COORDINATE GEOMETRY

The system of Geometry in which a point is specified by means of an ordered number-pair is known as Coordinate Geometry. It enables us to solve geometrical problems by algebraic methods.

Representation of a point

The point $P(x, y)$ lies in:

- the first quadrant iff $x>0, y>0$
- the second quadrant iff $x<0, y>0$
- the third quadrant iff $x<0, y<0$
- the fourth quadrant iff $x>0, y<0$.

If the point $P(x, y)$ lies on the x-axis iff $y=0$ and lies on the y-axis iff $x=0$.

Distance between two points

$$
\begin{gathered}
\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \\
\mathrm{A} \xrightarrow{2}
\end{gathered}
$$

The distance between two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is
$A B=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$.

Example \# 1

Find the value of x, if the distance between the points $(x,-1)$ and $(3,2)$ is 5

Solution.

Let $P(x,-1)$ and $Q(3,2)$ be the given points. Then $P Q=5$ (given)

$$
\begin{array}{ll}
\sqrt{(x-3)^{2}+(-1-2)^{2}}=5 \\
\Rightarrow & (x-3) 2+9=25 \\
\Rightarrow & x=7 \text { or } x=-1
\end{array}
$$

Section formula

Internal division

$$
\frac{A P}{P B}=\frac{m_{1}}{m_{2}}
$$

$x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}} y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}$

External division

$x=\frac{m_{1} x_{2}-m_{2} x_{1}}{m_{1}-m_{2}} y=\frac{m_{1} y_{2}-m_{2} y_{1}}{m_{1}-m_{2}}$

Example\# 2

Find the coordinates of the point which divides the line segment joining the points $(6,3)$ and $(-4,5)$ in the ratio 3 : 2 (i) internally and (ii) externally.

Solution.

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be the required point.

(i) For internal division :

$$
x=\frac{3 \times-4+2 \times 6}{3+2} \text { and } y=\frac{3 \times 5+2 \times 3}{3+2} \text { or } x=0 \text { and } y=\frac{21}{5}
$$

So the coordinates of P are $\left(0, \frac{21}{5}\right)$
(ii) For external division

$$
x=\frac{3 \times-4-2 \times 6}{3-2} \text { and } y=\frac{3 \times 5-2 \times 3}{3-2}
$$

or $\quad x=-24$ and $y=9$
So the coordinates of P are $(-24,9)$

CENTROID AND AREA OF A TRIANGLE

If $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ are the vertices of a triangle $A B C$, then the centroid $G(x, y)$ is given by
$x=\frac{x_{1}+x_{2}+x_{3}}{3}, y=\frac{y_{1}+y_{2}+y_{3}}{3}$.
The area of the triangle $A B C$, i.e.
$\Delta=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$.
$=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$.
The three points A, B and C are collinear iff $\Delta=0$

$$
\Rightarrow \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y_{3}-y_{1}}{x_{3}-x_{1}} \quad \text { or, } \quad \frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=0
$$

SLOPE OF A LINE

Slope ' m ' of the line joining the points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is given by
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\tan \theta$,
where θ is the angle which the line makes the positive x-axis.

LOCUS

A point $P(x, y)$ changes its position on the $x y$-plane as x or y or both are given different values. x and y may change independently or otherwise under a constraint. When $P(x, y)$ moves under a geometrical constraint or rule, y becomes a function of x and the point $P(x, y)$ is said to trace a locus. The functional relation $y=f(x)$ is called the equation of the path traced by $P(x, y)$, when $f(x)$ is a linear polynomial in x then this locus is a straight line i.e. the equation $a x+b y+c=0$ represents a straight line. Here $y=-\frac{a}{b} x-\frac{c}{b}$.

Example \# 3

Find the locus of the middle points of the segment of a line passing through the point of intersection of the lines $a x+b y+c=0$ and $l x+m y+n=0$ and intercepted between the axes.
Solution: \quad Any line (say $L=0$) passing through the point of intersection of $a x+b y+c=0$ and $l x+m y+$ $n=0$ is $(a x+b y+c)+\lambda(\mid x+m y+n)=0$, where λ is any real number.
Point of intersection of $L=0$ with axes are $\left(-\frac{c+\lambda n}{a+\lambda l}, 0\right)$ and $\left(0,-\frac{c+\lambda n}{b+\lambda m}\right)$.
Let the mid point be (h, k).

