

1

Introduction to JAVA

Unit Structure

1.0 Introduction

1.1 Basic concepts of OOPs

1.2 Java History

1.3 Java Feature

1.4 Comparison in Java and C++

1.5 Java Virtual Machine

1.6 Java Environment

1.7 Program

1.8 Summary

1.1 Introduction:
Java is a high-level, third generation programming language, like C, FORTRAN,

Smalltalk, Perl, and many others. You can use Java to write computer applications that play

games, store data or do any of the thousands of other things computer software can do.

Compared to other programming languages, Java is most similar to C. However although Java

shares much of C's syntax, it is not C. Knowing how to program in C or, better yet, C++, will

certainly help you to learn Java more quickly, but you don't need to know C to learn Java. A Java

compiler won't compile C code, and most large C programs need to be changed substantially

before they can become Java programs. What's most special about Java in relation to other

programming languages is that it lets you write special programs called applets that can be

downloaded from the Internet and played safely within a web browser. Java language is called as

an Object-Oriented Programming language and before begining for Java, we have to learn the

concept of OOPs(Object-Oriented Programming).

1.2 Basic Concept of OOP(Object-Oriented Programming):

There are some basic concepts of object oriented programming as follows:

1. Object

2. Class

3. Data abstraction

4. Data encapsulation

5. Inheritance

6. Polymorphism

7. Dynamic binding

1. Object

Objects are important runtime entities in object oriented method. They may characterize a

location, a bank account, and a table of data or any entry that the program must handle.

For example:

Object: STUDENT

DATA

Name

Address

Marks

METHODS

Total()

Average()

Fig.1.1 Representation of an object ―STUDENT‖

Each object holds data and code to operate the data. Object can interact without having to

identify the details of each other‘s data or code. It is sufficient to identify the type of message

received and the type of reply returned by the objects.

Another example of object is CAR

Object: CAR

DATA

Colour

Cost

METHODS

LockIt()

DriveIt()

Fig.1.2 Representation of object ―CAR‖

Fig.1.1and Fig.1.2 shows actual representation of object.

2. Classes

A class is a set of objects with similar properties (attributes), common behaviour (operations),

and common link to other objects. The complete set of data and code of an object can be made a

user defined data type with the help of class.

The objects are variable of type class. A class is a collection of objects of similar type. Classes

are user defined data types and work like the build in type of the programming language. Once

the class has been defined, we can make any number of objects belonging to that class. Each

object is related with the data of type class with which they are formed.

As we learned that, the classification of objects into various classes is based on its properties

(States) and behaviour (methods). Classes are used to distinguish are type of object from another.

The important thing about the class is to identify the properties and procedures and applicability

to its instances.

For example:Vehicle

Fig.1.4 Representation of class

In above example, we will create an objects MH-01 1234 belonging to the class car. The objects

develop their distinctiveness from the difference in their attribute value and relationships to other

objects.

3. Data Abstraction

Data abstraction refers to the act of representing important description without including the

background details or explanations.

Classes use the concept of abstraction and are defined as a list of abstract attributes such as size,

cost and functions operate on these attributes. They summarize all the important properties of the

objects that are to be created.

Classes use the concepts of data abstraction and it is called as Abstract Data Type (ADT).

4. Data Encapsulation

Data Encapsulation means wrapping of data and functions into a single unit (i.e. class). It is most

useful feature of class. The data is not easy to get to the outside world and only those functions

which are enclosed in the class can access it.

These functions provide the boundary between Object‘s data and program. This insulation of

data from direct access by the program is called as Data hiding.

For example:

Vehicle

Car

MH-01 1234

COLOUR=Red COST=4,00,000

Data, process/Functions

 Information in Information out

Fig1.5: Encapsulation

5. Inheritance

Inheritance is the process by which objects of one class can get the properties of objects of

another class. Inheritance means one class of objects inherits the data and behaviours from

another class. Inheritance maintains the hierarchical classification in which a class inherits from

its parents.

Inheritance provides the important feature of OOP that is reusability. That means we can include

additional characteristics to an existing class without modification. This is possible deriving a

new class from existing one.

In other words, it is property of object-oriented systems that allow objects to be built from other

objects. Inheritance allows openly taking help of the commonality of objects when constructing

new classes. Inheritance is a relationship between classes where one class is the parent class of

another (derived) class. The derived class holds the properties and behaviour of base class in

addition to the properties and behaviour of derived class.

For Example:

Fig.1.5 Inheritance

In Fig.1.5, the Santro is a part of the class Hyundai which is again part of the class car and car is

the part of the class vehicle. That means vehicle class is the parent class.

6. Polymorphism

Vehicle

Car

Hyundai

Santro Accent

(Poly means ―many‖ and morph means ―form‖). Polymorphism means the ability to take more

than one form. Polymorphism plays a main role in allocate objects having different internal

structures to share the same external interface. This means that a general class of operations may

be accessed in the same manner even though specific activities associated with each operation

may differ. Polymorphism is broadly used in implementing inheritance.

It means objects that can take on or assume many different forms. Polymorphism means that the

same operations may behave differently on different classes. Booch defines polymorphism as the

relationship of objects many different classes by some common super class. Polymorphism

allows us to write generic, reusable code more easily, because we can specify general

instructions and delegate the implementation detail to the objects involved.

For Example:

In a pay roll system, manager, office staff and production worker objects all will respond to the

compute payroll message, but the real operations performed are object particular.

Shape

Draw()

Fig.1.6 Polymorphism

7. Dynamic Binding

Binding refers to the linking of a procedure call to the code to be executed in response to the call.

Dynamic binding means that the code related with a given procedure call is not known until the

time of the call at run time.

Dynamic binding is associated polymorphism and inheritance.

1.3 Java History:

Java is a general-purpose, object-oriented programming language developed by Sun

Microsystems of USA in 1991.Originally called Oak by James Gosling (one of the inventor of

the language). Java was invented for the development of software for cunsumer electronic

devices like TVs, tosters, etc. The main aim had to make java simple, portable and reliable.

Java Authors: James , Arthur Van , and others

Rectangle Object

 Draw (Rectangle)

Square Object

Draw (Square)
Circle Object

Draw (Circle)

Following table shows the year and beginning of Java.

Year Progress

1990 Sun decided to developed software that could be used for electronic devices.

And the project called as Green Project head by James Gosling.

1991 Announcement of a new language named ―Oak‖

1992 The team verified the application of their new language to manage a list of

home appliances using a hand held device.

1993 The World Wide Web appeared on the Internet and transformed the text-based

interface to a graphical rich environment.

1994 The team developed a new Web browsed called ―Hot Java‖ to locate and run

Applets.

1995 Oak was renamed to Java, as it did not survive ―legal‖ registration. Many

companies such as Netscape and Microsoft announced their support for Java.

1996 Java language is now famous for Internet programming as well as a general

purpose OO language.

1997 Sun releases Java Development Kit(JDK 1.1)

1998 Sun releases Software Development Kit (SDK 1.2)

1999 Sun releases Java 2 platform Standard Edition (J2SE) and Enterprise

Edition(J2EE).

2000 J2SE with SDK 1.3 was released.

2002 J2SE with SDK 1.4 was released.

2004 J2SE with JDK 5.0 was released.

1.4 JAVA Features:

As we know that the Java is an object oriented programming language developed by Sun

Microsystems of USA in 1991. Java is first programming language which is not attached with

any particular hardware or operating system. Program developed in Java can be executed

anywhere and on any system.

Features of Java are as follows:

1. Compiled and Interpreted

2. Platform Independent and portable

3. Object- oriented

4. Robust and secure

5. Distributed

6. Familiar, simple and small

7. Multithreaded and Interactive

8. High performance

9. Dynamic and Extensible

1. Compiled and Interpreted

Basically a computer language is either compiled or interpreted. Java comes together both

these approach thus making Java a two-stage system.

Java compiler translates Java code to Bytecode instructions and Java Interpreter generate

machine code that can be directly executed by machine that is running the Java program.

2. Platform Independent and portable

Java supports the feature portability. Java programs can be easily moved from one computer

system to another and anywhere. Changes and upgrades in operating systems, processors and

system resources will not force any alteration in Java programs. This is reason why Java has

become a trendy language for programming on Internet which interconnects different kind of

systems worldwide. Java certifies portability in two ways.

First way is, Java compiler generates the bytecode and that can be executed on any machine.

Second way is, size of primitive data types are machine independent.

3. Object- oriented

Java is truly object-oriented language. In Java, almost everything is an Object. All program code

and data exist in objects and classes. Java comes with an extensive set of classes; organize in

packages that can be used in program by Inheritance. The object model in Java is trouble-free

and easy to enlarge.

4. Robust and secure

Java is a most strong language which provides many securities to make certain reliable code. It is

design as garbage –collected language, which helps the programmers virtually from all memory

management problems. Java also includes the concept of exception handling, which detain

serious errors and reduces all kind of threat of crashing the system.

Security is an important feature of Java and this is the strong reason that programmer use

this language for programming on Internet.

The absence of pointers in Java ensures that programs cannot get right of entry to memory

location without proper approval.

5. Distributed

Java is called as Distributed language for construct applications on networks which can

contribute both data and programs. Java applications can open and access remote objects on

Internet easily. That means multiple programmers at multiple remote locations to work together

on single task.

6. Simple and small

Java is very small and simple language. Java does not use pointer and header files, goto

statements, etc. It eliminates operator overloading and multiple inheritance.

7. Multithreaded and Interactive

Multithreaded means managing multiple tasks simultaneously. Java maintains multithreaded

programs. That means we need not wait for the application to complete one task before starting

next task. This feature is helpful for graphic applications.

8. High performance

Java performance is very extraordinary for an interpreted language, majorly due to the use of

intermediate bytecode. Java architecture is also designed to reduce overheads during runtime.

The incorporation of multithreading improves the execution speed of program.

9. Dynamic and Extensible

Java is also dynamic language. Java is capable of dynamically linking in new class, libraries,

methods and objects. Java can also establish the type of class through the query building it

possible to either dynamically link or abort the program, depending on the reply.

Java program is support functions written in other language such as C and C++, known as native

methods.

1.5 Comparison in Java and C++

 Java C++

1 Java is true Object-oriented

language.

C++ is basically C with Object-oriented

extension.

2 Java does not support operator

overloading.

C++ supports operator overloading.

3 It supports labels with loops and

statement blocks

It supports goto statement.

4 Java does not have template

classes as in C++.

C++ has template classes.

5 Java compiled into byte code for

the Java Virtual Machine. The

source code is independent on

operating system.

Source code can be written to be platform

independent and written to take advantage

of platform.C++ typically compiled into

machine code.

6 Java does not support multiple

inheritance of classes but it

supports interface.

C++ supports multiple inheritance of

classes.

7 Runs in a protected virtual

machine.

Exposes low-level system facilities.

8 Java does not support global

variable. Every variable should

declare in class.

C++ support global variable.

9 Java does not use pointer. C++ uses pointer.

10 It Strictly enforces an object

oriented programming paradigm.
It Allows both procedural programming

and object-oriented programming.

11 There are no header files in Java. We have to use header file in C++.

1.6 Java Virtual machine:

http://en.wikipedia.org/wiki/JVM
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Procedural_programming
http://en.wikipedia.org/wiki/Object-oriented_programming

As we know that all programming language compilers convert the source code to machine

code.Same job done by Java Compiler to run a Java program, but the difference is that Java

compiler convert the source code into Intermediate code is called as bytecode. This machine

is called the Java Virtual machine and it exits only inside the computer memory.

Following figure shows the process of compilation.

 Source Code Byte Code

The Virtual machine code is not machine specific. The machine specific code is generated. By Java

interpreter by acting as an intermediary between the virtual machine and real machines shown below

 Virtual machine Real Machine

Java Object Framework act as the intermediary between the user programs and the virtual machine

which in turn act as the intermediary between the operating system and the Java Object Framework.

Operating System

Java Virtual Machine

Java Object Framework

Compiler and Interpreter

User Application Programs

 Byte Code Machine code

 Code

 Java

Interpreter

 Java

Program

 Virtual

Machine

 Java

Compiler

User

Fig: Layers of Interaction for Java programs

1.7 Java Environment:

Java environment includes a number of development tools, classes and methods. The

development tools are part of the system known as Java Development Kit (JDK) and the classes

and methods are part of the Java Standard Library (JSL), also known as the Application

Programming Interface (API).

Java Development kit (JDK) – The JDK comes with a set of tools that are used for developing

and running Java program. It includes:

1. Appletviewer(It is used for viewing the applet)

2. Javac(It is a Java Compiler)

3. Java(It is a java interpreter)

4. Javap(Java diassembler,which convert byte code into program

description)

5. Javah(It is for java C header files)

6. Javadoc(It is for creating HTML document)

7. Jdb(It is Java debugger)

For compiling and running the program we have to use following commands:

a) javac (Java compiler)

In java, we can use any text editor for writing program and then save that program with

―.java‖ extension. Java compiler convert the source code or program in bytecode and

interpreter convert ―.java‖ file in ―.class‖ file.

Syntax:

C:\javac filename.java

If my filename is ―abc.java‖ then the syntax will be

C:\javac abc.java

b) java(Java Interpreter)

As we learn that, we can use any text editor for writing program and then save that

program with ―.java‖ extension. Java compiler convert the source code or program in

bytecode and interpreter convert ―.java‖ file in ―.class‖ file.

Syntax:

 C:\java filename

If my filename is abc.java then the syntax will be

 C:\java abc

1.5 Simple Java Program:

 class FirstProgram

{

 public static void main(String args[])

{

System.out.println(―This is my first program‖);

}

}

 The file must be named ―FirstProgram.java‖ to equivalent the class name containing the

main method.

 Java is case sensitive. This program defines a class called ―FirstProgram‖.

 A class is an object oriented term. It is designed to perform a specific task. A Java class is

defined by its class name, an open curly brace, a list of methods and fields, and a close

curly brace.

 The name of the class is made of alphabetical characters and digits without spaces, the

first character must be alphabetical.

 The line ―public static void main (String [] args)‖ shows where the program will start

running. The word main means that this is the main method –

The JVM starts running any program by executing this method first.

 The main method in ―FirstProgram.java‖ consists of a single statement

System.out.println("This is my first program");

 The statement outputs the character between quotes to the console.

Above explanation is about how to write program and now we have to learn where to

write program and how to compile and run the program.

For this reason, the next explanation is showing the steps.

1. Edit the program by the use of Notepad.

2. Save the program to the hard disk.

3. Compile the program with the javac command.(Java compiler)

4. If there are syntax errors, go back to Notepad and edit the program.

5. Run the program with the java command.(Java Interpreter)

6. If it does not run correctly, go back to Notepad and edit the program.

7. When it shows result then stop.

Summary:

In this unit, we learn the concept of Object Oriented Programming, Introduction of Java, History

of Java, Features of Java, Comparison between C++ and Java, Java virtual Machine and Java

Environment.

Questions and Answers:

Q.1) Explain the concept of OOPs.

Ans: refer 1.2

Q.2) Explain JVM?

Ans: refer 1.6

Q.3)Explain the features of JAVA?

Ans: refer 1.4

Q.4) Explain Difference between C++ and JAVA?

Ans: refer 1.5

2

Data Types, Variables and Constants

Unit Structure
2.1 Datatypes

 2.1.1 Integer data type

2.1.2 Floating point data type

2.1.3 Character data type

 2.1.4 Boolean data type

2.2 Mixing Data types

2.3 Variables

 2.3.1 Variable name

2.4 Constants

 2.4.1 Integer Constant

2.4.2 Real Constant

2.4.3 Character Constant

2.4.4 String Constant

2.4.5 Symbolic constant

2.4.6 Backslash character constant

2.5 Comments

2.6 Command line arguments

2.7 Summary

2.8 Questions

2.1 Data types:

 A data type is a scheme for representing values. An example is int which is the Integer, a

data type.

 Values are not just numbers, but any manner of data that a computer can process.

 The data type defines the kind of data that is represented by a variable.

 As with the keyword class, Java data types are case sensitive.

 There are two types of data types

 primitive data type

 non-pimitive data type

In primitive data types, there are two categories

 numeric means Integer, Floating points

 Non-numeric means Character and Boolean

In non-pimitive types, there are three categories

 classes

 arrays

 interface

Following table shows the datatypes with their size and ranges.

Fig: Datatypes with size and range

2.1.1 Integer data type:

Integer datatype can hold the numbers (the number can be positive number or negative

number). In Java, there are four types of integer as follows:

 byte

 short

 int

 long

We can make ineger long by adding ‗l‘ or ‗L‘ at the end of the number.

2.1.2 Floating point data type:

It is also called as Real number and when we require accuracy then we can use it.

There are two types of floating point data type.

