INTRODUCTION

A number in the form of $a+i b$, where a, b are real numbers and $i=\sqrt{-1}$ is called a complex number. A complex number can also be defined as an ordered pair of real numbers a and b and may be written as (a, b), where the first number denotes the real part and the second number denotes the imaginary part. If $z=a+i b$, then the real part of z is denoted by $\operatorname{Re}(z)$ and the imaginary part by $\operatorname{Im}(z)$. A complex number is said to be purely real if $\operatorname{lm}(z)=0$, and is said to be purely imaginary if $\operatorname{Re}(z)=0$. The complex number $0=0+i 0$ is both purely real and purely imaginary.

Symbol i: We define positive square root of -1 as imaginary unit, denoted by i. Thus, $i=\sqrt{-1}$ $\Rightarrow i^{i}=-1$.

Properties of i

(i) For any integer $n, i^{4 n}=1, i^{4 n+1}=i, i^{4 n+2}=-i, i^{n+3}=-i$.

For example : ${ }^{2004}=i^{4 \times 501}=1, i^{497}=i^{4 \times 124+1}=i$
Also $i=-\frac{1}{i}$
(ii) For any integer $n, i^{4 n}+i^{4 n+1}+i^{4 n+2}+i^{4 n+3}=0$

That is, the sum of four consecutive powers of i is zero.
For example : ${ }^{\rho 3}+\mu^{94}+\rho^{95}+{ }^{96}=0$
Complex number : A number of the form $x+i y$, where x and y are real numbers, is called a complex number, denoted by z. Thus $z=x+i y, x \in R, y \in R$ is a complex number. We define
$x=$ Real part of z, denoted by $\operatorname{Re}(z)$
$y=\operatorname{Imaginary}$ part of z, denoted by $\operatorname{Im}(z)$
$\sqrt{x^{2}+y^{2}}=$ Modulus or absolute value of z, denoted by $|z|$

Properties of \boldsymbol{z} :

(i) If $\operatorname{Re}(z)=0$, then $z=i y$ is called a purely imaginary number.
(ii) If $\operatorname{Im}(z)=0$, then $z=x$ is called a purely real number.
(iii) $z=0=0+i 0$ is both purely real as well as purely imaginary.
(iv) Order relation (> or <) is not defined on complex numbers, which are not purely real.
(v) $x_{1}+i y_{1}=x_{2}+i y_{2}$ iff $x_{1}=x_{2}$ and $y_{1}=y_{2}$.
(vi) The number x - iy is called complex conjugate of the number $z=x+i y$, denoted by \bar{z} or z^{*}. Thus if $z=x+i y$, then $\bar{z}=x-i y \quad \Rightarrow \operatorname{Re}(z)=\operatorname{Re}(\bar{z})$ and $\operatorname{Im}(z)$ and $-\operatorname{Im}(\bar{z})$.
(vii) The property $\sqrt{a} \sqrt{b}=\sqrt{a b}$ holds good only if at least one of a and b is a positive number.

Example 1: Find the sum and product of the two complex numbers

$$
Z_{1}=2+3 i \text { and } Z_{2}=-1+5 i
$$

Solution: $\quad \mathrm{Z}_{1}+\mathrm{Z}_{2}=2+3 \mathbf{i}+(-1+5 i)=2-1+8 \mathbf{i}=\mathbf{1}+\mathbf{8 i}$

$$
\left(\frac{x-1}{-2}\right)^{3}=1 \frac{\alpha-1}{\beta-1}+\frac{\beta-1}{\gamma-1}+\frac{\gamma-1}{\alpha-1}=\left(\frac{-2}{-2 \omega}\right)+\left(\frac{-2 \omega}{-2 \omega^{2}}\right)+\left(\frac{-2 \omega^{2}}{-2}\right)
$$

Geometrical representation of complex numbers

A complex number $z=x+i y$ can be represented by a point P, whose Cartesian coordinates are (x, y) referred to axes $O X$ and $O Y$, usually called real and imaginary axes respectively. Point P is called the image of the complex number z and the z is called the affix of the point P. The conjugate \bar{z} of the number z is the affix of image Q of the point P in the real axis. Now, the modulus of z, i.e., $|z|=\sqrt{x^{2}+y^{2}}=O P$.

