\overrightarrow{\mathrm{b}}|=2|\overrightarrow{\mathrm{n}}|=\sqrt{91} \\
& \sin \theta=\frac{3}{2 \sqrt{91}}=>\theta \sin ^{-1}\left(\frac{3}{2 \sqrt{91}}\right)
\end{aligned}
$$

5. Find the angle between the line $\vec{r} \vec{i}+\vec{j}+\overrightarrow{3 k}+\mu(\vec{i}+\vec{j}-\vec{k})$ and the plane $\vec{r} .(\vec{i}+\vec{j})=$.

Solution:

The normal to the given plane to $\vec{n}=\vec{i}+\vec{j}$ and the parallel vector the line $\vec{b}=\overrightarrow{2 i}+\vec{j}-\vec{k}$.

Let θ be the angle between the line and the plane

$$
\begin{aligned}
& \sin \theta \xrightarrow[\mid \vec{b} \cdot]{|b| \overrightarrow{|n|}} \rightarrow \\
& \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{n}}=3, ;|\overrightarrow{\mathrm{b}}|=\sqrt{6} ;|\overrightarrow{\mathrm{n}}|=\sqrt{2} \\
& \sin \theta \frac{6}{\sqrt{6} \sqrt{2}}=\frac{\sqrt{3}}{2} \\
& \Rightarrow \theta=\frac{\pi}{3}
\end{aligned}
$$

EXERCISE - 2.11

1. Find the vector equation of a sphere with centre having position vector
$2 \vec{i}-\vec{j}+\overrightarrow{3 k}$ and radius 4 units. Also find the equation in Cartesian form.

Solution:
Vector equation of a sphere $|\vec{r}-\vec{c}|=a$
Here $c=2 \vec{i}-\vec{j}+3 \vec{k}$ and $a=4$
\therefore Vector equation is $\quad \vec{r}-(\vec{i}-\vec{j}+3 \vec{k}) \mid=4$

Cartesian form:

$$
\begin{aligned}
& \text { Let } \vec{r}=x \vec{i}+y \vec{j}+z \vec{k} \\
& \vec{r}-\vec{c}=(x-2) \vec{i}+(y+1) \vec{j}+(z-3) \vec{k} \\
& \overrightarrow{\mid r}-\left.\vec{c}\right|^{2}=4^{2}=>(x-2)^{2}+(y+1)^{2}+(z-3)^{2}=16 \\
& \Rightarrow x^{2}+y^{2}+z^{2}-4 x+2 y-6 z-2=0
\end{aligned}
$$

2. Find the vector and Cartesian equation of the sphere on the join of the points A and B having position vectors $2 \vec{i}+6 \vec{j}-7 \vec{k}$ and
$-\overrightarrow{2 l}+\overrightarrow{4} \vec{j}-3 \vec{k}$ respectively as a diameter. Find also the centre and radius of the sphere.

Solution:

Vector equation of a sphere joining the points A and B whose p.v.s. and a and b is $(\vec{r}-\vec{a}) \cdot(\vec{r}-\vec{b})=0$

Here $\vec{a}=2 \vec{i}+6 \vec{j}-7 \vec{k}$ and $\vec{b}=2 \vec{i}+\overrightarrow{4}-3 \vec{k}$
$[\vec{r}-(2 \vec{i}+6 \vec{j}-7 \vec{k})].[\vec{r}-(-2 \vec{i}+\overrightarrow{4} j-3 \vec{k})]=0$
Cartesian form:

$$
\begin{aligned}
& \text { Let } \vec{r}=x \vec{i}+\vec{y}+z \vec{k} \\
& \vec{r}-\vec{a}=(x-2) \vec{i}+(y-6) \vec{j}+(z+7) \vec{k} \\
& \vec{r}-\vec{b}=(x+2) \vec{i}+(y-4) \vec{j}+(z+3) \vec{k} \\
& \overrightarrow{(r-a)} \cdot(\vec{r}-\vec{b})=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow(x-2)(x+2)+(y-6)(y-4)+(z+7)(z+3)=0 \\
& \Rightarrow x^{2}+y^{2}+z^{2}-10 y+10 z+41=0
\end{aligned}
$$

Compare with $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$
$u=0 . v=-5, w=5, d=41$
Centre is $(-u,-v,-w)=(0,5,-5)$
radius is $=\sqrt{u^{2}+v^{2}+w^{2}-d}=\sqrt{25+25-41}=3$
3. Obtain the vector and Cartesian equation of the sphere whose centre is $91,-1,1$) and radius is the same as that of the sphere

$$
|\vec{r}-(\vec{i}+\vec{j}+\overrightarrow{2 k})|=5 .
$$

Solution:

$$
\text { Vector equation of sphere }|\vec{r}-\vec{c}|=a
$$

$$
\text { Here } \vec{c}=\vec{i}-\vec{j}+\vec{k}, a=5
$$

\therefore Vector equation is $|r-(\vec{i}-\vec{j}+\vec{k})| \overrightarrow{=} 5$
Cartesian form:

$$
\begin{aligned}
& \vec{r}=x \vec{i}+y \vec{j}+z \vec{k} \text { and centre }(1,-1,1), a=5 \\
& (x-1)^{2}+(y+1)^{2}+(z-1)^{2}=5^{2} \\
& =>x^{2}+y^{2}+z^{2}-2 x+2 y-2 z-22=0
\end{aligned}
$$

4. If $A(-1,4,-3)$ is one end of a diameter $A B$ of the sphere $x^{2}+y^{2}+z^{2}-3 x-2 y+2 z-15=0$, the find the coordinates of B.