Data type Size (byte) Range

byte 1 -128 to 127

boolean 1 True or false

char 2 A-Z,a-z,0-9,etc.

short 2 -32768 to 32767

Int 4 (about) -2 million to 2 million

long 8 (about) -10E18 to 10E18

float 4 -3.4E38 to 3.4E18

double 8 -1.7E308 to 1.7E308

 float

 double

It is represent single and double precision numbers. The float type is used for single precision

and it uses 4 bytes for storage space. It is very useful when we require accuracy with small

degree of precision. But in double type, it is used for double precision and uses 8 bytes of starage

space. It is useful for large degree of precision.

2.1.3 Character data type:

It is used to store single character in memory. It uses 2 bytes storage space.

2.1.4 Boolean data type:

It is used when we want to test a particular condition during the excution of the program. There

are only two values that a boolean type can hold: true and false.

Boolean type is denoted by the keyword boolean and uses only one bit of storage.

Following program shows the use of datatypes.

Program:

import java.io.DataInputStream;

class cc2

{

public static void main(String args[]) throws Exception

{

DataInputStream s1=new DataInputStream(System.in);

byte rollno;

int marks1,marks2,marks3;

float avg;

System.out.println("Enter roll number:");

rollno=Byte.parseByte(s1.readLine());

System.out.println("Enter marks m1, m2,m3:");

marks1=Integer.parseInt(s1.readLine());

marks2=Integer.parseInt(s1.readLine());

marks3=Integer.parseInt(s1.readLine());

avg = (marks1+marks2+marks3)/3;

System.out.println("Roll number is="+rollno);

System.out.println("Average is="+avg);

}

}

Output:

C:\cc>java cc2

Enter roll number:

07

Enter marks m1, m2,m3:

66

77

88

Roll number is=7

Average is=77.0

2.2 Mixing Data types:

Java allows mixing of constants and variables of different types in an expression, but during

assessment it hold to very strict rules of type conversion.

When computer consider operand and operator and if operands are different types then type is

automatically convert in higher type.

Following table shows the automatic type conversion.

 char byte short int long float double

Char int int int int long float double

Byte int int int int long float double

Short int int int int long float double

Int int int int int long float double

Long long long long long long float double

Float float float float float float float double

double double double double double double double double

2.3 Variables:

Variables are labels that express a particular position in memory and connect

it with a data type.

The first way to declare a variable: This specifies its data type, and reserves memory for it. It

assigns zero to primitive types and null to objects.

dataType variableName;

The second way to declare a variable: This specifies its data type, reserves memory for it, and

puts an initial value into that memory. The initial

value must be of the correct data type.

dataType variableName = initialValue;

The first way to declare two variables: all of the same data type, reserves memory for each.

dataType variableNameOne, variableNameTwo;

The second way to declare two variables: both of the same data type, reserves

memory, and puts an initial value in each variable.

dataType variableNameI = initialValueI, variableNameII=initialValueII;

2.3.1 Variable name:

 Use only the characters ‗a‘ through ‗z‘, ‗A‘ through ‗Z‘, ‗0‘ through ‗9‘, character ‗_‘,

and character ‗$‘.

 A name cannot include the space character.

 Do not begin with a digit.

 A name can be of any realistic length.

 Upper and lower case count as different characters.

 A name cannot be a reserved word (keyword).

 A name must not previously be in utilized in this block of the program.

2.4 Constant:

Constant means fixed value which is not change at the time of execution of program. In Java,

there are two types of constant as follows:

 Numeric Constants

 Integer constant

 Real constant

 Character Constants

 Character constant

 String constant

2.4.1 Integer Constant:

An Integer constant refers to a series of digits. There are three types of integer as follows:

a) Decimal integer

Embedded spaces, commas and characters are not alloed in between digits.

For example:

23 411

7,00,000

17.33

b) Octal integer

It allows us any sequence of numbers or digits from 0 to 7 with leading 0 and it is called as

Octal integer.

For example:

011

00

0425

c) Hexadecimal integer

It allows the sequence which is preceded by 0X or 0x and it also allows alphabets from ‗A‘ to

‗F‘ or ‗a‘ to ‗f‘ (‗A‘ to ‗F‘ stands for the numbers ‗10‘ to ‗15‘) it is called as Hexadecimal

integer.

For example:

0x7

00X

0A2B

2.4.2 Real Constant

It allows us fractional data and it is also called as folating point constant.

It is used for percentage, height and so on.

For example:

0.0234

0.777

-1.23

2.4.3 Character Constant

It allows us single character within pair of single coute.

For example:

‗A‘

‗7‘

‗\‘

2.4.4 String Constant

It allows us the series of characters within pair of double coute.

For example:

―WELCOME‖

―END OF PROGRAM‖

―BYE …BYE‖

―A‖

2.4.5 Symbolic constant:

In Java program, there are many things which is requires repeatedly and if we want to make

changes then we have to make these changes in whole program where this variable is used. For

this purpose, Java provides ‗final‘ keyword to declare the value of variable as follows:

Syntax:

final type Symbolic_name=value;

For example:

If I want to declare the value of ‗PI‘ then:

final float PI=3.1459

the condition is, Symbolic_name will be in capital letter(it shows the difference between normal

variable and symblic name) and do not declare in method.

2.4.6 Backslash character constant:

Java support some special character constant which are given in following table.

Constant Importance

‗\b‘ Back space

‗\t‘ Tab

‗\n‘ New line

‗\\‘ Backslash

‗\‖ Single coute

‗\‖‘ Double coute

2.5 Comments:

A comment is a note written to a human reader of a program. The program

compiles and runs exactly the same with or without comments. Comments start

with the two characters ―//‖ (slash slash). Those characters and everything that follows them on

the same line are ignored by the java compiler.

everything between the two characters ―/*‖and the two characters ―*/‖ are unobserved by the

compiler. There can be many lines of comments between the ―/*‖ and the ―*/‖.

2.6 Command line arguments:

Command line arguments are parameters that are supplied to the application program at the time

of invoking its execution. They must be supplied at the time of its execution following the file

name.

In the main () method, the args is confirmed as an array of string known as string objects. Any

argument provided in the command line at the time of program execution, are accepted to the

array args as its elements. Using index or subscripted entry can access the individual elements of

an array. The number of element in the array args can be getting with the length parameter.

For example:

class Add

{

public static void main(String args[])

 {

 int a=Integer.parseInt(args[0]);

 int b=Integer.parseInt(args[1]);

 int c=a+b;

 System.out.println(―Addition is=‖+c);

 }

}

output:

c:\javac Add.java

c:\java Add 5 2

7

2.7 Summary:

In this unit, we learn the concept of dtata types, variable and constants with example. In

constants, we gain knowledge of back slash character constant. Additionaly we study the

concept of command line argument and comments which is also essential for us.

2.8 Question:

1. Explain types of Datatypes with example?

Ans: refer 2.1

2. Explain Constants with example?

Ans: refer 2.4

3

Tokens in Java

Unit Structure
3.1 Introduction

3.2 Tokens in Java

3.2.1 Identifiers

3.2.2 Litrals

3.2.3 Keywords

3.2.4 Operator

3.2.4.1 Arithmetic operators

3.2.4.2 Logical operators

3.2.4.3 Relational operators

3.2.4.4 Assignment operators

3.2.4.5 Conditional operators

3.2.4.6 Increment and decrement operators

3.2.4.7 Bit-wise operator

3.2.5 Separators

3.3 Operator Precedence in Java

3.4 Summary

3.1 Introduction:

A Java program is basically a set of classes. A class is defined by a set of declaration statements

and methods or functions. Most statements contain expressions, which express the actions

carried out on information or data. Smallest indivisual thing in a program are known as tokens.

The compiler recognizes them for building up expression and statements.

3.2 Tokens in Java:

There are five types of token as follows:

1. Literals

2. Identifiers

3. Operators

4. Separators

3.2.1 Literals:

Literals in Java are a sequence of characters (digits, letters and other characters) that characterize

constant values to be stored in variables. Java language specifies five major types of literals are

as follows:

1. Integer literals

2. Floating point literals

3. Character literals

4. String literals

5. Boolean literals

3.2.2 Identifiers:

Identifiers are programmer-created tokens. They are used for naming classes, methods, variables,

objects, labels, packages and interfaces in a program. Java identifiers follow the following rules:

1. They can have alphabets, digits, and the underscore and dollar sign characters.

2. They must not start with a digit.

3. Uppercase and lowercase letters are individual.

4. They can be of any length.

Identifier must be meaningful, easily understandable and descriptive.

For example:

Private and local variables like ―length‖.

Name of public methods and instance variables begin with lowercase letter like ―addition‖

3.2.3 Keywords:

Keywords are important part of Java. Java language has reserved 50 words as keywords.

Keywords have specific meaning in Java. We cannot use them as variable, classes and method.

Following table shows keywords.

abstract char catch boolean

default finally do implements

if long throw private

package static break double

this volatile import protected

class throws byte else

float final public transient

native instanceof case extends

int null const new

return try for switch

interface void while synchronized

short continue goto super

assert const

3.2.4 Operator:

Java carries a broad range of operators. An operator is symbols that specify operation to be

performed may be certain mathematical and logical operation. Operators are used in programs to

operate data and variables. They frequently form a part of mathematical or logical expressions.

Categories of operators are as follows:

1. Arithmetic operators

2. Logical operators

3. Relational operators

4. Assignment operators

5. Conditional operators

6. Increment and decrement operators

7. Bit wise operators

3.2.4.1 Arithmetic operators:

Arithmetic operators are used to make mathematical expressions and the working out as same in

algebra. Java provides the fundamental arithmetic operators. These can operate on built in data

type of Java.

Following table shows the details of operators.

Operator Importance/ significance

+ Addition

- Subtraction

/ Division

* Multiplication

% Modulo division or remainder

Now the following programs show the use of arithmetic operators.

“+” operator in Java:

In this program, we have to add two integer numbers and display the result.

class AdditionInt

{

 public static void main (String args[])

 {

 int a = 6;

 int b = 3;

 System.out.println("a = " + a);

 System.out.println("b =" + b);

 int c = a + b;

 System.out.println("Addition = " + c);

 }

}

Output:

a= 6

b= 3

Addition=9

“-” operator in Java:

class SubstractionInt

{

 public static void main (String args[])

 {

 int a = 6;

 int b = 3;

 System.out.println("a = " + a);

 System.out.println("b =" + b);

 int c = a - b;

 System.out.println("Subtraction= " + c);

}

}

Output:

a=6

b=3

Subtraction=3

“*” operator in Java:

Class MultiplicationInt

{

 public static void main (String args[])

 {

 int a = 6;

 int b = 3;

 System.out.println("a = " + a);

 System.out.println("b =" + b);

 int c = a * b;

 System.out.println("Multiplication= " + c);

}

}

Output:

a=6

b=3

Multiplication=18

“/” operator in Java:

Class DivisionInt

{

 public static void main (String args[])

 {

 int a = 6;

 int b = 3;

 System.out.println("a = " + a);

 System.out.println("b =" + b);

 c = a / b;

 System.out.println("division=" + c);

}

}

Output:

a=6

b=3

Division=3

Remainder or modulus operator (%) in Java:

Class Remainderoptr

{

 public static void main (String args[])

 {

 int a = 6;

 int b = 3;

 System.out.println("a = " + a);

 System.out.println("b =" + b);

 c = a % b;

 System.out.println("remainder=" + c);

 }

 }

Output:

a=6

b=3

Remainder=0

 When both operands in the expression are integers then the expression is called Integer

expression and the opration is called Integer arithmetic.

 When both operands in the expression are real then the expression is called Real

expression and the opration is called Real arithmetic.

 When one operand in the expression is integer and other is float then the expression is

called Mixed Mode Arithmetic expression and the opration is called Mixed Mode

Arithmetic operation.

As we learn the Arithmetic operation on integer data and store data in integer variable. But the

following program shows the use of operators with integer data and store data in float variable.

Program: write a program to calculate average of three numbers.

class Avg1

{

public static void main(String args[])

{

int a=3;

 int b=3;

 int c=4;

 int avg;

avg=a+b+c;

avg=avg/3;

System.out.println(―Avg of three numbers=‖+avg);

}

}

Output:

Avg of three numbers=3

3.2.4.2 Logical operators:

When we want to form compound conditions by combining two or more relations, then we can

use logical operators.

Following table shows the details of operators.

Operators Importance/ significance

|| Logical – OR

&& Logical –AND

! Logical –NOT

The logical expression defer a value of true or false. Following table shows the truth table of

Logical – OR and Logical – AND.

Truth table for Logical – OR operator:

Operand1 Operand3 Operand1 || Operand3

T T T

T F T

F T T

F F F

T - True

F - False

Truth table for Logical – AND operator:

Operand1 Operand3 Operand1 && Operand3

T T T

T F F

F T F

F F F

T - True

F – False

Now the following program shows the use of Logical operators.

class LogicalOptr

{

 public static void main (String args[])

 {

 boolean a = true;

 boolean b = false;

 System.out.println("a||b = " +(a||b));

 System.out.println("a&&b = "+(a&&b));

 System.out.println("a! = "+(!a));

 }

 }

Output:

a||b = true

a&&b = false

a! = false

3.2.4.3 Relational Operators:

When evaluation of two numbers is performed depending upon their relation, assured decisions

are made.

The value of relational expression is either true or false.

If A=7 and A < 10 is true while 10 < A is false.

Following table shows the details of operators.

Operator Importance/ significance

> Greater than

< Less than

!= Not equal to

>= Greater than or equal to

<= Less than or equal to

Now, following examples show the actual use of operators.

1) If 10 > 30 then result is false

2) If 40 > 17 then result is true

3) If 10 >= 300 then result is false

4) If 10 <= 10 then result is true

Now the following program shows the use of operators.

(1) Program 1:

class Reloptr1

{

 public static void main (String args[])

 {

 int a = 10;

 int b = 30;

 System.out.println("a>b = " +(a>b));

 System.out.println("a<b = "+(a<b));

 System.out.println("a<=b = "+(a<=b));

 }

 }

Output:

a>b = false

a<b = true

a<=b = true

(2) Program 3

class Reloptr3

{

 public static void main (String args[])

 {

 int a = 10;

 int b = 30;

 int c = 30;

 System.out.println("a>b = " +(a>b));

 System.out.println("a<b = "+(a<b));

 System.out.println("a<=c = "+(a<=c));

 System.out.println("c>b = " +(c>b));

 System.out.println("a<c = "+(a<c));

 System.out.println("b<=c = "+(b<=c));

 }

 }

Output:

a>b = false

a<b = true

a<=c = true

c>b = true

a<c = true

b<=c = true

3.2.4.4 Assignment Operators:

Assignment Operators is used to assign the value of an expression to a variable and is also called

as Shorthand operators.

Variable_name binary_operator = expression

Following table show the use of assignment operators.

Simple Assignment Operator Statement with shorthand Operators

A=A+1 A+=1

A=A-1 A-=1

A=A/(B+1) A/=(B+1)

A=A*(B+1) A*=(B+1)

A=A/C A/=C

A=A%C A%=C

These operators avoid repetition, easier to read and write.

Now the following program shows the use of operators.

class Assoptr

{

 public static void main (String args[])

 {

 int a = 10;

 int b = 30;

 int c = 30;

 a+=1;

 b-=3;

 c*=7;

 System.out.println("a = " +a);

 System.out.println("b = "+b);

 System.out.println("c = "+c);

 }

 }

Output:

a = 11

b = 18

c = 310

3.2.4.5 Conditional Operators:

The character pair ?: is a ternary operator of Java, which is used to construct conditional

expressions of the following form:

Expression1 ? Expression3 : Expression3

The operator ? : works as follows:

Expression1 is evaluated if it is true then Expression3 is evaluated and becomes the value

of the conditional expression. If Expression1 is false then Expression3 is evaluated and

its value becomes the conditional expression.

For example:

A=3;

B=4;

C=(A<B)?A:B;

C=(3<4)?3:4;

C=4

Now the following program shows the use of operators.

class Coptr

{

 public static void main (String args[])

 {

 int a = 10;

 int b = 30;

 int c;

 c=(a>b)?a:b;

 System.out.println("c = " +c);

 c=(a<b)?a:b;

 System.out.println("c = " +c);

 }

 }

Output:

c = 30

c = 10

program3:Write a program to check whether number is positive or negative.

class PosNeg

{

 public static void main(String args[])

 {

 int a=10;

 int flag=(a<0)?0:1;

 if(flag==1)

 System.out.println(―Number is positive‖);

 else

 System.out.println(―Number is negative‖);

 }

}

Output:

Number is positive

3.2.4.6 Increment and Decrement Operators:

The increment operator ++ adds 1 to a variable. Usually the variable is an integer type,

but it can be a floating point type. The two plus signs must not be split by any character.

Usually they are written immediately next to the variable.

Following table shows the use of operators.