The angle $X O P$ is called the argument or amplitude of z, denoted by $\arg (z)$ or $\operatorname{amp}(z)$.
Thus $\arg (z)=\theta=\tan ^{-1}\left(\frac{y}{x}\right)$.
If we take $O P=R$, then $x=R \cos \theta$, and $y=R \sin \theta$. Then $z=x+i y=R(\cos \theta+i \sin \theta)$.
This is known as trigonometric or polar form of the complex number z.
Also $z=R(\cos \theta+i \sin \theta)=r e^{i \theta}$. This is known as Euler's formula. Again if z_{1} and z_{2} represent two points P and Q in the Argand plane, then $\left|z_{1}-z_{2}\right|$ represents the distance $P Q$.

Principal value of Argument : In general the $\arg (z)$ of a complex number z is the solution of the simultaneous equation

$$
\cos \theta=\frac{x}{\sqrt{x^{2}+y^{2}}} \quad \text { and } \quad \sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}
$$

Clearly the argument (z), i.e., θ cannot be unique. $2 n \pi+\theta, n$ is an integer, is also an argument of z. The value of θ such that $-\pi<\theta \leq \pi$ is called the principal value of the argument. The argument of the complex number 0 is not defined. The principal value of $\operatorname{argument}(\theta)$ of the complex number $z=x+i y$ for different combinations of x and y are shown in following figures:

$x>0, y>0, \theta=\alpha$

$x<0, y>0, \theta=\pi-\alpha$

$z(x, y)$
$x<0, \mathrm{y}<0, \theta=\alpha-\pi$
$x>0, y<0, \theta=-\alpha$

In each case $\alpha=\tan ^{-1}\left|\frac{y}{x}\right|$, and $0 \leq \alpha<\frac{\pi}{2}$.

EXAMPLE 2: Represent the given complex numbers in polar form:
(i) $(1+i \sqrt{3})^{2} / 4 i(1-i \sqrt{3})$
(ii) $\sin \alpha-i \cos \alpha$ (α acute)
(iii) $1+\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$

Solution :
(i) $\mathrm{i}(1-\mathrm{i} \sqrt{3})=\mathrm{i}-\mathrm{i}^{2} \sqrt{3}=\sqrt{3}+\mathrm{i}$

$$
\begin{aligned}
& \therefore \frac{(1+i \sqrt{3})^{2}}{4 i(1-i \sqrt{3})}=\frac{(1+i \sqrt{3})^{2}}{4(\sqrt{3}+i)}=\frac{-2+2 i \sqrt{3}}{4(\sqrt{3}+i)}=\frac{(-1+i \sqrt{3})(\sqrt{3}-i)}{2(\sqrt{3}+i)(\sqrt{3}-i)} \\
& =\frac{-\sqrt{3}+\sqrt{3}+4 i}{2(3+1)}=\frac{i}{2}
\end{aligned}
$$

and $\frac{i}{2}=\frac{1}{2}\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$.

Hence $\frac{(1+i \sqrt{3})^{2}}{4 i(1-i \sqrt{3})}=\frac{1}{2}\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)=\frac{1}{2} e^{i \pi / 2}$
(ii) Real part >0; Imaginary part <0
argument of $\sin \alpha-i \cos \alpha$ is in the nature of a negative acute angle.
$\therefore \sin \alpha-i \cos \alpha=\cos \left(\alpha-\frac{\pi}{2}\right)+i \sin \left(\alpha-\frac{\pi}{2}\right)=e^{i\left(\alpha-\frac{\pi}{2}\right)}$
(iii) $1+\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}=2 \cos ^{2} \frac{\pi}{6}+i \cdot 2 \sin \frac{\pi}{6} \cos \frac{\pi}{6}$
$=2 \cos \frac{\pi}{6}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)=2 \cos \frac{\pi}{6} e^{i \pi / 6}$

Properties of conjugate of a complex number

(i) $|z|=|\bar{z}|$
(ii) $z+\bar{z}=2 \operatorname{Re}(z)$
(iii) $\quad z-\bar{z}=2 i \operatorname{lm}(z)$
(iv) $z \bar{z}=|z|^{2}$
(v) $\overline{\mathrm{z}_{1}+\mathrm{z}_{2}}=\overline{\mathrm{z}}_{1}+\overline{\mathrm{z}}_{2}$
(vi) $\overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2}$