Then $\mathrm{h}=-\frac{1}{2}\left(\frac{\mathrm{c}+\lambda \mathrm{n}}{\mathrm{a}+\lambda l}\right)$
and $k=-\frac{1}{2}\left(\frac{c+\lambda n}{b+\lambda m}\right)$.
Eliminating λ, we get $\frac{2 \mathrm{ah}+\mathrm{c}}{2 \mathrm{~h} l+\mathrm{n}}=\frac{2 \mathrm{~kb}+\mathrm{c}}{2 \mathrm{~km}+\mathrm{n}}$.
The required locus is: $2(a m-\mathrm{lb}) \mathrm{xy}=(\mathrm{lc}-\mathrm{an}) \mathrm{x}+(\mathrm{nb}-\mathrm{mc}) \mathrm{y}$

FORMS OF THE EQUATION OF LINE

(i) The equation of the straight line passing through the point $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ is
$y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right) \quad$ or, $\quad\left|\begin{array}{ccc}x & y & 1 \\ x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1\end{array}\right|=0$

Two-point form
(ii) The equation of the straight line passing through the point $P\left(x_{1}, y_{1}\right)$ and having slope m (inclined at am angle θ, with $m=\tan \theta$, to the positive direction of the x-axis) is $y=y_{1}=m\left(x-x_{1}\right)$.

(iii) The equation of the straight line with slope m and y-intercept c on the y-axis is $y=m x+c$

Slope-intercept form

The equation of the x-axis is $y=0(m=0, c=0)$ and that of the y-axis is $x=0(m \rightarrow \infty)$.
(iv) The equation of the straight line making intercepts a and b on the x-axis and the y-axis respectively is $\frac{x}{a}+\frac{y}{b}=1$

Intercept form
(v) The equation of the straight line, for which the length of the perpendicular from the origin is p and the perpendicular makes an angle α with the positive x-axis, is
$x \cos \alpha+y \sin \alpha=p$

Normal form
(vi) The equation of the line passing through the point $P\left(x_{1}, y_{1}\right)$ and making an angle θ with the positive $x-$ axis is

$$
\frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}=r \quad(\text { parametric form })
$$

where r is the distance of any point $\left(x_{1} \pm r \cos \theta, y_{1} \pm r \sin \theta\right)$ on the line from $P\left(x_{1}, y_{1}\right)$.

Example \# 4

Reduce the line $2 x-3 y+5=0$, in slope-intercept, intercept and normal forms.

Solution: Slope-Intercept Form: $y=\frac{2 x}{3}+\frac{5}{3}, \tan \theta=m=2 / 3, c=\frac{5}{3}$
Intercept Form: $\frac{x}{\left(-\frac{5}{2}\right)}+\frac{y}{\left(\frac{5}{3}\right)}=1, a=-\frac{5}{2}, b=\frac{5}{3}$
Normal Form: $\quad-\frac{2 x}{\sqrt{13}}+\frac{3 y}{\sqrt{13}}=\frac{5}{\sqrt{13}}$
$\sin \alpha=\frac{3}{\sqrt{13}}, \cos \alpha=\frac{-2}{\sqrt{13}}, p=\frac{5}{\sqrt{13}}$

Position of a point w.r.t. a line

A point $A\left(x_{1}, y_{1}\right)$ lies on the line $a x+b y+c=0$ if $a x_{1}+b y_{1}+c=0$.
The points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ lie on the same side of the line $a x+b y+c=0$ if $a x_{1}+b y_{1}+c=0$ and $a x_{2}+$ $\mathrm{by}_{2}+\mathrm{c}=0$ have the same sign.
The points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ lies on the opposite sides of the line $a x+b y+c=0$ if $a x_{1}+b y_{1}+c=0$ and $a x_{2}+b y_{2}+c=0$ are of opposite signs.

Example \# 5

Find the range of θ in the interval $(0, \pi)$ such that the points $(3,5)$ and $(\sin \theta, \cos \theta)$ lie on the same side of the line $x+y-1=0$.

Solution: \quad Here $3+5-1=7>0$
Hence $\sin \theta+\cos \theta-1>0$
$\Rightarrow \sin (\pi / 4+\theta)>1 / \sqrt{ } 2 \Rightarrow \pi / 4<\pi / 4+\theta<3 \pi / 4 \Rightarrow 0<\theta<\pi / 2$.