Expression Process Example end result

A++ Add 1 to a variable

after use.

int A=10,B;

B=A++;

A=11

B=10

++A Add 1 to a variable

before use.

int A=10,B;

B=++A;

A=11

B=11

A-- Subtract 1 from a

variable after use.

int A=10,B;

B=A--;

A=9

B=10

--A Subtract 1 from a

variable before use.

int A=10,B;

B=--A;

A=9

B=9

Now the following program shows the use of operators.

class IncDecOp

{

public static void main(String args[])

{

int x=1;

int y=3;

int u;

int z;

u=++y;

z=x++;

System.out.println(x);

System.out.println(y);

System.out.println(u);

System.out.println(z);

}

}

Output:

3

4

4

1

3.2.4.7 Bit Wise Operators:

Bit wise operator execute single bit of their operands. Following table shows bit wise operator:

Operator Importance/ significance

| Bitwise OR

& Bitwise AND

&= Bitwise AND assignment

|= Bitwise OR assignment

^ Bitwise Exclusive OR

<< Left shift

>> Right shift

~ One‘s complement

Now the following program shows the use of operators.

(1) Program 1

class Boptr1

{

 public static void main (String args[])

 {

 int a = 4;

 int b = a<<3;

 System.out.println("a = " +a);

 System.out.println("b = " +b);

 }

 }

Output:

a =4

b =16

(2) Program 3

Class Boptr3

{

public static void main (String args[])

 {

 int a = 16;

 int b = a>>3;

 System.out.println("a = " +a);

 System.out.println("b = " +b);

 }

 }

Output:

a = 16

b = 3

(Please refer following table)

356 138 64 33 16 8 4 3 1

3
8

3
7

3
6

3
5

3
4

3
3

3
3

3
1

3
0

3.2.5 Separator:

Separators are symbols. It shows the separated code.they describe function of our code.

Name use

() Parameter in method definition, containing statements for conditions,etc.

{} It is used for define a code for method and classes

[] It is used for declaration of array

; It is used to show the separate statement

, It is used to show the separation in identifier in variable declarartion

. It is used to show the separate package name from sub-packages and classes,

separate variable and method from reference variable.

3.3 Operator Precedence in Java:

An arithmetic expression without any parentheses will be calculated from left to right using the

rules of precedence of operators.

There are two priority levels of arithmetic operators are as follows:

(a) High priority (* / %)

(b) Low priority (+ -)

The evaluation process includes two left to right passes through the expression. During the first

pass, the high priority operators are applied as they are encountered.

During the second pass, the low priority operators are applied as they are encountered.

For example:

Z=A-B/3+C*3-1

When A=10, B=13, C=3

First pass:

Z=10-(13/3) + (3*3)-1

Z=10-4+3-1

Second pass:

Z=6+3-1

Z=7

Answer is=7

Following table shows associativity of operators.

Operator Associativity Rank

[] Left to right 1

() Left to right

3

. Left to right

- Right to left

++ Right to left

-- Right to left

! Right to left

~ Right to left

(type) Right to left

* Left to right

3 / Left to right

% Left to right

+ Left to right
4

- Left to right

<< Left to right

5 >> Left to right

>>> Left to right

< Left to right

6

<= Left to right

> Left to right

>= Left to right

Instanceof Left to right

== Left to right
7

!= Left to right

& Left to right 8

^ Left to right 9

| Left to right 10

&& Left to right 11

|| Left to right 13

?: Right to left 13

= Right to left 14

3.4 Summary:

In this unit, we learn the cocept of tokens in java.There are 4 types of tokens as we learn:

1. Literals

2. Identifiers

3. Operators

 Types of operators are:

1. Arithmetic operators

2. Logical operators

3. Relational operators

4. Assignment operators

5. Conditional operators

6. Increment and decrement operators

7. Bit wise operator

We learn these operators with example.

4. separator

4

 Control Structure

Unit Structure

4.1 Introduction

4.2 Control structure

4.2.1 Selection Statement

4.2.1.1 if statement

4.2.1.1.1 Simple if statement

4.2.1.1.2 The if…else statement

 4.2.1.1.3 Nesting of if-else statement

4.2.1.2 switch statement

4.2.2 Iteration Statement

 4.2.2.1 for loop

 4.2.2.2 while loop

 4.2.2.3 do-while loop

4.2.3 Jump in Statement

4.3 Summary

4.1 Introduction:

In Java, program is a set of statements and which are executed sequentially in order in which they

appear. In that statements, some calculation have need of executing with some conditions and for that

we have to provide control to that statements. In other words, Control statements are used to provide

the flow of execution with condition.

In this unit, we will learn the control structure in detail.

4.2 Control Structure:

In java program, control structure is can divide in three parts:

 Selection statement

 Iteration statement

 Jumps in statement

4.2.1 Selection Statement:

Selection statement is also called as Decision making statements because it provides the decision

making capabilities to the statements.

In selection statement, there are two types:

 if statement

 switch statement
These two statements are allows you to control the flow of a program with their conditions.

4.2.1.1 if Statement:

The “if statement” is also called as conditional branch statement. It is used to program execution

through two paths. The syntax of “if statement” is as follows:

Syntax:

if (condition)

{

Statement 1;

Statement 2;

...

}

else

{

Statement 3;

Statement 4;

...

}

The “if statement” is a commanding decision making statement and is used to manage the flow of

execution of statements. The “if statement” is the simplest one in decision statements. Above syntax is

shows two ways decision statement and is used in combination with statements.

Following figure shows the “if statement”

 true

 False

4.2.1.1.1Simple if statement:

Syntax:

If (condition)

{

Statement block;

}

Condition

?

Statement-a;

In statement block, there may be single statement or multiple statements. If the condition is true then

statement block will be executed. If the condition is false then statement block will omit and statement-

a will be executed.

Following figure shows the flow of statement.

 false

 True

Statement Block

Statement ‘a’

Condition?

4.2.1.1.2 The if…else statement:

Syntax:

If (condition)

{

True - Statement block;

}

else

{

False - Statement block;

}

Statement-a;

If the condition is true then True - statement block will be executed. If the condition is false then False -

statement block will be executed. In both cases the statement-a will always executed.

Following figure shows the flow of statement.

True –

Statement

Block

False –

Statement

Block

Statement ‘a’

Condition?

Following program shows the use of if statement.

Program: write a program to check whether the number is positive or negative.

import java.io.*;

class NumTest

{

 public static void main (String[] args) throws IOException

 {

 int Result=11;

 System.out.println("Number is"+Result);

 if (Result < 0)

 {

 System.out.println("The number "+ Result +" is negative");

 }

 else

 {

 System.out.println("The number "+ Result +" is positive");

 }

 System.out.println("------- * ---------");

 }

}

Output:

C:\MCA>java NumTest

Number is 11

The number 11 is positive

------- * ---------

(All conditional statements in Java require boolean values, and that's what the ==, <, >, <=, and >=

operators all return. A boolean is a value that is either true or false. If you need to set a boolean variable

in a Java program, you have to use the constants true and false. Boolean values are no more integers

than are strings).

For example: write a program to check whether the number is divisible by 2 or not.

import java.io.*;

class divisorDemo

{

public static void main(String[] args)

{

 int a =11;

 if(a%2==0)

 {

 System.out.println(a +" is divisible by 2");

 }

 else

 {

 System.out.println(a+" is not divisible by 2");

 }

}

}

Output:

C:\MCA>java divisorDemo

11 is not divisible by 2

4.2.1.1.3 Nesting of if-else statement:

Syntax:

if (condition1)

{

If(condition2)

{

Statement block1;

}

else

{

Statement block2;

}

}

else

{

Statement block3;

}

Statement 4;

If the condition1 is true then it will be goes for condition2. If the condition2 is true then statement

block1 will be executed otherwise statement2 will be executed. If the condition1 is false then statement

block3 will be executed. In both cases the statement4 will always executed.

For example:Write a program to find out greatest number from three numbers.

class greatest

 {

 public static void main(String args[])

 {

 int a=10;

 int b=20;

 int c=3;

 if(a>b)

 {

 if(a>c)

Statement3 Statement2 Statement1

Statement4

Condition1

Condition2

false

false

true

true

 {

 System.out.println("a is greater number");

 }

 else

 {

 System.out.println("c is greater number");

 }

 }

 else

 {

 if(c>b)

 {

 System.out.println("c is greater number");

 }

 else

 {

 System.out.println("b is greater number");

 }

 }

 }

 }

Output:

C:\MCA>java greatest

b is greater number

4.2.1.2 switch statement:

In Java, switch statement check the value of given variable or statement against a list of case values and

when the match is found a statement-block of that case is executed. Switch statement is also called as

multiway decision statement.

Syntax:

 switch(condition)// condition means case value

{

case value-1:statement block1;break;

case value-2:statement block2;break;

case value-3:statement block3;break;

…

default:statement block-default;break;

}

statement a;

The condition is byte, short, character or an integer. value-1,value-2,value-3,…are constant and is called as

labels. Each of these values be matchless or unique with the statement. Statement block1, Statement block2,

Statement block3,..are list of statements which contain one statement or more than one statements. Case

label is always end with “:” (colon).

Program:write a program for bank account to perform following operations.

-Check balance
-withdraw amount
-deposit amount

For example:

import java.io.*;

class bankac

 {

 public static void main(String args[]) throws Exception

 {

 int bal=20000;

 int ch=Integer.parseInt(args[0]);

 System.out.println("Menu");

 System.out.println("1:check balance");

 System.out.println("2:withdraw amount... plz enter choice and amount");

 System.out.println("3:deposit amount... plz enter choice and amount");

 System.out.println("4:exit");

 switch(ch)

 {

 case 1:System.out.println("Balance is:"+bal);

 break;

 case 2:int w=Integer.parseInt(args[1]);

 if(w>bal)

 {

 System.out.println("Not sufficient balance");

 }

 bal=bal-w;

 System.out.println("Balance is"+bal);

 break;

 case 3:int d=Integer.parseInt(args[1]);

 bal=bal+d;

 System.out.println("Balance is"+bal);

 break;

 default:break;

 }

 }

 }

Output:

C:\MCA>javac bankac.java

C:\MCA>java bankac 1

Menu

1:check balance

2:withdraw amount... plz enter choice and amount

3:deposit amount... plz enter choice and amount

4:exit

Balance is:20000

C:\MCA>java bankac 2 2000

Menu

1:check balance

2:withdraw amount... plz enter choice and amount

3:deposit amount... plz enter choice and amount

4:exit

Balance is18000

C:\MCA>java bankac 3 2000

Menu

1:check balance

2:withdraw amount... plz enter choice and amount

3:deposit amount... plz enter choice and amount

4:exit

Balance is22000

C:\MCA>java bankac 4

Menu

1:check balance

2:withdraw amount... plz enter choice and amount

3:deposit amount... plz enter choice and amount

4:exit

C:\MCA>java bankac

4.2.2 Iteration Statement:

The process of repeatedly executing a statements and is called as looping. The statements may be

executed multiple times (from zero to infinite number). If a loop executing continuous then it is called as

Infinite loop. Looping is also called as iterations.

In Iteration statement, there are three types of operation:

 for loop

 while loop

 do-while loop

4.2.2.1 for loop:

The for loop is entry controlled loop. It means that it provide a more concious loop control structure.

Syntax:

for(initialization;condition;iteration)//iteration means increment/decrement

{

Statement block;

}

When the loop is starts, first part(i.e. initialization) is execute. It is just like a counter and provides the initial

value of loop. But the thing is, I nitialization is executed only once. The next part(i.e. condition) is executed

after the initialization. The important thing is, this part provide the condition for looping. If the condition will

satisfying then loop will execute otherwise it will terminate.

Third part(i.e. iteration) is executed after the condition. The statements that incremented or decremented

the loop control variables.

For example:

import java.io.*;

class number

{

public static void main(String args[]) throws Exception

{

int i;

System.out.println("list of 1 to 10 numbers");

for(i=1;i<=10;i++)

{

System.out.println(i);

}

}

}

Output:

C:\MCA>javac number.java

C:\MCA>java number

list of 1 to 10 numbers

1

2

3

4

5

6

7

8

9

10

Here we declare i=1 and then it check the condition that if i<10 then only loop will be executed. After first

iteration the value of i will print and it will incremented by 1. Now the value of i=2 and again we have to

check the condition and value of i will print and then increment I by 1 and so on.

4.2.2.2 while loop:

The while loop is entry controlled loop statement. The condition is evaluated, if the condition is true then the

block of statements or statement block is executed otherwise the block of statement is not executed.

Syntax:

While(condition)

{

Statement block;

}

For example:Write a program to display 1 to 10 numbers using while loop.

import java.io.*;

class number

{

public static void main(String args[]) throws Exception

{

int i=1;

System.out.println("list of 1 to 10 numbers");

while(i<=10)

{

System.out.println(i);

i++;

}

}

}

Output:

C:\MCA>javac number.java

C:\MCA>java number

list of 1 to 10 numbers

1

2

3

4

5

6

7

8

9

10

4.2.2.3 do-while loop:

In do-while loop, first attempt of loop should be execute then it check the condition.

The benefit of do-while loop/statement is that we get entry in loop and then condition will check for very first

time. In while loop, condition will check first and if condition will not satisfied then the loop will not execute.

Syntax:

do

{

Statement block;

}

While(condition);

In program,when we use the do-while loop, then in very first attempt, it allows us to get enter in loop and

execute that loop and then check the condition.

Following program show the use of do-while loop.

For example:Write a program to display 1 to 10 numbers using do-while loop.

import java.io.*;

class number

{

 public static void main(String args[]) throws Exception

 {

 int i=1;

 System.out.println("list of 1 to 10 numbers");

 do

 {

 System.out.println(i);

 i++;

 }while(i<=10);

 }

}

Output:

list of 1 to 10 numbers

1

2

3

4

5

6

7

8

9

10

4.2.3 Jumps in statement:

Statements or loops perform a set of operartions continually until the control variable will not satisfy the

condition. but if we want to break the loop when condition will satisy then Java give a permission to jump

from one statement to end of loop or beginning of loop as well as jump out of a loop.

 “break” keyword use for exiting from loop and “continue” keyword use for continuing the loop.

Following statements shows the exiting from loop by using “break” statement.

do-while loop:

do

{

………………

………………

if(condition)

{

break;//exit from if loop and do-while loop

}

……………..

……………..

}

While(condition);

………..

………..

For loop:

for(…………)

{

……………

…………..

if(…………..)

break; ;//exit from if loop and for loop

……………

……………

}

……………

…………..

While loop:

while(…………)

{

……………

…………..

if(…………..)

break; ;//exit from if loop and while loop

……………

……………

}

Following statements shows the continuing the loop by using “continue” statement.

do-while loop:

do

{

………………

………………

if(condition)

{

continue;//continue the do-while loop

}

……………..

……………..

}

While(condition);

………..

………..

For loop:

for(…………)

{

……………

…………..

if(…………..)

continue ;// continue the for loop

……………

……………

}

……………

…………..

While loop:

while(…………)

{

……………

…………..

if(…………..)

continue ;// continue the while loop

……………

……………

}

…………….

…………….

Labelled loop:

We can give label to a block of statements with any valid name.following example shows the use of label,

break and continue.

For example:

Import java.io.*;

class Demo

 {

 public static void main(String args[]) throws Exception

 {

 int j,i;

 LOOP1: for(i=1;i<100;i++)

 {

 System.out.println(““);

 if(i>=10)

 {

 break;

 }

 for(j=1;j<100;j++)

 {

 System.out.println(“$ ”);

 if(i==j)

 {

 continue LOOP1;

 }

 }

 }

 System.out.println(“ End of program “);

 }

 }

Output:

$

$ $

$ $ $

$ $ $ $

$ $ $ $ $

$ $ $ $ $ $

$ $ $ $ $ $ $

$ $ $ $ $ $ $ $

$ $ $ $ $ $ $ $ $

End of program

4.3 Summary:

In this unit, we covered Selection Statement, Iteration Statement and Jump in Statement.

 In Selection statement, we covered if statement and switch statement with example.

 In Iteration Statement, we covered for loop, while loop and do-while loop with example.

 In Jump in Statement, we covered break, continue and label with example.

5

 Classes

Unit Structure

5.1 Objective

5.2 class

5.2.1 Creating ―main‖ in a separate class

5.2.2 Methods with parameters

5.2.3 Methods with a Return Type

5.2.4 Method Overloading

5.2.5 Passing Objects as Parameters

5.2.6 Passing Values to methods and Constructor:

5.2.7 Passing Values to methods and Constructor:

5.2.8 ABSTRACT CLASSES

5.2.9 Extending the class:

5.3 Summary:

5.4 List of references

5.5 Bibliography

5.6 Model answers

5.1 Objective: In this lesson of Java Tutorial, you will learn...

 How to create class

 How to create method

 How to create constructor

5.2 class

Definition: A class is a collection of objects of similar type. Once a class is defined, any number

of objects can be produced which belong to that class.

Class Declaration

class classname

{

…

ClassBody

…

}

Objects are instances of the Class. Classes and Objects are very much related to each other.