Note: The properties (v) and (vi) can be extended to any number of complex number.
(vii) $\overline{\mathrm{Z}_{1}-\mathrm{Z}_{2}}=\overline{\mathrm{Z}}_{1}-\overline{\mathrm{Z}}_{2}$
(viii) $\overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\bar{z}_{1}}{\bar{z}_{2}}, z_{2} \neq 0$
(ix) $\overline{(\bar{z})}=z$
(x) $\overline{z^{n}}=(\bar{z})^{n}$
(xi) $z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}=2 \operatorname{Re}\left(\bar{z}_{1} z_{2}\right)=2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)$
(xii) $z=\bar{Z} \Leftrightarrow z$ is purely real.
(xiii) $\mathbf{z}=-\overline{\mathbf{z}} \Leftrightarrow \mathbf{z}$ is purely imaginary.

Example 3: If $|z-2+i| \leq 2$ then find the greatest and least value of $|z|$.
Solution : Given that

$$
\begin{array}{ll}
& |z-2+i| \leq 2 \\
\because & |z-2+i| \geq||z|-|2-i|| \\
\therefore & |z-2+i| \geq||z|-\sqrt{5}| \tag{ii}
\end{array}
$$

From (i) and (ii)

$$
\begin{array}{ll}
& ||z|-\sqrt{5}| \leq|z-2+i| \leq 2 \\
\therefore & ||z|-\sqrt{5}| \leq 2 \\
\Rightarrow & -2 \leq|z|-\sqrt{5} \leq 2 \\
\Rightarrow & \sqrt{5}-2 \leq|z| \leq \sqrt{5}+2
\end{array}
$$

Hence greatest value of $|z|$ is $\sqrt{5}+2$ and least value of $|z|$ is $\sqrt{5}-2$.

Properties of Modulus of a Complex Number

(i) $|z|=0 \Leftrightarrow z=0$
(ii) $|z| \geq 0$ for any complex number z,
(iii) $\quad\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$, can be extended to any number of complex numbers.
(iv) $\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}, z_{2} \neq 0$
(v) $\left|\frac{z}{|z|}\right|=1$, i.e. $\frac{z}{|z|}$ is a unimodular complex number.
(vi) $\quad\left|z_{1} \pm z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
(vii) $\left|z_{1} \pm z_{2}\right| \geq\left|\left|z_{1}\right|-\left|-z_{2}\right| \quad\right.$ (viii) $\quad-|z| \leq \operatorname{Re}(z) \leq|z|$
(ix) $\quad-|z| \leq \operatorname{lm}(z) \leq|z|$
(x) $\quad|z| \leq|\operatorname{Re}(z)|+|\operatorname{lm}(z)| \leq \sqrt{2}|z|$
(xi) $\left|z_{1} \pm z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2} \pm\left(z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}\right)=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2} \pm 2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)$
(xii) $\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left\{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right\}$

Properties of Argument of Complex Numbers

(i) $\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$, can be extended to any number of complex numbers.
(ii) $\quad \arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$
(iii) $\arg (\bar{z})=-\arg (z)$
(iv) $\arg \left(z^{n}\right)=\operatorname{narg}(z)$
(v) $\quad \arg \left(\frac{z}{\bar{z}}\right)=2 \arg (z)$
(vi) $\arg (z)=0$ iff z is purely real.
(vii) $\arg (z)= \pm \frac{\pi}{2}$ iff z is purely imaginary.