Angle between two lines

(i) Let θ be the acute angle, between two straight lines $y=m_{1} x+c_{1}$ and $y=m_{2} x+c_{2}$. Then $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$.
The lines are parallel if $\tan \theta=0 \Rightarrow m_{1}=m_{2}$.
(ii) The lines are perpendicular if $\theta=90^{\circ} \Rightarrow m_{1} m_{2}=-1$.

Any line parallel to the line $a x+b y+c=0$ has the equation $a x+b y=k$, where k is an arbitrary constant to be obtained from the given geometrical constraints.
(iii) Any line perpendicular to the line $a x+b y+c=0$ as the equation $b x-a y=\lambda$, where λ is an arbitrary constant to be obtained from the given geometrical constraints.

Example \# 6

Find the equation to the straight line which is perpendicular bisector of the line segment $A B$, where A, B are (a, b) and (a^{\prime}, b^{\prime}) respectively.

Solution: Equation of $A B$ is $y-b=\frac{b^{\prime}-b}{a^{\prime}-a}(x-a)$
i.e. $y\left(a^{\prime}-a\right)-x\left(b^{\prime}-b\right)=a^{\prime} b-a b^{\prime}$.

Equation to the line perpendicular to $A B$ is of the form
$\left(b^{\prime}-b\right) y+\left(a^{\prime}-a\right) x+k=0$
Since the midpoint of $A B$ lies on (1)

$$
\left(b^{\prime}-b\right)\left(\frac{b+b^{\prime}}{2}\right)+\left(a^{\prime}-a\right)\left(\frac{a+a^{\prime}}{2}\right)+k=0 .
$$

Hence the required equation of the straight line is
$2\left(b^{\prime}-b\right) y+2\left(a^{\prime}-a\right) x=\left(b^{\prime 2}-b^{2}+a^{\prime 2}-a^{2}\right)$.

Intersection and family of lines

(i) The point of intersection of two lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ is obtained by solving these equations for x and y.
(ii) The equation of any line passing through the intersection of these lines is $a_{1} x+b_{1} y+c_{1}+\lambda\left(a_{2} x+b_{2} y\right.$ $\left.+c_{2}\right)=0$ where λ is an arbitrary constant to be obtained by using additional geometrical constraints. This equation also represents for any value of λ, a family of straight lines passing through the intersection of the fixed lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$.
(iii) The three lines $a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$ and $a_{3} x+b_{3} y+c_{3}=0$ are concurrent if $\begin{array}{lll}a_{1} & b_{1} & c_{1}\end{array}$
$\begin{array}{lll}\mathrm{a}_{2} & \mathrm{~b}_{2} & \mathrm{c}_{2}=0\end{array}$
$\begin{array}{lll}a_{3} & b_{3} & c_{3}\end{array}$
or, the point of intersection of any two of these lines lies on the third line.

Example \# 7

Show that all the chords of the curve $3 x^{2}-y^{2}-2 x+4 y=0$, which subtend a right angle at the origin pass through a fixed point. Find that point.

Solution: Let the equation of chord be $\mathrm{lx}+\mathrm{my}=1$.

So equation of pair of straight line joining origin to the points of intersection of chord and curve.
$3 x^{2}-y^{2}-2 x(1 x+m y)+4 y(1 x+m y)=0$, which subtends right angle at origin.
$\Rightarrow(3-2 l+4 m-1)=0 \Rightarrow I=2 m+1$
Hence chord becomes $(2 m+1) x+m y=1$
$x-1+m(2 x+y)=0$
$L_{1} \quad L_{2}$
Which will pass through point of intersection of $L_{1}=0$ and $L_{2}=0$
$\Rightarrow x=1, y=-2$. Hence fixed point is $(1,-2)$.

Distance of a point from a line

The perpendicular distance of the point $P\left(x_{1}, y_{1}\right)$ from the line $a x+b y+c=0$ is $\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|$.