Without objects you can't use a class.

 A general class declaration:

class name1

{

//public variable declaration

void methodname()

{

//body of method…

//Anything

}

}

Now following example shows the use of method.

class Demo

{

private int x,y,z;

public void input()

{

x=10;

y=15;

}

public void sum()

{

z=x+y;

}

public void print_data()

{

System.out.println(―Answer is =‖ +z);

}

public static void main(String args[])

{

Demo object=new Demo();

object.input();

object.sum();

object.print_data();

}

}

In program,

Demo object=new Demo();

object.input();

object.sum();

object.print_data();

In the first line we created an object.

The three methods are called by using the dot operator. When we call a method the code

inside its block is executed.

The dot operator is used to call methods or access them.

5.2.1 Creating “main” in a separate class

We can create the main method in a separate class, but during compilation you

need to make sure that you compile the class with the ―main‖ method.

class Demo

{

private int x,y,z;

public void input() {

x=10;

y=15;

}

public void sum()

{

z=x+y;

}

public void print_data()

{

System.out.println(―Answer is =‖ +z);

}

}

class SumDemo

{

public static void main(String args[])

{

Demo object=new Demo();

object.input();
object.sum();

object.print_data();

}

}

5.2.3 use of dot operator
We can access the variables by using dot operator. Following program shows the use of dot

operator.

class DotDemo

{

int x,y,z;

public void sum(){

z=x+y;

}

public void show(){

System.out.println("The Answer is "+z);

}

}

class Demo1

{

public static void main(String args[]){

DotDemo object=new DotDemo();

DotDemo object2=new DotDemo();

object.x=10;

object.y=15;

object2.x=5;

object2.y=10;

object.sum();

object.show();

object2.sum();

object2.show();

}}

output:

C:\cc>javac Demo1.java

C:\cc>java Demo1

The Answer is 25

The Answer is 15

 Instance Variable

All variables are also known as instance variable. This is because of

the fact that each instance or object has its own copy of values for the variables.

Hence other use of the ―dot” operator is to initialize the value of variable for that

instance.

5.2.4 Methods with parameters

Following program shows the method with passing parameter.

class prg

{

int n,n2,sum;

public void take(int x,int y)

{

n=x;

n2=y;

}

public void sum()

{

sum=n+n2;

}

public void print()

{

System.out.println("The Sum is"+sum);

}

}

class prg1

{

public static void main(String args[])

{

prg obj=new prg();

obj.take(10,15);

obj.sum();

obj.print();

}

}

5.2.5 Methods with a Return Type

When method return some value that is the type of that method.

For Example: some methods are with parameter but that method did not return any value that

means type of method is void. And if method return integer value then the type of method is an

integer.

Following program shows the method with their return type.

class Demo1

{

int n,n2;

public void take(int x,int y)

{

n=x;

n=y;

}

public int process()

{

return (n+n2);

}

}

class prg

{

public static void main(String args[])

{

int sum;

Demo1 obj=new Demo1();

obj.take(15,25);

sum=obj.process();

System.out.println("The sum is"+sum);

}

}

Output:

The sum is25

5.2.6 Method Overloading

Method overloading means method name will be same but each method should be different

parameter list.

class prg1

{

int x=5,y=5,z=0;

public void sum()

{

z=x+y;

System.out.println("Sum is "+z);

}

public void sum(int a,int b)

{

x=a;

y=b;

z=x+y;

System.out.println("Sum is "+z);

}

public int sum(int a)

{

x=a;

z=x+y;

return z;

}

}

class Demo

{

public static void main(String args[])

{

prg1 obj=new prg1();

obj.sum();

obj.sum(10,12);

System.out.println(+obj.sum(15));

}

}

Output:

sum is 10

sum is 22

27

5.2.7 Passing Objects as Parameters

Objects can even be passed as parameters.

class para123

{

int n,n2,sum,mul;

public void take(int x,int y)

{

n=x;

n2=y;

}

public void sum()

{

sum=n+n2;

System.out.println("The Sum is"+sum);

}

public void take2(para123 obj)

{

n=obj.n;

n2=obj.n2;

}

public void multi()

{

mul=n*n2;

System.out.println("Product is"+mul);

}

}

class DemoPara

{

public static void main(String args[])

{

para123 ob=new para123();

ob.take(3,7);

ob.sum();

ob.take2(ob);

ob.multi();

}

}

Output:

C:\cc>javac DemoPara.java

C:\cc>java DemoPara

The Sum is10

Product is21

We have defined a method ―take2” that declares an object named obj as parameter. We

have passed ob to our method. The method ―take2‖ automatically gets 3,7 as values for n

and n2.

5.2.10 Passing Values to methods and Constructor:

These are two different ways of supplying values to methods.

Classified under these two titles -

1.Pass by Value

2.Pass by Address or Reference

 Pass by Value-When we pass a data type like int, float or any other datatype to a method

or some constant values like(15,10). They are all passed by value. A copy of variable‘s

value is passed to the receiving method and hence any changes made to the values do not

affect the actual variables.

class Demopbv

{

int n,n2;

public void get(int x,int y)

{

x=x*x; //Changing the values of passed arguments

y=y*y; //Changing the values of passed arguments

}

}

class Demo345

{

public static void main(String args[])

{

int a,b;

a=1;

b=2;

System.out.println("Initial Values of a & b "+a+" "+b);

Demopbv obj=new Demopbv();

obj.get(a,b);

System.out.println("Final Values "+a+" "+b);

}

}

Output:

C:\cc>javac Demo345.java

C:\cc>java Demo345

Initial Values of a & b 1 2

Final Values 1 2

 Pass by Reference

Objects are always passed by reference. When we pass a value by reference, the reference

or the memory address of the variables is passed. Thus any changes made to the argument

causes a change in the values which we pass.

Demonstrating Pass by Reference---

class pass_by_ref

{

int n,n2;

public void get(int a,int b)

{

n=a;

n2=b;

}

public void doubleit(pass_by_ref temp)

{

temp.n=temp.n*2;

temp.n2=temp.n2*2;

}

}

class apply7

{

public static void main(String args[])

{

int x=5,y=10;

pass_by_ref obj=new pass_by_ref();

obj.get(x,y); //Pass by Value

System.out.println("Initial Values are-- ");

System.out.println(+obj.n);

System.out.println(+obj.n2);

obj.doubleit(obj); //Pass by Reference

System.out.println("Final Values are");

System.out.println(+obj.n);

System.out.println(+obj.n2);

}

}

5.2.9 ABSTRACT CLASSES

Definition: An abstract class is a class that is declared as abstract. It may or may not include

abstract methods. Abstract classes cannot be instantiated, but they can be subclass.

An abstract method is a method that is declared without an implementation (without braces, and followed

by a semicolon), like this:

abstract void studtest(int rollno, double testfees);

If a class includes abstract methods, the class itself must be declared abstract, as in:

public abstract class GraphicObject

{

 // declare fields

 // declare non-abstract methods

 abstract void draw();

}

When an abstract class is subclass, the subclass usually provides implementations for all of the

abstract methods in its parent class. However, if it does not, the subclass must also be declared

abstract.

For example: In an object-oriented drawing application, you can draw circles, rectangles, lines, Bezier

curves, and many other graphic objects. These objects all have certain states (for example: position,

orientation, line color, fill color) and behaviors (for example: moveTo, rotate, resize, draw) in common.

Some of these states and behaviors are the same for all graphic objects—for example: position, fill color,

and moveTo. Others require different implementations—for example, resize or draw. All GraphicObjects

must know how to draw or resize themselves; they just differ in how they do it. This is a perfect situation

for an abstract superclass. You can take advantage of the similarities and declare all the graphic objects to

inherit from the same abstract parent object—for example, GraphicObject, as shown in the following

figure.

How to implement above diagram concept with source code:

abstract class GraphicObject

{

 int x, y;

 ...

 void moveTo(int newX, int newY)

{

 ...

 }

 abstract void draw();

 abstract void resize();

}

Each non-abstract subclass of GraphicObject, such as Circle and Rectangle, must provide

implementations for the draw and resize methods:

class Circle extends GraphicObject {

 void draw() {

 ...

 }

 void resize() {

 ...

 }

}

class Rectangle extends GraphicObject {

 void draw() {

 ...

 }

 void resize() {

 ...

 }

}

Abstract classes are those which can be used for creation of objects. However their methods and

constructors can be used by the child or extended class. The need for abstract classes is that you

can generalize the super class from which child classes can share its methods. The subclass of an

abstract class which can create an object is called as "concrete class".

For example:

Abstract class A

{

abstract void method1();

void method2()

{

System.out.println("this is real method");

}

}

class B extends A

{

void method1()

{

System.out.println("B is execution of method1");

}

}

class demo

{

public static void main(String arg[])

{

B b=new B();

b.method1();

b.method2();

}

}

5.2.10 Extending the class:

Inheritance allows to subclass or child class to access all methods and variables of parent class.

Syntax:

class subclassname extends superclassname

{

Varables;

Methods;

…..

}

For example: calculate area and volume by using Inhertance.

class data

{

int l;

int b;

data(int c, int d)

{

l=c;

b=d;

}

int area()

{

return(l*b);

}

}

class data2 extends data

{

int h;

data2(int c,int d, int a)

{

super(c,d);

h=a;

}

int volume()

{

return(l*b*h);

}

}

class dataDemo

{

public static void main(String args[])

{

data2 d1=new data2(10,20,30);

int area1=d1.area(); //superclass method

int volume1=d1.volume();// subclass method

System.out.println("Area="+area1);

System.out.println("Volume="+volume1);

}

}

Output:

C:\cc>javac dataDemo.java

C:\cc>java dataDemo

Area=200

Volume=6000

"Is A" - is a subclass of a superclass (ex: extends)

"Has A" - has a reference to (ex: variable, ref to object).

o Access Control –

Away to limit the access others have to your code.

 Same package - can access each others‘ variables and methods, except for private members.

 Outside package - can access public classes. Next, can access members that are public. Also, can

access protected members if the class is a subclass of that class.

Same package - use package keyword in first line of source file, or no package keyword and in

same directory.

o Keywords -

1. public - outside of package access.

2. [no keyword] - same package access only.

3. protected - same package access. Access if class is a subclass of, even if in another package.

4. private - same class access only.

5.3 Summary:

In this unit, we learn the concept of class and how to create method and how to pass parameters by

value and by reference and method overloading with example. In this unit, we also learn the

concept of inheritance.

5.4 List of references

1. Java 2: The Complete Reference, Fifth Edition, Herbert Schildt, Tata McGraw Hill.

2. An Introduction to Object oriented Programming with JAVA, C THOMAS WU

5.5 Bibliography

http://www.michael-thomas.com/tech/java/javacert/JCP_Access.htm

http://en.wikipedia.org/wiki/Class_%28computer_science%29#Sealed_classes

http://www.javabeginner.com/learn-java/java-abstract-class-and-interface

5.6 Model answers

Q.1) Explain class and with example.

Ans: refer 5.2

Q.2) Explain method with pass by value and pass by reference.

Ans: refer 5.2.8

Q.3) Explain method overloading?

Ans:refer 5.2.6

6

Interfaces

Unit Structure

6.1 Introduction

6.2 More about ‗interface‘

6.3 Access

6.4 Multiple Inheritance

6.5 Interfaces and Abstract Classes

6.6 Inheritance within interfaces

6.7 Summary

http://www.michael-thomas.com/tech/java/javacert/JCP_Access.htm
http://en.wikipedia.org/wiki/Class_%28computer_science%29#Sealed_classes
http://www.javabeginner.com/learn-java/java-abstract-class-and-interface

6.1 Introduction

In chapter 5 you have learnt the following concepts:

 Abstract class, which allows you to create methods in a class without writing the code for
execution of the method (implementation of the method).

 Inheritance through the keyword ‘extends’ which tells the machine that an (inherited) class
defined is of the type of a base class.

 Methods in the inherited class must provide implementation. (except when the inherited class is
an Abstract class as well.

Interface takes the above concepts even further. It provides a mechanism to define a class with

absolutely no implementation (code for execution of a method or logic).

In this chapter you will learn more about interfaces, its syntax and use, the difference between

interfaces and abstract class and when to use which.

6.2 More about ‘interface’

One or more classes can implement a defined interface

When a class implements a defined interface, it has to implement (write the code, execution logic) for all

the methods defined by the interface. The class is free to define more methods if necessary.

Interface

Class1 Class2
Class3

implements

e.g.

interface MusicPlayer

void on()

void off()

void play()

void stop()

MP3Player

void on()

void off()

void play()

void stop()

void addMusic()

MP3Player

implements

MusicPlayer

In this example, class

MP3Player implements

interface MusicPlayer. Here

all methods of MusicPlayer

are implemented; and there

is one more additional

method “addMusic()”

Similarly, you could have other classes inherit from the same interface MusicPlayer. Examples –

Syntax of Interface

To define an interface, use the interface keyword instead of the class keyword.

SYNTAX:

package xxx.xxx;

interface MusicPlayer{

 // Cannot have method implementations:

void on();

void off();

void play();

void stop();

MusicPlayer

MP3Player iPod CDPlayer

implements

Interface

Classes…

}

Points to note above:

 A semicolon after the method definition

 No implementation logic in the method above

 interface keyword instead of class

6.3 Access

In the above example, we’ve not defined whether the interface is public, private or protected. A private

interface makes no sense. If not defined the above interface is visible in the package where the interface

belongs. You can define an interface public – which means the interface is visible outside the package as

well.

Methods inside the interface are public by default. So in the above example, the methods are public and

visible outside of the package as well.

The class which inherits the methods must explicitly define the methods to be public.

SYNTAX:

class MP3Player implements MusicPlayer{

public void on(){

 System.out.println(“the MP3 Player is ON”);

}

public void off(){

 System.out.println(“the MP3 Player is OFF”);

}

public void play(){

 System.out.println(“the MP3 Player is playing”);

}

public void stop(){

 System.out.println(“the MP3 Player is off”);

}

}

6.4 Multiple Inheritance

In Java, there is nothing which prevents from inheriting from multiple interfaces. Since there are no

implementations in the methods (code in the methods), there is no danger or overwriting any

implementations between multiple interfaces.

MusicPlayer

MP3Player iPod CDPlayer

VideoPlayer In this example, the iPod

class inherits from

MusicPlayer and VideoPlayer

interfaces.

// Multiple interfaces.

interface MusicPlayer {

void on();

void off();

void play();

void stop();

}

}

interface VideoPlayer{

void on();

void off();

void play();

void stop();

void changeContrast(int x);

void changeBrightness(int x);

}

}

class iPod implements MusicPlayer, VideoPlayer{

public void on(){

 System.out.println(“the MP3 Player is ON”);

}

public void off(){

 System.out.println(“the MP3 Player is OFF”);

}

public void play(){

 System.out.println(“the MP3 Player is playing”);

}

public void stop(){

 System.out.println(“the MP3 Player is off”);

}

public void changeContrast(int x){

 System.out.println(“Constrast Changed by” + x);

}

public void changeBrightness(int x){

 System.out.println(“Brightnesss Changed by” + x);

}

}

6.5 Interfaces and Abstract Classes

Interfaces are similar to abstract classes. The differences are as follows:

1. All methods in an interface are abstract. Which means all methods must be empty; no code
implemented.

2. In abstract class, the methods can have code/implementation within it. Atleast one method
must be abstract.

3. All properties (data fields) in an interface are static final. Properties in an abstract class need not
be static final.

4. Interfaces are implemented(implements keyword); Abstract classes are extended(extends
keyword)

5. Class can extend only one abstract class; where as a class can implement multiple interfaces
(multiple inheritance)

6. Contractual obligation: When a class specifies that it implements an interface, it must define all
methods of that interface. A class can implement many different interfaces. If a class doesn't
define all methods of the interfaces it agreed to define (by the implements clause), the compiler
gives an error message, which typically says something like "This class must be declared
abstract". An abstract class is one that doesn't implement all methods it said it would. The
solution to this is almost always to implement the missing methods of the interface. A
misspelled method name or incorrect parameter list is the usual cause, not that it should have
been abstract!

6.6 Inheritance within interfaces

You can add new methods to an existing interface by extending it; and adding new methods.

In the above example, please note

 ElectronicDevices is an interface.

 MusicPlayer and VideoPlayer are interfaces which “extend” ElectronicDevices

 iPod is a class which implements MusicPlayer and VideoPlayer

MusicPlayer

iPod

VideoPlayer

ElectronicDevices

interface

interface

Class

extends

implements

So, if ElectronicDevices interface had one property – which is “powerSource”; it would be inherited by

all classes which implement MusicPlayer or VideoPlayer

Example for practice:

Write a class that implements the CharSequence interface found in the java.lang package. Your

implementation should return the string backwards. Select one of the sentences from this book to use

as the data. Write a small main method to test your class; make sure to call all four methods.