EXAMPLE 4: Find out the principal arguments of the following complex numbers.
(i) $3+4 i$
(ii) $3-4 i$
(iii) $-3+4 i$
(iv) $-3-4 i$

SOLUTION : (i) $\tan ^{-1} 4 / 3$
(ii) $\tan ^{-1}\left(-\frac{4}{3}\right)$
(iii) $\pi+\tan ^{-1}(-4 / 3)$
(iv) $-\pi+\tan ^{-1} \frac{4}{3}$

Concept of Rotation in Complex Plane

Let z_{1}, z_{2}, z_{3} represent points A, B, C respectively on the complex plane. Then $A B=\left|z_{2}-z_{1}\right|, A C=\left|z_{3}-z_{1}\right|$ and $B C=\left|z_{3}-z_{2}\right|$. Let θ be the counter clockwise angle $\angle B A C$, then $\theta=\arg \frac{z_{3}-z_{1}}{z_{2}-z_{1}}$. We may write

$\frac{z_{3}-z_{1}}{z_{2}-z_{1}}=\left|\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right|(\cos \theta+i \sin \theta)=\frac{A C}{A B}(\cos \theta+i \sin \theta)=\frac{A C}{A B} e^{i \theta}$
(i) Multiplying a complex number by i represents a rotation of angle $\frac{\pi}{2}$ counter-clockwise about origin.
(ii) Multiplying a complex number by ω represents a rotation of angle $\frac{2 \pi}{3}$ about origin clockwise or anticlockwise.

Example 5 : $\quad A B C D$ is a rhombus. Its diagonals $A C$ and $B D$ intersect at M such that $B D=2 A C$. If the points D and M represent the complex number $1+i$ and $2-i$ respectively, find the complex number(s) representing A.
Solution : Let A be z. The position MA can be obtained by rotating $M D$ anticlockwise through an angle $\frac{\pi}{2}$; simultaneously length gets halved.

$$
\begin{aligned}
\therefore z-(2-i) & =\frac{1}{2}((1+i)-(2-i)) e^{i \pi / 2} \\
& =\frac{1}{2}(-2-i)=-1-\frac{1}{2} i \\
z & =-1-\frac{1}{2} i+2-i=1-\frac{3 i}{2}
\end{aligned}
$$

Another position of A corresponds to A and C getting interchanged and in that the complex number of A is $1+\frac{1}{2} \mathrm{i}+2-\mathrm{i}=3-\frac{1}{2} \mathrm{i}$

\therefore The complex number of A is either $1-\frac{3 i}{2}$ or $3-\frac{1}{2} \mathrm{i}$

De Moivre theorem

(i) If $n \in I$, then $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$
(ii) If $n \in Q$, say $n=\frac{p}{q}, q \neq 0$, then $(\cos \theta+i \sin \theta)^{n}$ will have Q values one of which is given by $\cos n \theta+i$ $\sin n \theta$. (P and Q are integers)

EXAMPLE 6: If n be a positive integer, prove that
$(1+i)^{2 n}+(1-i)^{2 n}= \begin{cases}0 & \text { if } n \text { be odd } \\ 2^{n+1} & \text { if } \frac{n}{2} \text { be even } \\ -2^{n+1} & \text { if } \frac{n}{2} \text { be odd }\end{cases}$

SOLUTION: $\quad(1+i)^{2 n}=2^{n}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)^{2 n}=2^{n}\left(\cos \frac{n \pi}{2}+i \sin \frac{n \pi}{2}\right)$

$$
\begin{aligned}
& (1-i)^{2 n}=2^{n}\left(\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right)^{2 n}=2^{n}\left(\cos \frac{n \pi}{2}-i \sin \frac{n \pi}{2}\right) \\
& \therefore(1+i)^{2 n}+(1-i)^{2 n}=2^{n}\left(\cos \frac{n \pi}{2}+i \sin \frac{n \pi}{2}+\cos \frac{n \pi}{2}-i \sin \frac{n \pi}{2}\right) \\
& =2^{n+1} \cos \left(\frac{n \pi}{2}\right)
\end{aligned}
$$

If n be odd $=2 m+1$, then RHS $=2 \cos (2 m+1) \frac{\pi}{2}$

$$
=0
$$

If n be even and $\frac{n}{2}$ also even so that $n=4 k$, then $R H S=2^{n+1} \cos (2 k \pi)=2^{n+1}$