Bisector of the angle between two lines

The equations of the bisectors of the angle between the lines $a x_{1}+b y_{1}+c_{1}=0, a x_{2}+b y_{2}+c_{2}=0$ are

$$
\frac{a_{1} x+b_{1} y+c_{1}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}}}= \pm \frac{a_{2} x+b_{2} y+c_{2}}{\sqrt{a_{2}{ }^{2}+b_{2}{ }^{2}}} .
$$

These are two perpendicular lines; one represents the bisector of the acute angle and the other the bisector of the obtuse angle. If for a point (α, β) the expression $a_{1} \alpha+b_{1} \beta+c_{1}$ and $a_{2} \alpha+b_{2} \beta+c_{2}$ are of the same sign, then the equation of the bisector of the angle containing the point (α, β) is

$$
\frac{\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}}{\sqrt{\mathrm{a}_{1}^{2}+\mathrm{b}_{1}^{2}}}=\frac{\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}}{\sqrt{\mathrm{a}_{2}{ }^{2}+\mathrm{b}_{2}^{2}}} .
$$

The bisector of the angle containing the origin is also the bisector of the acute angle between the lines if $\mathrm{c}_{1} \mathrm{c}_{2}>$ 0 and $\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}<0$.

Example \# 8

For the straight lines $4 x+3 y-6=0$ and $5 x+12 y+9=0$, find the equation of the
(i) bisector of the obtuse angle between them.
(ii) bisector of the acute angle between them.
(iii) bisector of the angle which contains $(1,2)$.

Solution: Equations of bisectors of the angles between the given lines are
$\frac{4 x+3 y-6}{\sqrt{4^{2}+3^{2}}}= \pm \frac{5 x+12 y+9}{\sqrt{5^{2}+12^{2}}} \Rightarrow 9 x-7 y-41=0$ and $7 x+9 y-3=0$.
If θ is the acute angle between the line $4 x+3 y-6=0$ and the bisector
$9 x-7 y-41=0$, then $\tan \theta=\left|\frac{-\frac{4}{3}-\frac{9}{7}}{1+\left(\frac{-4}{3}\right) \frac{9}{7}}\right|=\frac{11}{3}>1$.
Hence
(i) The bisector of the obtuse angle is $9 x-7 y-41=0$
(ii) The bisector of the acute angle is $7 x+9 y-3=0$
(iii) The bisector of the angle containing the origin

$$
\frac{-4 x-3 y+6}{\sqrt{(-4)^{2}+(-3)^{2}}}=\frac{5 x+12 y+9}{\sqrt{5^{2}+12^{2}}} \Rightarrow 7 x+9 y-3=0
$$

(i) For the point (1, 2), $4 x+3 y-6=4 \times 1+3 \times 2-6>0$
$5 x+12 y+9=5 \times 1+12 \times 2+9>0$
Hence equation of the bisector of the angle containing the point $(1,2)$ is $\frac{4 x+3 y-6}{5}=\frac{5 x+12 y+9}{13}$ $\Rightarrow 9 x-7 y-41=0$.

Alternative:

Making C_{1} and C_{2} positive in the given equations, we get
$-4 x-3 y+6=0$ and $5 x+12 y+9=0$
Since $a_{1} a_{2}+b_{1} b_{2}=-20-36=-56<0$, so the origin will lie in the acute angle. Hence bisector of the acute angle is given by
$\frac{-4 x-3 y+6}{\sqrt{4^{2}+3^{2}}}=\frac{5 x+12 y+9}{\sqrt{5^{2}+12^{2}}}$ i.e. $7 x+9 y-3=0$
Similarly bisector of obtuse angle is $9 x-7 y-41=0$.

SOME DEFINITIONS:

Incentre

The incentre of a triangle $A B C$ is the point of intersection of the internal bisectors of the angles of the triangle.

Circumcentre

The circumcentre of a triangle $A B C$ is the point of intersection of the right bisectors of the sides of the triangle Circumcentre of a right angled triangle is the mid-point of the hypotenuse.

Orthocentre

The orthocenter of a triangle ABC is the point of intersection of the perpendicular lines (altitudes) from the vertices to the opposite sides of the triangle. Orthocentre of a triangle $A B C$, right angled at A, is A.

Note: (i) In an equilateral triangle, the centroid, orthocentre, incentre and circumcentre coincide.
(ii) In a triangle ABC , the orthocentre H , the circumcentre O and the centroid. G are collinear where G divides OH in the ratio $1: 2$.

Example \# 9

Prove that the incentre of the triangle whose vertices are given by $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ is $\left(\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c}, \frac{a y_{1}+b y_{2}+c y_{3}}{a+b+c}\right)$ where a, b, and c are the sides opposite to the angles A, B and C respectively.