Answer 1:

// CharSequenceDemo presents a String value -- backwards.

public class CharSequenceDemo implements CharSequence {

 private String s;

 public CharSequenceDemo(String s) {

 //It would be much more efficient to just reverse the string

 //in the constructor.

 this.s = s;

 }

 private int fromEnd(int i) {

 return s.length() - 1 - i;

 }

 public char charAt(int i) {

 if ((i < 0) || (i >= s.length())) {

 throw new StringIndexOutOfBoundsException(i);

 }

 return s.charAt(fromEnd(i));

 }

 public int length() {

 return s.length();

 }

 public CharSequence subSequence(int start, int end) {

 if (start < 0) {

 throw new StringIndexOutOfBoundsException(start);

 }

 if (end > s.length()) {

 throw new StringIndexOutOfBoundsException(end);

 }

 if (start > end) {

 throw new StringIndexOutOfBoundsException(start - end);

 }

 StringBuilder sub =

 new StringBuilder(s.subSequence(fromEnd(end), fromEnd(start)));

 return sub.reverse();

 }

 public String toString() {

 StringBuilder s = new StringBuilder(this.s);

 return s.reverse().toString();

 }

 //Random int from 0 to max.

 private static int random(int max) {

 return (int) Math.round(Math.random() * max + 0.5);

 }

 public static void main(String[] args) {

 CharSequenceDemo s =

 new CharSequenceDemo("Write a class that implements the CharSequence interface found in the

java.lang package.");

 //exercise charAt() and length()

 for (int i = 0; i < s.length(); i++) {

 System.out.println(s.charAt(i));

 }

 //exercise subSequence() and length();

 int start = random(s.length() - 1);

 int end = random(s.length() - 1 - start) + start;

 System.out.println(s.subSequence(start, end));

 //exercise toString();

 System.out.println(s);

 }

}

6.7 Summary:

In this chapter you we learn more about interfaces, its syntax and use, the difference between

interfaces and abstract class with examples. We also learn the concept of inheritance within interface.

7

EXCEPTION HANDLING

Unit Structure

7.0 Objective

7.1 Introduction

7.2 Overview

7.3 What is Exceptions and handling exception?

7.3.1 Compile time errors

7.3.2 Run time errors

7.3.3 try…catch:

7.3.4 Using Multiple catch Blocks

7.3.5 finally Block

7.3.6 Throwing an Exception

7.3.6.1 Using the throw Statement

7.3.6.2 Using the throws Statement

7.3.9 Creating and Using Your Own Exception Classes

7.4 Summary:

7.5 List of references

7.6 Bibilography

7.0 Objective: In this lesson of Java Tutorial, you will learn...

1. The exception handling mechanism.

2. Write try ... catch structures to catch expected exceptions

3. Use finally blocks to guarantee execution of code

4. Throw/ Throws exceptions

7.1 Introduction

An exception is an event, which occurs during the execution of the program, that an interrupt the

normal flow of the program‘s instruction. In other words, Exceptions are generated when a

recognized condition, usually an error condition, arises during the execution of a method. Java

includes a system for running exceptions, by tracking the potential for each method to throw

specific exceptions. For each method that could throw an exception, your code must report to the

Java compiler that it could throw that exact exception. The compiler marks that method as

potentially throwing that exception, and then need any code calling the method to handle the

possible exception. Exception handling is basically use five keyword as follows:

 try

 catch

 throw

 throws

 finally

7.2 Overview

Exceptions are generated when an error condition occur during the execution of a method. It is possible

that a statement might throw more than one kind of exception. Exception can be generated by Java-

runtime system or they can be manually generated by code. Error-Handling becomes a necessary while

developing an application to account for exceptional situations that may occur during the program

execution, such as

 Run out of memory

 Resource allocation Error

 Inability to find a file

 Problems in Network connectivity.

In this unit we will learn the exception handling mechanism.

7.3 What is Exceptions and handling exception?

Exceptions are generated when a recognized an error condition during the execution of a

program. Java includes a system for running exceptions, by tracking the potential for each

method to throw specific exceptions

 for each method that could throw an exception, your code must report to the Java compiler that it

could throw that exact exception.

 the compiler marks that method as potentially throwing that exception, and then need any code

calling the method to handle the possible exception.

There are two ways to handle an exception:

 you can try the "risky" code, catch the exception, and do something about it, after which the

transmission of the exception come to an end

 you can mark that this method throws that exception, in which case the Java runtime engine will

throw the exception back to the method.

So, if you use a method in your code that is marked as throwing a particular exception, the

compiler will not allow that code unless you handle the exception. If the exception occurs in a try

block, the JVM looks to the catch block(s) that follow to see if any of them equivalent the

exception type. The first one that matches will be executed. If none match, then this methods

ends, and execution jumps to the method that called this one, at the point the call was made.

Following figure shows the Exception type.

Figure 7.1. A partial view of the Throwable family

An error means fault and there are two types of error as follows:

7.3.1 Compile time errors

Compiler time error means Java compiler identify the syntax error at the time of compilation.

And without successfully compilation, compiler does not create .class file. That means we

have to compile the program which should be error free and then compiler creates .class file

of the program and then we can run the program.

Throwable

Error Exception

RuntimeException IOException SQLException

ArithmeticException NullPointerException

Compile-time

errors

Run-time errors

The common problems are:

 Missing braces

 Missing semicolon

 Missing double quote in string

 = instead of == operator

 And so on.

For example:

class Try1

{

public static void main(String args[])

{

int a=12;

int b=0;

int c=a/b

System.out.println("Division is+c);

}

}

Output:

C:\cc>javac Try1.java

Try1.java:8: ';' expected

System.out.println("Division is+c);

^

Try1.java:8: unclosed string literal

System.out.println("Division is+c);

 ^

2 errors

7.3.2 Run time errors

Several time program may compile successfully and compiler creates the .class file of the

program but when the time of running the program, it shows the error and that type of error

called run time error.

The common problems are:

 Divide by zero

 Conversion of invalid string to number

 access the element that is out of bound of an array

 Passing the parameters with invalid range.

 And so on.

For example: write a program to find out division of two numbers.

class Try1

{

public static void main(String args[])

{

int a=12;

int b=0;

int c=a/b;

System.out.println("Division is"+c);

}

}

Output:

C:\cc>javac Try1.java

C:\cc>java Try1

Exception in thread "main" java.lang.ArithmeticException: / by zero

 at Try1.main(Try1.java:7)

7.3.3 try…catch:

If a method is going to resolve potential exception internally, the line of code that could generate

the exception is placed inside a try block

 there may be other code inside the try block, before and/or after the risky line(s) - any code that

depends upon the risky code's success should be in the try block, since it will automatically be

skipped if the exception occurs

Syntax –

 try

 {

 code

 risky/unsafe code

 code that depends on the risky code succeeding

 }

There is usually at least one catch block immediately after the try block

 a catch block must specify what type of exception it will catch

Syntax –

 catch (ExceptionClassName exceptionObjectName)

 {

 code using methods from exceptionObjectName

 }

 there can be more than one catch block, each one marked for a correct exception class

 the exception class that is caught can be any class in the exception hierarchy, either a general

(base) class, or a very correct (derived) class

 the catch block(s) must handle all checked exceptions that the try block is known to throw unless

you want to throw that exception back to the method.

 it is possible to have a try block without any catch blocks if you have a finally block but any

checked exceptions still need to be caught, or the method needs to declare that it throws them

If an exception occurs within a try block, execution jumps to the first catch block whose

exception class matches the exception that occurred. Any steps remaining in the try block are

skipped. If no exception occurs, then the catch blocks are skipped

If declare a variable within a try block, it will not exist outside the try block, since the curly

braces define the scope of the variable. You will often need that variable later, if nowhere else

other than the catch or finally blocks, so you would need to declare the variable before the try.

If you declare but don't initialize a variable before a try block, and the only place you set a value

for that variable is in the try block, then it is possible when execution leaves the try ... catch

structure that the variable never received a value. So, you would get a "possibly uninitialized

value" error message from the compiler, since it actually keeps track of that sort of thing.

Usually this happens with object references; you would also generally initialize them to null.

public class demo

 {

 public static void main(String[] args)

 {

 int ans1, ans2;

 int a = 2, b = 2, c = 0;

 try

 {

 ans1 = a/b;

 System.out.println("a/b = " + ans1);

 ans2 = a/c;

 System.out.println("a/c = " + ans2);

 }

 catch(ArithmeticException e)

 {

 System.out.println("Arithmetic Exception!");

 }

 System.out.println("demo is over");

 }

}

Output:

C:\>set path=C:\Java\jdk1.5.0_01\bin

C:\>javac demo.java

C:\>java demo

a/b = 1

Arithmetic Exception!

demo is over

Code Explanation –

The program will print the first result, and then not succeed while performing the division for the

second equation. Execution will step to the catch block to print our message on the screen

Example -

The prior example used a RuntimeException, which your code is not obligated to handle. Most

methods in the I/O classes throw IOException, which is an exception that you must handle.

Following program shows the use of IOException.

import java.io.IOException;

public class demo

 {

 public static void main(String[] args)

 {

 int num = 0;

 num = System.in.read();

 try

 {

 num = System.in.read();

 System.out.println("You entered " + (char) num);

 }

 catch (IOException e)

 {

 System.out.println("IO Exception occurred");

 }

 }

 }

Output:

C:\>javac demo.java

demo.java:11: unreported exception java.io.IOException; must be caught or declar

ed to be thrown

 num = System.in.read(); // comment out this line

 ^

1 error

Code Explanation:

The line marked to comment out throws IOException, but is not in a try block, so the compiler

rejects it. The second read attempt is within a try block, as it should be.

 there is no way we can force an IOException from the keyboard to test the catch block.

7.3.4 Using Multiple catch Blocks

It is possible that a statement might throw more than one kind of exception

 you can list a sequence of catch blocks, one for each possible exception

 remember that there is an object hierarchy for exceptions –

class demo

{

public static void main (String args [])

{

int A[] = new int[5];

 try

{

for (int c = 0; c <5; c++)

{

 //do nothing

}

for (int c = 0; c <5; c++)

 {

 A[c] = c/ c;

 }

 }

 catch (ArrayIndexOutOfBoundsException e)

 {

 System.out.println ("Array out of bound ");

 }

 catch (ArithmeticException e)

 {

 System.out.println ("Zero divide error");

}

}

}

Output:

C:\>javac demo.java

C:\>java demo

Zero divide error

C:\>

7.3.5 finally Block

To guarantee that a line of code runs, whether an exception occurs or not, use a finally block

after the try and catch blocks

The code in the finally block will almost always execute, even if an unhandled exception occurs;

in fact, even if a return statement is encountered

 if an exception causes a catch block to execute, the finally block will be executed after the catch

block

 if an uncaught exception occurs, the finally block executes, and then execution exits this method

and the exception is thrown to the method that called this method

Syntax –

try

{

 risky code/ unsafe code block

}

catch (ExceptionClassName exceptionObjectName)

{

 code to resolve problem

}

finally

{

 code that will always execute

}

In summary:

 a try block is followed by zero or more catch blocks

 There may one finally block as the last block in the structure.

 There must be at least one block from the collective set of catch and finally after the try.

It's possible to have a try block followed by a finally block, with no catch block

 this is used to prevent an unchecked exception from exiting the method before cleanup code can

be executed

Example:

public class demo

{

public static void main(String args[])

{

try

{

System.out.println("Try Block before the error.");

System.out.println(1/0);

System.out.println("Try Block after the error.");

}

catch(java.lang.ArithmeticException e)

{

System.out.println("Catch Block");

System.out.println("A Stack Trace of the Error:");

e.printStackTrace();

//e.getMessage();

System.out.println("The operation is not possible.");

}

finally

{

System.out.println("Finally Block");

}

System.out.println("demo is over");

}

}

Output:

C:\>javac demo.java

C:\>java demo

Try Block before the error.

Catch Block

A Stack Trace of the Error:

java.lang.ArithmeticException: / by zero

 at demo.main(demo.java:8)

The operation is not possible.

Finally Block

demo is over

7.3.6 Throwing an Exception

You can throw an exception explicitly using the throw statement.

Example:

You need to throw an exception when a user enters a wrong student ID or password.

The throws clause is used to list the types of exception that can be thrown in the execution of a method in a program.

7.3.6.1 Using the throw Statement

1. The throw statement causes termination of the normal flow of control of the java code and prevents the

execution of the subsequent statements.

2. The throw clause convey the control to the nearest catch block handling the type of exception object

throws.

3. If no such catch block exists, the program terminates.

The throw statement accepts a single argument, which is an object of the Exception class.

Syntax –

throw ThrowableObj

You can use the following code to throw the IllegalStateException exception:

class demo

{

static void tdemo()

{

try

{

throw new IllegalStateException ();

}

catch (NullPointerException e)

{

System.out.println ("Not Caught by the catch block inside tdemo ().");

}

}

public static void main (String args[])

{

try

{

tdemo();

}

catch(IllegalStateException e)

{

System.out.println("Exception Caught in:"+e);

}

}

}

Output

C:\>javac demo.java

C:\>java demo

Exception Caught in:java.lang.IllegalStateException

C:\>

7.3.6.2 Using the throws Statement

The throws statement is used by a method to specify the types of exceptions the method throws. If a

method is capable of raising an exception that it does not handle, the method must specify that the

exception have to be handled by the calling method.

This is done using the throws statement. The throws clause lists the types of exceptions that a method might throw.

Syntax –

[< access specifier >] [< modifier >] < return type > < method name > [< arg list >] [throws <exception list >]

Example:.

You can use the following code to use the throws statement:

class demo

{

static void throwMethod () throws ClassNotFoundException

{

System.out.println ("In throwMethod ");

throw new ClassNotFoundException ();

}

public static void main (String args [])

{

try

{

throwMethod ();

}

catch (ClassNotFoundException e)

{

System.out.println (" throwMethod has thrown an Exception :" +e);

}

}

}

Output

C:\>javac demo.java

C:\>java demo

In throwMethod

 throwMethod has thrown an Exception :java.lang.ClassNotFoundException

7.3.9 Creating and Using Your Own Exception Classes

You can create your own exception class by extending an existing exception class

Syntax –

[modifiers] NewExceptionClassName extends ExceptionClassName

{

 create constructors that usually delegate to super-constructors

}

You could then add any fields or methods that you wish, although often that is not required. You must,

however, override any constructors you wish to use: Exception(), Exception(String message),

Exception(String message, Throwable cause), Exception(Throwable cause). Usually you can just call the

equivalent super-constructor. If you extend RuntimeException or one of its subclasses, your exception

will be treated as a runtime exception.

When a situation arises for which you would like to throw the exception, use the throw keyword

with a new object from your exception class, for example:

Syntax –

throw new ExceptionClassName(messageString);

7.4 Summary:

In this lesson of the Java tutorial you have learned:

 how Java's exception handling mechanism works

 how to try and catch exceptions

 about the various types of checked and unchecked exceptions

 how to write exception classes

 how to throw exceptions

7.5 List of references

1. Java 2: The Complete Reference, Fifth Edition, Herbert Schildt, Tata McGraw Hill.

2. An Introduction to Object oriented Programming with JAVA, C THOMAS WU

7.6 Bibilography

1. http://java.sun.com/docs/books/tutorial/essential/exceptions/

7.7 Model answers

Q.1) What is exception in Java?

Ans: Refer 7.3

Q.2) what is exception and gives the list of common exception in java.

Ans:Refer 7.3 and

Q.3) What is the ‗finally‘ block?

Ans : refer

Q.4) how try-catch is works?

Ans: refer

http://java.sun.com/docs/books/tutorial/essential/exceptions/

 8

 I/O Packages

Unit Structure

8.1 Introduction

8.2 Stream

8.2.1 Byte Streams

8.2.1.1 InputStream

8.2.1.2 OutputStream

8.2.2 Character Streams

8.2.2.1 Reader

8.2.2.2 Writer

8.3 How Files and Streams Work

8.4 Classes

8.5 Exceptions Classes

8.6 Standard Streams

8.7 Working with Reader classes

8.7.1 InputStreamReader

8.7.2 BufferedReader

8.8 I/O Streams

8.8.1 FileInputstream

8.8.2 FileOutputStream

8.8.3 DataInputStream

8.9 Finding a File

8.10 Summary

8.1 Introduction

Stream is an abstract demonstration of input or output device. By using stream, we can write or

read data. To bring in information, a program is open a stream on an information source (a file,

memory, a socket) and read information sequentially. In this unit, we will learn the concept of

stream, I/O package.

8.2 Stream:

The Java Input/Output (I/O) is a part of java.io package. The java.io package contains a

relatively large number of classes that support input and output operations. The classes in the

package are primarily abstract classes and stream-oriented that define methods and subclasses

which allow bytes to be read from and written to files or other input and output sources.