$$
\text { else RHS }=2^{n+1} \cos \left(\frac{n \pi}{2}\right)=-2^{n+1}
$$

Cube Roots of Unity

Let $z^{3}=1 \Rightarrow z^{3}-1=0 \Rightarrow(z-1)\left(z^{2}+z+1\right)=\theta \Rightarrow z=1$ or $z=\frac{-1 \pm \mathrm{i} \sqrt{3}}{2}$.
$z=\frac{-1 \pm i \sqrt{3}}{2}$ are called imaginary cube roots of unity and one the roots of $z^{2}+z+1=0$.
$\because\left(\frac{-1 \pm \mathrm{i} \sqrt{3}}{2}\right)^{2}=\frac{-1-\mathrm{i} \sqrt{3}}{2}$, we generally represent $\omega=\frac{-1+\mathrm{i} \sqrt{3}}{2}$ and $\omega^{2}=\frac{-1-\mathrm{i} \sqrt{3}}{2}$.
Also, $\omega=\frac{-1+i \sqrt{3}}{2}=\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}=e^{i \frac{2 \pi}{3}}$
and $\omega^{2}=\frac{-1-i \sqrt{3}}{2}=\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}=e^{i \frac{4 \pi}{3}}$

EXAMPLE 7: If α, β, γ are roots of $x^{3}-3 x^{2}+3 x+7=0$ (and ω is cube roots of unity), then find the value of $\frac{\alpha-1}{\beta-1}+\frac{\beta-1}{\gamma-1}+\frac{\gamma-1}{\alpha-1}$.
SOLUTION: We have $x^{3}-3 x^{2}+3 x+7=0$

$$
\begin{aligned}
& \therefore \quad(x-1)^{3}+8=0 \quad \therefore(x-1)^{3}=(-2)^{3} \\
& \Rightarrow \quad\left(\frac{x-1}{-2}\right)^{3}=1 \quad \Rightarrow \quad \frac{x-1}{-2}=(1)^{1 / 3}=1, \omega, \omega^{2} \quad \text { (cube roots of unity) } \\
& \begin{aligned}
\therefore \quad x=-1,1-2 \omega, 1-2 \omega^{2}
\end{aligned} \\
& \begin{aligned}
& \therefore \quad \alpha-1=-\beta=1-2 \omega, \gamma=1-2 \omega^{2} \\
& \text { Then } \frac{\alpha-1}{\beta-1}+\frac{\beta-1}{\gamma-1}+\frac{\gamma-1}{\alpha-1}=\left(\frac{-2}{-2 \omega}\right)+\left(\frac{-2 \omega}{-2 \omega^{2}}\right)+\left(\frac{-2 \omega^{2}}{-2}\right) \\
&=\frac{1}{\omega}+\frac{1}{\omega}+\omega^{2} \\
&=\omega^{2}+\omega^{2}+\omega^{2}=3 \omega^{2}
\end{aligned}
\end{aligned}
$$

Properties of ω and ω^{2}
(i) $1+\omega+\omega^{2}=0$, in general $1+\omega^{n}+2^{2 n}=3$ or 0 according as n is a multiple of 3 or not $(n \in \Lambda$).
(ii) $\omega^{3}=1$; in general $\omega^{3 n}=1, \omega^{3 n+1}=\omega$ and $\omega^{3 n+2}=\omega^{2}$
(iii) $\omega^{2}=\bar{\omega}$ and $\omega=\bar{\omega}^{2}$
(iv) The cube roots of unity represent the vertices of an equilateral triangle inscribed in a unit circle with centre at origin on the complex plane. One vertex is always on positive real axis.
(v) If α is a real cube root of a real number then its other roots are $\alpha \omega$ and $\alpha \omega^{2}$.
(vi) If a complex number z is such that $|\operatorname{Re}(z)|:|\operatorname{lm}(z)|=1: \sqrt{3}$ or $\sqrt{3}: 1$, then z can be expressed in terms of i, ω or ω^{2}.
(vii) For any real $a, b, c ; a+b \omega+c \omega^{2}=0 \Rightarrow a=b=c$.

The $\mathbf{n}^{\text {th }}$ Roots of Unity

Let $z^{n}=1=\cos 2 k \pi+i \sin 2 k \pi, k \in I$
$\therefore \quad z=(\cos 2 k \pi+i \sin 2 k \pi)^{1 / n}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}, k=0,1,2, \ldots, n-1$
If we represent $\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}$ by α, then the $n^{\text {th }}$ roots of unity are $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}$.