Solution: $\quad B y$ geometry, we know that $\frac{B D}{D C}=\frac{A B}{A C}$ (since $A D$ bisects $\angle A$).
If the lengths of the sides $A B, B C$ and $A C$ are c, a and b respectively, then $\frac{B D}{D C}=\frac{A B}{A C}=\frac{c}{b}$
\Rightarrow Coordinates of D are $\left(\frac{b x_{2}+c x_{3}}{b+c}, \frac{b y_{2}+c y_{3}}{b+c}\right)$.

Since $\frac{B D}{D C}=\frac{c}{b}, \quad B D=\frac{a c}{b+c}$
B bisects $\angle B$. Hence $\frac{I D}{I A}=\frac{B D}{B A}=\frac{\left(\frac{a c}{b+c}\right)}{c}=\frac{a}{c+b}$
Let the coordinates of I be (\bar{x}, \bar{y}).
Then $\bar{x}=\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c}, \bar{y}=\frac{a y_{1}+b y_{2}+c y_{3}}{a+b+c} \quad$ (using section formula).

PAIR OF LINES

(i) The second degree equation $a x^{2}+b y^{2}+2 h x y+2 g x+2 f y+c=0$ represents a pair of lines if

$$
h^{2} \geq a b \text { and } a b c+2 g f h-a f^{2}-b g^{2}-c h^{2}=0 \text { or, }\left|\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right|=0
$$

Their point of intersection is $\left(\frac{h f-b g}{a b-h^{2}}, \frac{g h-a f}{a b-h^{2}}\right)$.
The angle θ between these lines is given by $\tan \theta= \pm \frac{\sqrt{h^{2}-a b}}{a+b}$ so that the lines are parallel or coincident if $h^{2}=a b$ and perpendicular to each other if $a+b=0$.
(ii) The homogeneous equation $\mathrm{ax}^{2}+2 h x y+\mathrm{by}^{2}=0$ represents a pair of lines passing through the origin. If $y=m_{1} x$ and $y=m_{2} x$ are two straight lines represented by $a x^{2}+2 h x y+b y^{2}=0$, then $m_{1}+$ $m_{2}=-\frac{2 h}{b}$ and $m_{1} m_{2}=\frac{a}{b}$.
(iii) The equation of the pair of bisectors of the angles between the above pair of lines is $\frac{x^{2}-y^{2}}{a-b}=\frac{x y}{h}$. The equation of pair of lines through the origin and perpendicular to pair of lines given by $\mathrm{ax}^{2}+$ $2 h x y+b y^{2}=0$ is $b x^{2}-2 h x y+a y^{2}=0$.
(iv) The equation of the pair of lines joining the origin and the points of intersection of a curve and a line is obtained by making the equation of the curve homogeneous with the help of the equation of the line.
If $y=m x+c$ be a straight line and a curve be $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+k=0$ and the line cuts the curve at points A and B, then the joint equation of $O A$ and $O B$ is

$$
a x^{2}+2 h x y+b y^{2}+(2 g x+2 f y)\left(\frac{y-m x}{c}\right)+k\left(\frac{y-m x}{c}\right)^{2}=0
$$

Example \# 10

The chord $\sqrt{6} y=\sqrt{8} p x+\sqrt{2}$ of the curve $p y^{2}+1=4 x$ subtends a right angle at origin then find the value of p.
Solution: $\quad \sqrt{3} y-2 p x=1$ is the given chord. Homogenizing the equation of the curve, we get,
$p y^{2}-4 x(\sqrt{3} y-2 p x)+(\sqrt{3} y-2 p x)^{2}=0$
$\Rightarrow\left(4 p^{2}+8 p\right) x^{2}+(p+3) y^{2}-4 \sqrt{3} x y-4 \sqrt{3} p x y=0$
Now, angle at origin is 90°
\therefore coefficient of $\mathrm{x}^{2}+$ coefficient of $\mathrm{y}^{2}=0$
$\therefore 4 p^{2}+8 p+p+3=0 \Rightarrow 4 p^{2}+9 p+3=0$
$\therefore p=\frac{-9 \pm \sqrt{81-48}}{8}=\frac{-9 \pm \sqrt{33}}{8}$.