For reading the stream:

Open the stream

 Read information

Close the stream

For writing in stream:

Open the stream

 Write information

Close the stream

There are two types of stream as follows:

o Byte stream

o Character stream

8.2.2 Byte Streams:

It supports 8-bit input and output operations. There are two classes of byte stream

o InputStream

o OutputStream

8.2.2.1 InputStream:

The InputStream class is used for reading the data such as a byte and array of bytes from an input

source. An input source can be a file, a string, or memory that may contain the data. It is an

abstract class that defines the programming interface for all input streams that are inherited from it.

An input stream is automatically opened when you create it. You can explicitly close a stream with

the close() method, or let it be closed implicitly when the object is found as a garbage.

The subclasses inherited from the InputStream class can be seen in a hierarchy manner shown

below:

InputStream

- ByteArrayInputStream

- FileInputStream

- ObjectInputStream

- FilterInputStream

- PipedInputStream

- StringBufferInputStream

- FilterInputStream

o BufferedInputStream

o DataInputStream

o LineNumberInputStream

o PushbackInputStream

8.2.1.2 OutputStream:

The OutputStream class is a sibling to InputStream that is used for writing byte and array of bytes to

an output source. Similar to input sources, an output source can be anything such as a file, a string,

or memory containing the data. Like an input stream, an output stream is automatically opened

when you create it. You can explicitly close an output stream with the close() method, or let it be

closed implicitly when the object is garbage collected.

The classes inherited from the OutputStream class can be seen in a hierarchy structure shown

below:

OutputStream

- ByteArrayOutputStream

- FileOutputStream

- ObjectOutputStream

- FilterInputStream

- PipedOutputStream

- StringBufferInputStream

- FilterOutputStream

o BufferedOutputStream

o DataOutputStream

o PrintStream

OutputStream is also inherited from the Object class. Each class of the OutputStream provided by

the java.io package is intended for a different purpose.

8.2.2 Character Streams:

It supports 16-bit Unicode character input and output. There are two classes of character stream

as follows:

o Reader

o Writer

These classes allow internationalization of Java I/O and also allow text to be stored using

international character encoding.

8.2.2.1 Reader:

- BufferedReader

o LineNumberReader

- CharAraayReader

- PipedReader

- StringReader

- FilterReader

o PushbackReader

- InputStreamReader

o FileReader

8.2.2.2 Writer:

- BufferedWriter

- CharAraayWriter

- FileWriter

- PipedWriter

- PrintWriter

- String Writer

- OutputStreamWriter

o FileWriter

8.3 How Files and Streams Work:

Java uses streams to handle I/O operations through which the data is flowed from one location to

another. For example, an InputStream can flow the data from a disk file to the internal memory

and an OutputStream can flow the data from the internal memory to a disk file. The disk-file may

be a text file or a binary file. When we work with a text file, we use a character stream where one

character is treated as per byte on disk. When we work with a binary file, we use a binary stream.

The working process of the I/O streams can be shown in the given diagram.

8.7 Classes:

INPUT STREAM

INTERNAL MEMORY

OUTPUT STREAM

DISK- FILE

READ DATA

WRITE DATA

FLOW OF DATA

FLOW OF DATA

The following lists of classes are provided by the java.io package shown in the table:

Class Description

 BufferedInputStream It used for creating an internal buffer array.

It supports the mark and reset methods.

 BufferedOutputStream This class used for writes byte to output stream. It implements a

bufferedoutput stream.

 BufferedReader This class provides read text from character input stream and buffering

characters. It also reads characters, arrays and lines.

 BufferedWriter This class provides write text from character output stream and buffering

characters. It also writes characters, arrays and lines.

 ByteArrayInputStream It contains the internal buffer and read data from the stream.

 ByteArrayOutputStream This class used for data is written into byte array. This is implemented in

output stream class.

 CharArrayReader It used for char input stream and implements a character buffer.

 CharArrayWriter This class also implements a character buffer and it uses an writer.

 DataInputStream This class reads the primitive data types from the input stream in a machine

format.

 DataOutputStream This class writes the primitive data types from the output stream in machine

format.

 File This class shows a file and directory pathnames.

 FileDescriptor This class uses for create a FileInputStream and FileOutputStream.

 FileInputStream It contains the input byte from a file and implements an input stream.

 FileOutputStream It uses for writing data to a file and also implements an output stream.

 FilePermission It provides the permission to access a file or directory.

 FileReader This class used for reading characters file.

 FileWriter This class used for writing characters files.

 InputStream This class represents an input stream of bytes.

 InputStreamReader It reads bytes and decodes them into characters.

 LineNumberReader This class has a line numbers

 ObjectInputStream This class used for recover the object to serialize previously.

 ObjectInputStream.GetField This class access to president fields read from input stream.

 ObjectOutputStream This class used for writing the primitive data types and also to write the object

to read by the ObjectInputStream.

 ObjectStreamClass Serialization's descriptor for classes.

 ObjectStreamField This class describes the serializable field.

 OutputStream This class represents an output stream of bytes.

 OutputStreamWriter It writes bytes and decodes them into characters.

 StringReader This is a character string class. It has character read source.

 StringWriter This is also a character string class. It uses to shows the output in the

buffer.

 Writer It uses for writing to character stream.

8.5 Exceptions Classes:

The following summary of the exception classes provided by the java.io package shown in the

table:

Exceptions Description

CharConversionException It provides detail message in the catch block to associated with the

CharConversionException

EOFException This exception indicates the end of file. When the file input stream

is to be end then the EOFException is to be occured.

FileNotFoundException When the opened file's pathname does not find then this exception

occurs.

InterruptedIOException When the I/O operations are interrupted from any causes then it

occurs.

InvalidClassException Any problems to be created with class, when the Serializing runtime to

be detected.

InvalidObjectException When the de-serialized objects fails then it occurs.

IOException When the I/O operations fail then it occurs.

NotActiveException The Serialization or deserialization operations are not active then it

occurs.

NotSerializableException This exception occurs when the instance is required to be a Serializable

interface.

ObjectStreamException This is a supper class of all exception class. It is used for specific

Object Stream Classes.

WriteAbortedException
 In this exception to be thrown by the ObjectStreamException during a

write operating.

8.6 Standard Streams:

Standard Streams are a feature provided by many operating systems. By default, they read input

from the keyboard and write output to the display. They also support I/O operations on files.

Java also supports three Standard Streams:

These objects are defined automatically and do not need to be opened explicitly.

Standard Output and Standard Error, both are to write output; having error output separately so that

the user may read error messages efficiently.

System.in is a byte stream that has no character stream features. To use Standard Input as a

character stream, wrap System.in within the InputStreamReader as an argument.

 InputStreamReader inp= new InputStreamReader (System.in);

8.7 Working with Reader classes:

Java provides the standard I/O facilities for reading text from either the file or the keyboard on the

command line. The Reader class is used for this purpose that is available in the java.io package. It

acts as an abstract class for reading character streams. The only methods that a subclass must

implement are read(char[], int, int) and close(). The Reader class is further categorized into the

subclasses.

The following diagram shows a class-hierarchy of the java.io.Reader class.

However, most subclasses override some of the methods in order to provide higher efficiency,

additional functionality, or both.

8.7.1 InputStreamReader:

An InputStreamReader is a bridge from byte streams to character streams i.e. it reads bytes and

decodes them into Unicode characters according to a particular platform. Thus, this class reads

characters from a byte input stream. When you create an InputStreamReader, you specify an

InputStream from which, the InputStreamReader reads the bytes.

 Standard Input: - Accessed through System.in which is used to read input from the

keyboard.

 Standard Output: - Accessed through System.out which is used to write output to be

display.

 Standard Error: - Accessed through System.err which is used to write error output to be

display.

The syntax of InputStreamReader is written as:

InputStreamReader<variable_name>= new InputStreamReader (System.in)

8.7.2 BufferedReader:

The BufferedReader class is the subclass of the Reader class. It reads character-input stream data

from a memory area known as a buffer maintains state. The buffer size may be specified, or the

default size may be used that is large enough for text reading purposes.

BufferedReader converts an unbuffered stream into a buffered stream using the wrapping

expression, where the unbuffered stream object is passed to the constructor for a buffered stream

class.

For example the constructors of the BufferedReader class shown as:

BufferedReader (Reader in): Creates a buffering character-input stream that uses a default-

sized input buffer.

BufferedReader (Reader in, int sz): Creates a buffering character-input stream that uses an input

buffer of the specified size.

BufferedReader class provides some standard methods to perform specific reading operations

shown in the table. All methods throw an IOException, if an I/O error occurs.

Method Return Type Description

read() int Reads a single character

 read(char[] cbuf, int off,

int len)
int Read characters into a portion of an array.

readLine() String
 Read a line of text. A line is considered

to be terminated by ('\n').

close() void Closes the opened stream.

 This program illustrates use of standard input stream to read the user input.

import java.io.*;

public class ReadStandardIO

{

 public static void main(String[] args) throws IOException

 {

 InputStreamReader inp = new InputStreamReader(System.in)
 BufferedReader br = new BufferedReader(inp);

 System.out.println("Enter text : ");

 String str = in.readLine();

 System.out.println("You entered String : ");

 System.out.println(str);

 }
}

Output of the Program:

C:\>javac ReadStandardIO.java

C:\>java ReadStandardIO

Enter text:

this is an Input Stream

You entered String:

this is an Input Stream

C:\>

The streams provide a simple model for reading and writing data. However, streams don't support

all the operations that are common with a disk file. Now, we will learn how to work with a file

using the non-stream file I/O.

The File class deals with the machine dependent files in a machine-independent manner i.e. it is

easier to write platform-independent code that examines and manipulates files using the File class.

This class is available in the java.lang package.

The java.io.File is the central class that works with files and directories. The instance of this

class represents the name of a file or directory on the host file system.

When a File object is created, the system doesn't check to the existence of a corresponding

file/directory. If the files exist, a program can examine its attributes and perform various operations

on the file, such as renaming it, deleting it, reading from or writing to it.

The constructors of the File class are shown in the table:

 Constructor Description

 File(path)
 Create File object for default directory (usually

where program is located).

 File(dirpath,fname

)

 Create File object for directory path given as string.

 File(dir,

fname)
Create File object for directory.

Thus the statement can be written as:

File f = new File (“<filename>”);

The methods that are used with the file object to get the attribute of a corresponding file shown in

the table.

Method Description

f.exists() Returns true if file exists.

f.isFile() Returns true if this is a normal file.

f.isDirectory() true if "f" is a directory.

f.getName() Returns name of the file or directory.

f.isHidden() Returns true if file is hidden.

f.lastModified() Returns time of last modification.

f.length() Returns number of bytes in file.

f.getPath() Path name.

f.delete() Deletes the file.

f.renameTo(f2)
 Renames f to File f2. Returns true if

successful.

f.createNewFile() Creates a file and may throw IOException.

Whenever the data is needed to be stored, a file is used to store the data. File is a collection of stored

information that is arranged in string, rows, columns and lines etc.

Further, we will see how to create a file. This example takes the file name and text data for storing

to the file.

For creating a new file File.createNewFile () method is used. This method returns a boolean value

true if the file is created otherwise return false. If the mentioned file for the specified directory is

already exist then the createNewFile () method returns the false otherwise the method creates the

mentioned file and return true.

Let‘s see an example that checks the existence of a specified file.

import java.io.*;

public class CreateFile1

{

 public static void main(String[] args) throws IOException

 {

 File f;

 f=new File ("myfile.txt");

 if(!f.exists()){

 f.createNewFile();

 System.out.println("New file \"myfile.txt\" has been created

 to the current directory");

 }

 }

}

First, this program checks, the specified file "myfile.txt" is exist or not. If it does not exist then a

new file is created with same name to the current location.

Output of the Program

C:\>javac CreateFile1.java

C:\>java CreateFile1

New file "myfile.txt" has been created to the current directory

C:\>

If you try to run this program again then after checking the existence of the file, it will not be

created and you will see a message as shown in the output.

C:\>javac CreateFile1.java

C:\>java CreateFile1

the specified file is already exist

C:\>

In Java, it is possible to set dynamic path, which is helpful for mapping local file name with the

actual path of the file using the constructing filename path technique.

As seen, how a file is created to the current directory where the program is run. Now we will see

how the same program constructs a File object from a more complicated file name, using the

static constant File.separator or File.separatorCharto specify the file name in a platform-independent

way. If we are using Windows platform then the value of this separator is ' \ '.

Let‘s see an example to create a file to the specified location.

import java.io.*;

public class PathFile

{
 public static void main(String[] args) throws IOException

 {
 File f;

 f=new File ("example" + File.separator + "myfile.txt");
 f.createNewFile ();
 System.out.println

("New file \"myfile.txt\" has been created

 to the specified location");
 System.out.println

("The absolute path of the file is: "

 +f.getAbsolutePath ());
 }
}

Output of the program:

C:\>javac PathFile.java

C:\>java PathFile

New file "myfile.txt" has been created to the specified location

the absolute path of the file is: C:\Shubh\example\myfile.txt

C:\>

8.8 I/O Streams:

Let‘s now see some I/O streams that are used to perform reading and writing operation in a file.

Java supports the following I/O file streams.

 FileInputstream

 FileOutputStream

8.8.1 FileInputstream:

This class is a subclass of Inputstream class that reads bytes from a specified file name. The read ()

method of this class reads a byte or array of bytes from the file. It returns -1 when the end-of-file

has been reached. We typically use this class in conjunction with a BufferedInputStream and

DataInputstream class to read binary data. To read text data, this class is used with an

InputStreamReader and BufferedReader class. This class throws FileNotFoundException, if the

specified file is not exist. You can use the constructor of this stream as:

FileInputstream (File filename);

 8.8.2 FileOutputStream:-

This class is a subclass of OutputStream that writes data to a specified file name. The write ()

method of this class writes a byte or array of bytes to the file. We typically use this class in

conjunction with a BufferedOutputStream and a DataOutputStream class to write binary data. To

write text, we typically use it with a PrintWriter, BufferedWriter and an OutputStreamWriter class.

You can use the constructor of this stream as:

FileOutputstream (File filename);

 8.8.3 DataInputStream:-

This class is a type of FilterInputStream that allows you to read binary data of Java primitive data

types in a portable way. In other words, the DataInputStream class is used to read binary Java

primitive data types in a machine-independent way. An application uses a DataOutputStream to

write data that can later be read by a DataInputStream. You can use the constructor of this stream

as:

DataInputStream (FileOutputstream finp);

The following program demonstrates how contains are read from a file.

import java.io.*;

public class ReadFile

{

 public static void main(String[] args) throws IOException

 {

 File f;

 f=new File("myfile.txt");

 if(!f.exists()&& f.length()<0)

 System.out.println("The specified file is not exist");

 else{

 FileInputStream finp=new FileInputStream(f);

 byte b;

 do{

 b=(byte)finp.read();

 System.out.print((char)b);

 }

 while(b!=-1);

 finp.close();

 }

}

Output of the Program:

C:\>javac ReadFile.java

C:\>java ReadFile

this is a text file?

C:\>

This program reads the bytes from file and displays it to the user.

Now we will learn how to write data to a file. As discussed, the FileOutputStream class is used to

write data to a file.

Let‘s see an example that writes the data to a file converting into the bytes.

This program first checks the existence of the specified file. If the file exists, the data is written to

the file through the object

of the FileOutputStream class.

import java.io.*;

public class WriteFile

{

 public static void main(String[] args) throws IOException

 {

 File f=new File ("textfile1.txt");
 FileOutputStream fop=new FileOutputStream (f);

 if (f.exists ())

 {
 String str="This data is written through the program";

 fop.write (str.getBytes ());

 fop.flush ();
 fop.close ();
 System.out.println ("The data has been written");

 }
 else
 System.out.println ("This file is not exist");
 }

Output of the Program

C:\>javac WriteFile.java

C:\>java WriteFile

The data has been written

C:\>

Now, you will learn how to count the availability of text lines in the particular file. A file is read

before counting lines of a particular file. File is a collection of stored information that is arranged in

string, rows, columns and lines etc. Try it for getting the lines through the following program

Description of program:

The following program helps you in counting lines of a particular file. At the execution time of this

program, it takes a file name with its extension from a particular directory and checks it using exists

() method. If the file exists, it will count lines of a particular file otherwise it will display a message

―File does not exists!‖

Description of code:

 FileReader (File file):

This is the constructor of FileReader class that is reliable for reading a character files. It

constructs a new FileReader and takes a file name that have to be read.

 FileNumberReader ():

This is the constructor of FileNumberReader class. It constructs a new line-numbering

reader. It reads characters and puts into buffer. By default the numbering of line begins

from '0'.