Properties of $\boldsymbol{n}^{\text {th }}$ Roots of Unity

(i) $1+\alpha+\alpha^{2}+\ldots+\alpha^{n-1}=0 \quad \Rightarrow \quad \sum_{\mathrm{k}=0}^{\mathrm{n}-1}\left(\cos \frac{2 \mathrm{k} \pi}{\mathrm{n}}+\mathrm{i} \sin \frac{2 \mathrm{k} \pi}{\mathrm{n}}\right)=0$
$\Rightarrow \sum_{k=0}^{n-1} \cos \frac{2 k \pi}{n}=0 \quad$ and $\quad \sum_{k=0}^{n-1} \sin \frac{2 k \pi}{n}=0$
(ii) $1 . \alpha \cdot \alpha^{2} \ldots \alpha^{n-1}=(-1)^{n+1}$.
(iii) The points represented by the $n^{\text {th }}$ roots of unity are located at the vertices of a regular polygon of n sides inscribed in a unit circle with centre at the origin. One vertex being on the positive real axis.

Example 8 : Find the cube roots of $4-4 \sqrt{ } 3 \mathrm{i}$.
SOLUTION: Let $z=(4-4 \sqrt{3} i)^{1 / 3}, \rho=\sqrt{16+48}=8 \cos \alpha=1 / 2, \sin \alpha=-\frac{\sqrt{3}}{2}$
\therefore Cube roots of $4-4 \sqrt{3} i$ are given by
$z=\rho^{1 / 3} \operatorname{cis} \frac{2 \mathrm{k} \pi+\alpha}{3}, k=0,1,2$ and $\rho^{1 / 3}=8^{1 / 3}=2($ positive real cube root of 8)
Thus $z=2$ cis $\frac{\alpha}{3}, 2$ cis $\frac{2 \pi+\alpha}{3}, 2$ cis $\frac{4 \pi+\alpha}{3}$ are the required roots.
Here α is given by $\cos \alpha=\frac{1}{2}$ and $\sin \alpha=-\frac{\sqrt{3}}{2}$ i.e. $\alpha=-\frac{\pi}{3}$.

ALITER

Let $\quad z=(4-4 \sqrt{ } 3 i)^{1 / 3}$
or, $\quad z=\left(8 e^{-i \pi / 3}\right)^{1 / 3}$
or, $\quad z=2 e^{-i \pi / 9}(1)^{1 / 3}$
$\Rightarrow \quad z=2 e^{-i \pi / 9}, 2 e^{-i \pi / 9} . \omega$ and $2 e^{-i \pi / 9} \cdot \omega^{2}$
since $\omega=e^{i 2 \pi / 3}, \omega^{2}=e^{i 4 \pi / 3}$
Therefore, $z=2 e^{-i \pi / 9}, 2 e^{i 5 \pi / 9}$ and $2 e^{i 11 \pi / 9}$.

Geometrical Applications

(i) Distance between two points A and B represented by complex numbers z_{1} and z_{2} is $A B=\left|z_{2}-z_{1}\right|$.
(ii) Affix of a point P dividing the join of point A and B with affices z_{1} and z_{2} in the ratio $m: n$, internally is $\frac{m z_{2}+n z_{1}}{m+n}$; externally is $\frac{m z_{2}-n z_{1}}{m-n}$.
(iii) Affix of mid point of $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$ is $\frac{z_{1}+z_{2}}{2}$.
(iv) Affix of centroid of $\triangle A B C$, with vertices $A\left(z_{1}\right), B\left(z_{2}\right)$ and $C\left(z_{3}\right)$ is $\frac{z_{1}+z_{2}+z_{3}}{3}$.
(v) Equation of straight line passing through two points $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$ in complex form is $\left|\begin{array}{ccc}z & \bar{z} & 1 \\ z_{1} & \bar{z}_{1} & 1 \\ z_{2} & \bar{z}_{2} & 1\end{array}\right|=0$ or $\frac{z-z_{1}}{\bar{z}-\bar{z}_{1}}=\frac{z_{2}-z_{1}}{\bar{z}_{2}-\bar{z}_{1}}$.
(vi) General equation of a straight line in complex plane is $\bar{a} z+a \bar{z}+b=0$, where a is a constant complex number and b is a constant real number.