Solution:

Comparing with $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}+2 \mathrm{ux}+2 \mathrm{vy}+2 \mathrm{wz}+\mathrm{d}=0$
$u=-\frac{3}{2}, \quad v=-1, w=1$
Centre of the sphere is $\left(\frac{-3}{2}, 1-1\right)$
One end of the diameter is $(-1,4,-3)$
Let $B\left(x_{2}, y_{2}, z_{2}\right)$ be the other end of the diameter.
The mid point of $A B$ is th centre $\left(\frac{-3}{2}, 1-1\right)$

$$
\begin{aligned}
& \text { i.e., }\left[\frac{-1+x_{2}}{2}, \frac{4+y_{2}}{2}, \frac{-3+z_{2}}{2}\right)=\left(\frac{-3}{2}, 1-1\right) \\
& \Rightarrow x_{2}=4, y_{2}=-2, z_{2}=1
\end{aligned}
$$

\therefore The co-ordinates of B are $(4,-2,1)$
5. Find the centre and radius of each of the following spheres.
(i) $\mid \vec{r}-(2 \vec{i}-\vec{j}+4 \vec{k} \mid=5$
(ii) $|\vec{r}+(3 \vec{i}-\vec{j}+4 \vec{k})|=4$
(iii) $x^{2}+y^{2}+z^{2}+4 x-8 y+2 z=5$
(iv) $r^{2}-\vec{r} \cdot(4 \vec{i}+2 \vec{j}-6 \vec{k})-11=0$

Solution:

(i) Vector equation of sphere is $|\vec{r}-(\overrightarrow{2 i} \vec{i}-\vec{j}+4 \vec{k})|=5$
\therefore Centre is $(2,-1,4)$ and radius is 5 .
(ii) Vector equation of sphere $|2 \vec{r}+(3 \vec{i}-\vec{j}+4 \vec{k})|=4$

$$
\begin{aligned}
& \Rightarrow|2 \vec{r}-(3 \vec{i}+\vec{j}-4 \vec{k})|=4 \\
& \Rightarrow\left|\vec{r}-\frac{1}{2}(-3 \vec{i}+\vec{j}-4 \vec{k})\right|=2 \\
& \Rightarrow \text { Centre is }\left(\frac{-3}{2}, \frac{1}{2}-2\right) \text { and radius is } 2
\end{aligned}
$$

(iii) Cartesian equation of sphere $x^{2}+y^{2}+z^{2}+4 x-8 y+2 z=5$

$$
\begin{aligned}
& u=2, v=-4, w=1, d=-5 \\
& \text { centre }(-u,-v,-w)=(-2,4,-1)
\end{aligned}
$$

$$
\text { radius }=\sqrt{u^{2}+v^{2}+w^{2}}-\mathrm{d}=\sqrt{4+16+1+5}=\sqrt{26}
$$

(iv) Equation of sphere $r^{2}-\vec{r} \cdot(\overrightarrow{4 i}+2 \vec{j}-6 \vec{k})-11=0$

Let $\vec{r}=x \vec{i}+y \vec{j}+\overrightarrow{z k}$
$(x \vec{i}+\overrightarrow{y j}+z \vec{k})^{2}-(\overrightarrow{x i}+\overrightarrow{y j}+\overrightarrow{z k}) . \quad(\overrightarrow{4 i}+2 \vec{j}-6 \vec{k})-11=0$
$=>x^{2}+y^{2}=z^{2}-(4 x+2 y-6 z)-11=0$
$=>x^{2}+y^{2}=z^{2}-4 x-2 y+6 z+11=0$
Here $u=-2, v=-1, w=3, d=-11$
Centre is $(-u,-v,-w)=(2,1,-3)$
Radius $=\sqrt{u^{2}+v^{2}+w^{2}}-\mathrm{d}=5$
6. Show that diameter of a sphere subtends a right angle at a point on the surface.

Solution:

Let P be a point on the surface of the sphere and $A B$ be a diameter. Consider the great circle on the sphere passing through the points P, A and B. Take the centre O as the point of reference.

$$
\begin{aligned}
& \overrightarrow{P B}=\overrightarrow{O B}-\overrightarrow{O P} \\
& \overrightarrow{A P}=\overrightarrow{O P} \cdot \overrightarrow{O A}=\overrightarrow{O P}+\overrightarrow{O B} \\
& \overrightarrow{A P} \cdot P \vec{B}=(\overrightarrow{O P}+\overrightarrow{O B}) \cdot(\overrightarrow{O B}-\overrightarrow{O P})=|O P|^{2}-|O B|^{2} \\
&= O \text { SINCE }|\overrightarrow{O P}|=|\overrightarrow{O B}|
\end{aligned}
$$

$\therefore A B$ subtends a right angle at P o the surface. Hence the result.