Here is the code of program:

import java.io.*;

 public class NumberOfLine{

 public static void main(String[] args) {

 try{

 System.out.println("Getting line number of a particular file

 example!");
 BufferedReader bf = new BufferedReader(new InputStreamReader

(System.in));
 System.out.println("Please enter file name with extension:")

;

 String str = bf.readLine();

 File file = new File(str);

 if (file.exists()){

 FileReader fr = new FileReader(file);

 LineNumberReader ln = new LineNumberReader(fr);

 int count = 0;

 while (ln.readLine() != null){

 count++;

 }

 System.out.println("Total line no: " + count);

 ln.close();

 }

 else{

 System.out.println("File does not exists!");

 }

 }

 catch(IOException e){

 e.printStackTrace();

 }

 }
}

Output of program:

Getting line number of a particular file example!

Please enter file name with extension:

AddTwoBigNumbers.shtml

Total line no: 58

Java provides the facility for changing a file timestamp according to the user reliability.

Description of program:

This program helps you in changing a file timestamp or modification time in Java. After running

this program it will take a file name and its modification date in 'dd-mm-yyyy' format. Then it will

check the given file is exist or not using exists () method. When the file exists, this program will

change the date of given file and it will display a message "Modification is successfully!"

otherwise it will show ―File does not exists!‖

Description of code:

 setLastModified(long time):

This is the method that sets the last modification time of a file or directory and returns

Boolean types values either 'true' or 'false'. If it will return a 'true' only when the

modification is completely successfully otherwise, it will return 'false'. This method takes

following long type data:

 time:

 This is the time that has to be modified or set.

 getTime ():

This is the method that returns the number of milliseconds in GMT format like: 23-04-2007.

Here is the code of program:

import java.io.*;
import java.util.*;

import java.text.*;

public class ChangeFileDate{

 public static void main(String[] args) {

 try{

 System.out.println("Change file timestamp example!");

 BufferedReader bf = new BufferedReader(new InputStreamReader

(System.in));
 System.out.println("Enter file name with extension:");

 String str = bf.readLine();
 System.out.println("Enter last modified date in 'dd-mm-

yyyy' format:");

 String strDate = bf.readLine();

 SimpleDateFormat sdf= new SimpleDateFormat("dd-MM-yyyy");

 Date date = sdf.parse(strDate);

 File file = new File(str);

 if (file.exists()){

 file.setLastModified(date.getTime());

 System.out.println("Modification is successfully!");

 }

 else{

 System.out.println("File does not exists!");

 }

 }

 catch(Exception e){

 e.printStackTrace();

 }

}

Output of program:

Change file timestamp example!

Enter file name with extension:

StrStartWith.shtml

Enter last modified date in 'dd-mm-yyyy' format:

23-04-2007

Modification is successfully

8.9 Finding a File:-

To find a file or directory it is very necessary to know the path of the file or directory so that you

can access it. If you know the path then it is very easy to work on it. Suppose a situation where a

problem comes in front you where you don't know the path of the file, then what will you do? This

problem can be solved by using a method getAbsolutePath ().The method getAbsolutePath () should

be used where we don't know the exact path of the file.

To find an absolute path of a file, Firstly we have to make a class GetAbsolutePath. Inside this

class, define the main method. Inside this method define a File class of java.io package. Inside the

constructor of a File class pass the name of the file whose absolute path you want to know. Now

call the method getAbsolutePath () of the File class by the reference of File class and store it in a

String variable. Now print the string, you will get an absolute path of the file.

In this class we have make use of the following things by which this problem can be solved.

 File: It is class in java.io package. It implements Comparable and Serializable interface.

 getAbsolutePath (): It returns the absolute path name in the form of string.

Code of the program is given below:

import java.io.*;

public class GetAbsolutePath

{

 public static void main(String[] args)

{

 String str = args[0];

 File file = new File(str);
 String absolutePathOfFirstFile = file.getAbsolutePath();

 System.out.println(" The absolute path in first form is "

 + absolutePathOfFirstFile);

 file = new File("Happy" + File.separatorChar+ str);
 String absolutePathOfSecondFile = file.getAbsolutePath();

 System.out.println(" The absolute path is " + absolutePathOfSe

condFile);

 file = new File("Happy" + File.separator + ".." + File.separator

+ str);
 String absolutePathOfThirdFile = file.getAbsolutePath ();
 System.out.println

(" The absolute path is” + absolutePathOfThirdFile);

 }

Output of the program

Happy

The absolute path in first form is C:\Smile\Happy

The absolute path is C:\Smile\Happy\Happy

The absolute path is C:\Smile\Happy\..\Happy

8.10 Summary:

In this unit, we learn that what is stream and types of stream. We also learn the concept of input and

output stream (The Java Input/Output (I/O) is a part of java.io package). The java.io package

contains a relatively large number of classes that support input and output operations.

9

 Multi threading

Unit Structure

9.0 Objective: In this lesson of Java Tutorial, you will learn...

9.1 Introduction:

9.2 Overview:

9.3.1 Thread Life cycle:

9.3.2 Advantages of multithreading over multi-tasking:

9.3.3 Thread Creation and simple programs:

9.3.4 Synchronized threads:

9.3.4.1 Synchronized Methods:

9.4 Summary:

9.5 List of references:

9.6 Bibilography:

9.7 Model answers

9.0 Objective: In this lesson of Java Tutorial, you will learn...

 Thread life cycle

 How to create thread

 Advantages of threading

9.1 Introduction:

A thread is defined as a separate stream of implementation that takes place simultaneously with

and independently of everything else that might be happening. It does not have an event loop. A

thread runs autonomously of anything else happening in the computer. With threads the other

tasks that don't get stuck in the loop can continue processing without waiting for the stuck task to

terminate. A thread is a coding that doesn't affect the architecture of an application. Threading is

equally separate the computer's power among different tasks.

9.2 Overview:

Threading concept is very important in Java Programing language. A thread is a sequential path of code

execution within a program. And each thread has its own local variables, program counter and lifetime.

In Java, an object of the Thread class can represent a thread. Thread can be implemented through any one

of two ways:

Using threads in Java will enable greater flexibility to programmers looking for that extra edge in

their programs. The simplicity of creating, configuring and running threads lets Java

programmers devise portable and powerful applets/applications that cannot be made in other

third-generation languages. Threads allow any program to perform multiple tasks at once. In an

Internet-aware language such as Java, this is a very important tool.

9.3.1 Thread Life cycle:

When you are programming with threads, understanding the life cycle of thread is very valuable.

While a thread is alive, it is in one of several states. By invoking start() method, it doesn‘t mean

that the thread has access to CPU and start executing straight away. Several factors determine

how it will proceed.

Different states of a thread are:

Fig 9.1: Thread Life cycle

1. New state – After the construction of Thread instance the thread is in this state but before the

start() method invocation. At this point, the thread is considered not alive.

2. Runnable (Ready-to-run) state – A thread start its life from Runnable state. A thread first enters

runnable state after the invoking of start() method but a thread can come again to this state after

either running, waiting, sleeping or coming back from blocked state also. On this state a thread is

waiting for a turn on the processor.

3. Running state – A thread is in running state that means the thread is presently executing. There

are numerous ways to enter in Runnable state but there is only one way to enter in Running state:

the scheduler select a thread from runnable pool.

4. Dead state – A thread can be considered dead when its run() method completes. If any thread

comes on this state that means it cannot ever run again.

5. Blocked - A thread can enter in this state because of waiting the resources that are hold by

another thread.

9.3.2 Advantages of multithreading over multi-tasking:

1. Reduces the computation time.

2. Improves performance of an application.

3. Threads distribute the same address space so it saves the memory.

4. Context switching between threads is usually less costly than between processes.

5. Cost of communication between threads is comparatively low.

Thread

Newly

Created

Start

Thread

Runnable

Running

Dead

Blocked

Scheduler
Programmer

http://www.roseindia.net/java/thread/life-cycle-of-threads.shtml
http://www.roseindia.net/java/thread/Java-Multithreading.shtml

9.3.3 Thread Creation and simple programs:

In Java, an object of the Thread class can represent a thread. Thread can be implemented through any one

of two ways:

 Extending the java.lang.Thread Class

 Implementing the java.lang.Runnable Interface

Fig 9.3: Creation of thread

 Extending the java.lang.Thread Class

Syntax: class MyThread extends Thread

{

}

 Implementing the java.lang.Runnable Interface

Syntax: MyThread implements Runnable

{

 }

 After declaration of thread class, we have to override run() method in class.

 Now we can create object of thread if needed.

In short we have to follow following these steps:

1. Extend the java.lang.Thread Class.

Thread

Thread

(class)

run()

method

Runnable

(interface)

Extends Implements

Override

2. Override the run() method in the subclass from the Thread class to define the code executed by

the thread.

3. Create an instance of this subclass. This subclass may call a Thread class constructor by subclass

constructor.

4. Invoke the start() method on the instance of the class to make the thread eligible for running.

The following program demonstrates a single thread creation extending the "Thread" Class:

class MyThread extends Thread

{

String s=null;

 MyThread(String s1)

 {

 s=s1;

 start();

 }

 public void run()

 {

 System.out.println(s);

 }

 }

public class RunThread

{

 public static void main(String args[])

 {

 MyThread m1=new MyThread("Thread started....");

 }

}

Output of the Program is :

C:\>javac RunThread.java

C:\>java RunThread

Thread started....

II. Implementing the java.lang.Runnable Interface

The procedure for creating threads by implementing the Runnable Interface is as follows:

1. A Class implements the Runnable Interface, override the run() method to define the code

executed by thread. An object of this class is Runnable Object.

2. Create an object of Thread Class by passing a Runnable object as argument.

3. Invoke the start() method on the instance of the Thread class.

The following program demonstrates the thread creation implenting the Runnable interface:

class Thr1 implements Runnable{
 Thread t;
 String s=null;

Thr1(String s1){
 s=s1;
 t=new Thread(this);
 t.start();
 }
 public void run(){
 System.out.println(s);
 }
}
public class RunableThread{
 public static void main(String args[]){
 Thr1 m1=new Thr1("Thread started....");
 }
}

Output:

C:\>javac RunableThread.java

C:\>java RunableThread

Thread started....

However, this program returns the output same as of the output generated through the previous

program.

There are two reasons for implementing a Runnable interface preferable to extending the Thread Class:

1. If you extend the Thread Class, that means that subclass cannot extend any other Class, but if you

implement Runnable interface then you can do this.

2. The class implementing the Runnable interface can avoid the full overhead of Thread class which

can be excessive.

 join() & isAlive() methods:

The following program demonstrates the join() & isAlive() methods:

class DemoAlive extends Thread {

 int value;

 public DemoAlive(String str)

 {

 super(str);

 value=0;

 start();

 }

 public void run()

 {

 try

 {

 while (value < 5) {

 System.out.println(getName() + ": " + (value++));

 Thread.sleep(250);

 }

 } catch (Exception e) {}

 System.out.println("Exit from thread: " + getName());

 }

}

public class DemoJoin

{

 public static void main(String[] args)

 {

 DemoAlive da = new DemoAlive("Thread a");

 DemoAlive db = new DemoAlive("Thread b");

 try

 {

 System.out.println("Wait for the child threads to finish.");

 da.join();

 if (!da.isAlive())

 System.out.println("Thread A not alive.");

 db.join();

 if (!db.isAlive())

 System.out.println("Thread B not alive.");

 } catch (Exception e) { }

 System.out.println("Exit from Main Thread.");

 }

}

Output:

C:\>javac DemoJoin.java

C:\>java DemoJoin

Wait for the child threads to finish.

Thread a: 0

Thread b: 0

Thread a: 1

Thread b: 1

Thread a: 2

Thread b: 2

Thread a: 3

Thread b: 3

Thread a: 4

Thread b: 4

Exit from thread: Thread a

Thread A not alive.

Exit from thread: Thread b

Thread B not alive.

Exit from Main Thread.

9.3.4 Synchronized threads:

In Java, the threads are executed separately to each other. These types of threads are called as

asynchronous threads. But there are two problems may be occurs with asynchronous threads.

 Two or more threads share the similar resource (variable or method) while only one of them can

access the resource at one time.

 If the producer and the consumer are sharing the same kind of data in a program then either

producer may make the data faster or consumer may retrieve an order of data and process it

without its existing.

Suppose, we have created two methods as increment() and decrement(). which increases or

decreases value of the variable "count" by 1 respectively shown as:

public void increment() {

 count++; }

When the two threads are executed to access these methods (one for increment(),another for

decrement()) then both will distribute the variable "count". in that case, we can't be sure that

what value will be returned of variable "count".

We can see this problem in the diagram shown below:

To avoid this problem, Java uses monitor also known as ―semaphore‖ to prevent data from being

corrupted by multiple threads by a keyword synchronized to coordinate them and

intercommunicate to each other. It is basically a mechanism which allows two or more threads to

share all the available resources in a sequential manner. Java's synchronized is used to ensure

that only one thread is in a critical region. Critical region is a lock area where only one thread is

run (or lock) at a time. Once the thread is in its critical section, no other thread can enter to that

critical region. In that case, another thread will has to wait until the current thread leaves its

critical section.

General form of the synchronized statement is as:

synchronized(object) {

// statements to be synchronized

}

Lock:

 Lock term refers to the access approved to a particular thread that can access the shared

resources. At any given time, only one thread can hold the lock and thereby have access to the

shared resource. Every object in Java has build-in lock that only comes in action when the object

has synchronized method code. By associating a shared resource with a Java object and its lock,

the object can act as a guard, ensuring synchronized access to the resource. Only one thread at a

time can access the shared resource guarded by the object lock.

Since there is one lock per object, if one thread has acquired the lock, no other thread can acquire

the lock until the lock is not released by first thread. Acquire the lock means the thread currently

in synchronized method and released the lock means exits the synchronized method.

Remember the following points related to lock and synchronization:

Start

Thread 1

Shared

Thread 2

Variable or method

http://www.roseindia.net/java/thread/SynchronizedThreads.shtml

 Only methods (or blocks) can be synchronized, Classes and variable cannot be synchronized.

 Each object has just one lock.

 All methods in a class need not to be coordinated. A class can have both synchronized and non-

synchronized methods.

 If two threads wants to execute a synchronized method in a class, and both threads are using the

similar instance of the class to invoke the method then only one thread can execute the method at

a time.

 If a class has both synchronized and non-synchronized methods, multiple threads can still access

the class's non-synchronized methods. If you have methods that don't access the data you're trying

to protect, then you don't need to synchronize them. Synchronization can cause a hit in several

cases (or even deadlock if used incorrectly), so you should be careful not to overuse it.

 If a thread goes to sleep, it holds any locks it has—it doesn't let go them.

 A thread can obtain more than one lock. For example, a thread can enter a synchronized method,

thus acquiring a lock, and then directly invoke a synchronized method on a different object, thus

acquiring that lock as well. As the stack unwinds, locks are unrestricted again.

 You can synchronize a block of code rather than a method.

 Constructors cannot be synchronized

9.3.4.1 Synchronized Methods:

Any method is specified with the keyword synchronized is only executed by one thread at a

time. If any thread wants to implement the synchronized method, firstly it has to obtain the

objects lock. If the lock is already held by another thread, then calling thread has to wait.

Synchronized methods are useful in those situations where methods are executed concurrently,

so that these can be intercommunicate control the state of an object in ways that can corrupt the

state if . Stack implementations usually define the two operations push and pop of elements as

synchronized, that‘s why pushing and popping are mutually exclusive process. For Example - if

several threads were sharing a stack, if one thread is popping the element on the stack then

another thread would not be able to pushing the element on the stack.

The following program demonstrates the synchronized method:

class Demo extends Thread{
 static String msg[]={"This", "is", "a", "synchronized", "variable"};
 Share(String threadname){
 super(threadname);
 }
 public void run(){
 display(getName());
 }
 public synchronized void display(String threadN){
 for(int i=0;i<=4;i++)

 System.out.println(threadN+msg[i]);
 try{
 this.sleep(1000);
 }catch(Exception e){}
 }
}
public class SynThread1 {
 public static void main(String[] args) {
 Share t1=new Share("Thread One: ");
 t1.start();
 Share t2=new Share("Thread Two: ");
 t2.start();
}
}

Output of the program is:

Thread One: variable

Thread Two: This

Thread Two: is

Thread two: a

Thread Two: synchronized

Thread Two: variable

C:\nisha>javac SynThread.java

C:\nisha>java SynThread

Thread One: This

Thread One: is

Thread One: a

Thread One: synchronized

Thread One: variable

Thread Two: This

Thread Two: is

Thread two: a

Thread Two: synchronized

Thread Two: variable

9.4 Summary:

A thread executes a series of instructions. Every line of code that is executed is done so by a

thread. In Java, the threads are executed independently to each other. Multithreading is vital to

Java for two main reasons. First, multithreading enables you to write very efficient programs

because it lets you utilize the idle time that is present in most programs. Most I/O devices,

whether they be network ports, disk drives, or the keyboard, are much slower than the CPU.

Thus, a program will often use a majority of its execution time waiting to send or receive

information to or from a device. By using multithreading, your program can execute another task

during this idle time. For example, while one part of your program is sending a file over the

Internet, another part can be

handling user interaction (such as mouse clicks or button presses), and still another can be

buffering the next block of data to send.