Slope of this line $=\frac{a+\bar{a}}{i(a-\bar{a})}=-\frac{\operatorname{Re}(a)}{\operatorname{Im}(a)}$.
(vii) Distance of a given point $P\left(z_{0}\right)$ from the line $\bar{a} z+a \bar{z}+b=0$ is given by $\frac{\left|\overline{\mathrm{a}} \mathrm{z}_{0}+\mathrm{a} \overline{\mathrm{z}}_{0}+\mathrm{b}\right|}{2|\mathrm{a}|}$.

(viii) Equation of a circle of radius R and centre at point $C\left(z_{0}\right)$ is $\left|z-z_{0}\right|=R$.
$\left|z-z_{0}\right|>R$ represents the points lying outside the circle.
$\left|z-z_{0}\right|<R$ represents the points lying inside the circle.

(ix) Any point on the circle $\left|z-z_{0}\right|=R$ can be given by $z=z_{0}+r e^{i \theta}$.
(x) General equation of a circle in complex plane is given by $z \bar{z}+a \bar{z}+\bar{a} z+b=0$, where $b \in R$. Its center is at the point C with affix $-a$ and radius $\sqrt{|a|^{2}-b}$. The circle is real iff $|a|^{2}-b \geq 0$.
(xi) Equation of a circle described on a line segment $A B$, as diameter is $\left(z-z_{1}\right)\left(\bar{z}-\bar{z}_{2}\right)+\left(z-z_{2}\right)\left(\bar{z}-\bar{z}_{1}\right)=0$, where z_{1} and z_{2} are affices of points A and B.
(xii) Let z_{1} and z_{2} be two given complex numbers. Then $\arg \left(\frac{z-z_{1}}{z-z_{2}}\right)=\alpha, 0<\alpha<\pi \quad$ represents all points z lying on the arc of a circle.
If $\alpha \in\left(0, \frac{\pi}{2}\right), z$ lies on the major arc (excluding
 points A and B).

If $\alpha \in\left(\frac{\pi}{2}, \pi\right), z$ lies on the minor arc (excluding points A and B).
(xiii) Four points $A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right)$ and $D\left(z_{4}\right)$ taken in order are concyclic if $\frac{\left(z_{4}-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z_{2}-z_{1}\right)\left(z_{4}-z_{3}\right)}$ is purely real.
(xiv) $\left|z-z_{1}\right|+\left|z-z_{2}\right|=a, a \in R^{+}$represents an ellipse if $\left|z_{1}-z_{2}\right|<$ a. Points z_{1} and z_{2} represent the foci of ellipse.
(xv) $\left|z-z_{1}\right|+\left|z-z_{2}\right|=a, a \in R-\{0\}$ represents an hyperbola if $\left|z_{1}-z_{2}\right|>|a|$. Points z_{1} and z_{2} represents the foci of hyperbola.
(xvi) The triangle whose vertices are the points represented by the complex numbers z_{1}, z_{2}, z_{3} is equilateral if and only if
$\frac{1}{z_{2}-z_{3}}-\frac{1}{z_{3}-z_{1}}+\frac{1}{z_{1}-z_{2}}=0 \Leftrightarrow z_{1}^{2}+z_{2}^{2}+z_{3}^{2}-z_{1} z_{2}-z_{2} z_{3}-z_{3} z_{1}=0$.

ExAMPLE 9 : Interpret Geometrically the complex number 'z' which satisfied the following inequality $\log _{1 / 2}$ $\frac{|z-1|+4}{|z-1|-2}<1$.
Solution: \quad In order the \log is to be defined, $|z-1|-2>0$
$\Rightarrow|z-1|>2$.
Also, $\quad \frac{|z-1|+4}{|z-1|-2}>\frac{1}{2}$
$\Rightarrow|z-1|>-10$ which is always true.
Hence the inequality will hold for all ' z ' satisfying the condition that $|z-1|>2$.
Geometrically, it represents the exterior of a circle with center (1
 $+0 I$) and radius ' 2 '.

Example 10: If $||z+2|-|z-2||=a^{2}, z \in C$ representing a hyperbola for $a \in R$, then find the values of a.
Solution : Here foci are at -2 and 2 at a distance at 4 . Hence the given equation represents a hyperbola if $a^{2}<4$ i.e. $a \in(-2,2)$.