The second reason that multithreading is important to Java relates to Java‘s eventhandling model.

A program (such as an applet) must respond speedily to an event and then return. An event

handler must not retain control of the CPU for an extended period of time.

9.5 List of references:

1. Java 2: The Complete Reference, Fifth Edition, Herbert Schildt, Tata McGraw Hill.

2. An Introduction to Object oriented Programming with JAVA, C THOMAS WU

9.6 Bibilography:

http://www.javaworld.com/javaworld/jw-04-1996/jw-04-threads.html?page=3

http://www.janeg.ca/scjp/threads/overview.html

9.7 Model answers

1) What are the two ways to create the thread?

Ans : 1.by implementing Runnable

 2.by extending Thread

2) Explain the advantages of threading?

Ans : Advantages of multithreading over multi-tasking:

1. Reduces the computation time.

2. Improves performance of an application.

3. Threads distribute the same address space so it saves the memory.

4. Context switching between threads is usually less costly than between processes.

5. Cost of communication between threads is comparatively low.

3) What are synchronized methods and synchronized statements?

Ans : Synchronized methods are methods that are used to control access to an object. A thread

only executes a synchronized method after it has acquired the lock for the method's object or

class. Synchronized statements are similar to synchronized methods. A synchronized statement

can only be executed after a thread has acquired the lock for the object or class referenced in the

synchronized statement.

http://www.javaworld.com/javaworld/jw-04-1996/jw-04-threads.html?page=3
http://www.janeg.ca/scjp/threads/overview.html
http://www.roseindia.net/java/thread/Java-Multithreading.shtml

4) Explain the states of a tread?

Ans : There are five states:

01New state – After the construction of Thread instance the thread is in this state but before the start()

method invocation. At this point, the thread is considered not alive.

6. Runnable (Ready-to-run) state – A thread start its life from Runnable state. A thread first enters

runnable state after the invoking of start() method but a thread can come again to this state after

either running, waiting, sleeping or coming back from blocked state also. On this state a thread is

waiting for a turn on the processor.

7. Running state – A thread is in running state that means the thread is presently executing. There

are numerous ways to enter in Runnable state but there is only one way to enter in Running state:

the scheduler select a thread from runnable pool.

8. Dead state – A thread can be considered dead when its run() method completes. If any thread

comes on this state that means it cannot ever run again.

9. Blocked - A thread can enter in this state because of waiting the resources that are hold by

another thread.

7) What is a thread?

A: In Java the Thread class represents a single independent path of execution in a Java Virtual

Machine. When you run a Java program it implicitly starts a single thread of execution. The

Thread class enables programmers to create additional threads and set them running. A number

of threads may run in parallel, but only one is actively executed at a given moment.

The Java runtime system uses fairly complex thread scheduling mechanisms to coordinate the

execution of threads, but this does not require privileged knowledge or detail level intervention

by programmers. Programmers can manage the high level creation, initiation and distribution of

tasks amongst threads through simple API methods.

The example below shows the simplest approach to thread creation and task execution; construct

a new Thread with a Runnable argument and start it.

8) How to create one or more threads in Java?

Ans : program

public class Demo implements Runnable

{

 public static void main(String args[]) throws Throwable

http://www.roseindia.net/java/thread/life-cycle-of-threads.shtml

 {

 Demo obj1 = new Demo();

 Demo obj2 = new Demo();

 new Thread(obj1).start();

 new Thread(obj2).start();

 // main thread is ending here,

 // Thread-0 and Thread-1 continue to run.

 }

 public void run()

 {

 try {

 for (int i=0; i<5; i++) {

 System.out.println("thread "

 +Thread.currentThread().getName()+" step "+i);

 Thread.sleep(500);

 }

 } catch (Throwable t) { }

 }

}

Output:

C:\Java\jdk1.5.0_01\bin>java Demo

thread Thread-0 step 0

thread Thread-1 step 0

thread Thread-0 step 1

thread Thread-1 step 1

thread Thread-0 step 2

thread Thread-1 step 2

thread Thread-0 step 3

thread Thread-1 step 3

thread Thread-0 step 4

thread Thread-1 step 4

C:\Java\jdk1.5.0_01\bin>

9) Implementation of the multithreads by extending Thread Class.

Ans :

class Thr1 extends Thread{

 Thr1(String s){

 super(s);

 start();

 }

 public void run(){

 for(int i=0;i<7;i++){

 System.out.println("Name of thread:"

 +Thread.currentThread().getName());

 try{

 Thread.sleep(1000);

 }catch(Exception e){}

 }

 }

}

 public class Demo{

 public static void main(String args[]){

 System.out.println("Thread Name :"

 +Thread.currentThread().getName());

 Thr1 m1=new Thr1("Thread 1");

 Thr1 m2=new Thr1("Thread 2");

 }

}

Output:

C:\Java\jdk1.5.0_01\bin>java Demo

Thread Name :main

Name of thread:Thread 1

Name of thread:Thread 2

Name of thread:Thread 1

Name of thread:Thread 2

Name of thread:Thread 1

Name of thread:Thread 2

Name of thread:Thread 1

Name of thread:Thread 2

Name of thread:Thread 1

Name of thread:Thread 2

Name of thread:Thread 1

Name of thread:Thread 2

Name of thread:Thread 1

Name of thread:Thread 2

10

Applets

Unit Structure

10.1 Introduction to Applet

10.2 Applet vs Application

10.3 Applet class

10.4 Advantages of Applet

10.5 Applet Lifecycle

10.6 My First Applet

10.7 Applet tag

10.8 Passing Parameters to Applet

10.9 Types of Applets

10.10 Examples

10.1 Introduction to Applet

There are two kinds of Java programs, applications (also called stand-alone programs)

and Applets. An Applet is a small Internet-based program that has the Graphical User Interface

(GUI), written in the Java programming language.

Applets are designed to run inside a web browser or in applet viewer to facilitate the user

to animate the graphics, play sound, and design the GUI components such as text box, button,

and radio button. When applet arrives on the client, it has limited access to resources, so that it

can produce arbitary multimedia user interface and run complex computation without

introducing the risk of viruses or breaching data integrity.

To create an applet, we extend the ―java.applet.Applet‖ class And by overriding the

methods of java.awt.Applet, new functionality can be placed into web pages.

Applets are compiled using javac compiler and it can be executed by using an

appletviewer or by embedding the class file in the HTML (Hyper Text Markup Languege) file.

10.2 Applet vs Application

 Applets as previously described, are the small programs while applications are larger

programs.

 Applets don't have the main method while in an application execution starts with the

main method.

 Applets are designed just for handling the client site problems. while the java applications

are designed to work with the client as well as server.

 Applications are designed to exists in a secure area. while the applets are typically used.

 Applications are not too small to embed into a html page so that the user can view the

application in your browser. On the other hand applet have the accessibility criteria of the

resources.

10.3 Applet class

 The java.applet package is the smallest package in Java API(Application Programming

Interface). The Applet class is the only class in the package. The Applet class has many methods

that are used to display images, play audio files etc but it has no main() method. Some of them

were explained below that give you the knowledge about Applets and their behavior.

init() : This method is used for whatever initializations are needed for your applet.

Applets can have a default constructor, but it is better to perform all initializations in the

init method instead of the default constructor.

start() : This method is automatically called after Java calls the init method. If this method

is overwritten, code that needs to be executed every time that the user visits the browser

page that contains this applet.

stop() : This method is automatically called when the user moves off the page where the

applet sits. If your applet doesn't perform animation, play audio files, or perform

calculations in a thread, you don't usually need to use this method.

destroy(): Java calls this method when the browser shuts down.

10.4 Advantages of Applet

Following are the advantages of a Java Applet:

 The most important feature of an Applet is, It is truely platform independent so there is

no need of making any changes in the code for different platform i.e. it is simple to make

it work on Linux, Windows and Mac OS i.e. to make it cross platform.

 The same applet can work on "all" installed versions of Java at the same time, rather than

just the latest plug-in version only.

 It can move the work from the server to the client, making a web solution more scalable

with the number of users/clients.

 The applet naturally supports the changing user state like figure positions on the

chessboard.

 Applets improves with use: after a first applet is run, the JVM is already running and

starts quickly.

 Applets can be used to provide dynamic user-interfaces and a variety of graphical effects

for web pages.

10.5 Applet Lifecycle

Every java Applet inherits a set of default behaviours from the Applet class. As a result, when an

applet is loaded it undergoes a series of changes in its state. Following are the states in applets

lifecycle.

1) Born or Initialisation state :

An applet begins its life when the web browser loads its classes and calls its init()

method. This method is called exactly once in Applets lifecycle and is used to read applet

parameters. Thus, in the init() method one should provide initialization code such as the

initialization of variables.

Eg. public void init()

 {

//initialisation

}

2) Running State:

Once the initialization is complete, the web browser will call the start() method in the

applet. This method must called atleat once in the Applets lifecycle as the start() method can also

be called if the Applet is in ―Stoped‖ state. At this point the user can begin interacting with the

applet.

Eg. public void start()

{

 //Code

}

3) Stopped State:

The web browser will call the Applets stop() method, if the user moved to another web

page while the applet was executing. So that the applet can take a breather while the user goes

off and explores the web some more. The stop() method is called atleast once in Applets

Lifecycle.

Eg. publc void stop()

 {

 //Code

 }

4) Dead State:

Finally, if the user decides to quit the web browser, the web browser will free up system

resources by killing the applet before it closes. To do so, it will call the applets destroy() method.

One can override destroy() to perform one-time tasks upon program completion. for example,

cleaning up threads which were started in the init() method.

Eg. public void destroy()

 {

 // Code

}

Note: If the user returns to the applet, the web browser will simply call the applet's start()

method

 again and the user will be back into the program.

5) Display State :

 Applet moves to the display state whenever it has to perform the output operations on the

screen. This happens immediately after the applet enters into the running state. The paint()

method is called to accomplish this task.

Eg. public void paint(Graphics g)

 {

 //Display Statements

}

One can show Lifecycle of an Applet Graphically as follows:

 start()
 stop()

 start()
 destroy()

10.6 My First Applet

The following example is made simple enough to illustrate the essential use of Java

applets through its java.applet package.

Example.

import java.awt.*;

import java.applet.*;

public class SimpleApplet extends Applet

{

 public void paint(Graphics g)

 {

 g.drawString("My First Applet",40,40);

 }

}

 Save the file as SimpleApplet.java

 Compile the file using javac SimpleApplet.java

Here is the illustration of the above example,

Initialisatoin
sate Start

Running state Stopped State

Dead State

 In the first line we imorts the Abstract Window Toolkit(AWT) classes as Applet interact

with the user through the AWT, not through the console –based I/O classes. The AWT

contains support for a window based graphical interface.

 In the second line we import the Applet package, which contains the class ―Applet‖. As

every applet that we create is the subclass of Applet.

 The next line declares the class SimpleApplet. This class must be declared in public,

because it will be accessed by code that is outside the program.

 Inside simpleApplet, paint() method is declared. This method is defined by the AWT and

must be overridden by the Applet. Method paint() is called each time that the applet must

redisplay its output.

This paint() method has parameter of type ― Graphics‖. This parameter contains

the graphics context, which describes the graphics environment in which the applet is

running. This context is used whenever output to the applet is required.

 Inside paint() method is a call to drawstring(), which is a member of the Graphics class.

This method output a String beginning at specified X, Y locations.

How to run an Applet?

 There are two ways in which one can run an applet, as follows

1) Executing the applet within a java-compatible web browser.

2) Using an applet viewer, such as the standard SDK tool, ―appletviewer‖. An applet

viewer executes your applet in a window. This is generally the fastest and easiest

way to test your applet.

 To execute an applet in a web browser, you need to write a short HTML text file that

contains the appropriate APPLET tag.

For above example it is

<html>

<body>

<applet code="SimpleApplet.class" width=200 height=100>

</applet>

</body>

</html>

 Save this code in text file with extension .html say Myapplet.html.

 Compile the file using javac SimpleApplet.java

 On successful compilation of SimpleApplet.java file, execute the this file using

appletviewer Myapplet.html or just open this html file dirctly.

The output of above example appears as shown in the following figure :

 OR

Insted of creating different text file for html code one can write above program as follows

import java.awt.*;

import java.applet.*;

/* <applet code="SimpleApplet" width=200 height=100>

</applet>

*/

public class SimpleApplet extends Applet

{

 public void paint(Graphics g)

 {

 g.drawString("My First Applet",40,40);

 }

}

 Save the file as SimpleApplet.java

 Compile the file using javac SimpleApplet.java

 On successful compilation, execute the this file using appletviewer SimpleApplet.java

The output remains same.

Building an applet code:

 Applet code uses the series of two classes, namely Applet and Graphics from java class

library.

 Applet class which is contained in the java.applet package provides life and behaviour to

the applet through its methods such as init(), start(), and paint().

 When an applet is loaded, java automatically calls a series of applet class methods for

starting, running and stopping the applet code.

 The applet class therefore maintains the lifecycle of an applet.

 The paint() method of the applet class, when it is called, actually display the rusult of

applet code on the screen.

 The output may be text, graphics or sound.

 The paint() method, which requires a Graphics object as an argument, is defined as

follows:

public void paint(Graphics g)

 This requires that the applet code imports the java.awt package that contains the Graphics

class.

 All output operations of an applet are performed using the methods defined in the

Graphics class.

10.7 Applet tag

The Applet tag is used to start an applet from both HTML document and form applet

viewer.

An applet viewer will execute each Applet tag that it finds in a separate window, while

web browsers like Netscape Navigator, Internet Explorer and HotJava will allow many applets in

a single page.

The <applet....> tag included in the body section of HTML file supplies the name of the

applet to be loaded and tells the browser how much space the applet ruquires

The synatax for the standard Applet tag is as follows

<applet[codebase=codebaseURL] code=‖Applet file‖

 [ALT=‖alternative text]

 [name=AppletInstanceName]

 Width=pixels height= pixels

 [align= alignment]

>

[<param name=‖Attributename‖ value =‖Attribute value‖]

[<param name=‖Attributename‖ value =‖Attribute value‖]

........

[HTML displayed in the absence of java]

</applet>

Here is meaning of each peice of above code

 Codebase: Codebase is an optional attribute that specifies the base URL of the applet

code, which is the directory that will be searched for te applet‘s executable class file. The

HTML document‘s URL directory is used as the CODEBASE if this attribute is not

specified. The CODEBASE if this attribute is not specified. The CODEBASE does not

have to be on the host from which the HTML document was read.

 Code: code is required attribute that gives the name of the file containing the applets

compiled .class file. This file is relative t the code base URL of the applet , which is the

directory that the HTML file whs in or th edirectory indicated by the CODEBASE if set.

 ALT : The ALT tag is an optional attribute used to specify a short text message that

should be displayed if browser understand the APPLET tag but cant currently run java

applet.

 Name: Name is an optional attribute used to specify a name for the applet instance.

Applets must be named in order for other applets on the same page to find them by name

and communicate with them. To obtain an applet by name, use getAppet(), which is

defined by the AppletContext interface.

 Param name and value : The PARAM tag allows us to specify applet specific

arguments in an HTML page. Applets access their attributes with the getParameter()

method.

10.8 Passing Parameters to Applet

One can supply user-defined parameters to an applet using <param.....> tag. Each

<param....> tag has a name attribute such as color,and a value attribute such as red. Inside the

applet code, the applet can refer to that parameter by name to find its value. For e.g. the color of

the text can be changed to red by an applet using a <param...> tag as follows

 <applet....>

 <param=color value = ―red‖>

 </applet>

 Similarly we can change the text to be displayed by an applet by supplying new text to

the applet through a <param....>tag as shown below.

 <param name=text value = ―xyz‖ >

 Passing a parameters to an applet is similar to passing parameters to main() method using

command line arguments. To set up and handle parameters, we need to do two things.

1) Include appropriate <param.....> tags in the HTML document.

2) Provide code in the applet to pass these paraments.

Parameters are passed to an applet when it is loaded. We can define the init() method in

the applet to get hold of the parameters defined in the <param> tags. This is done using the

getparameter() method, which takes one string argument representing the name of the parameter

and returns a string containing the value of that parameter.

10.9 Types of Applets

 As we can embed applet into web pages in two ways i.e. by writting our own applet and

then embed into web pages. Or by downloading it from a remote computer system and then

embed it into webpage.

 An applet developed locally and stored in a local system is known as local applet.

Therefore when webpage is trying to find local applet it doen not need the internet connection.

A remote applte is that which is developed by some one else and stored on a remote

computer connected to the internet. If our system is connected to the internet then we can

download it from remote computer and run it. In order to locate and load a remote applet, we

must know the applet‘s address on the web. This address is known as Uniform Resourse

locator(URL) and must be specified in applet‘s document.

10.10 Examples

Example 1 // Example to illustrate Applet Lifecycle

import java.awt.*;

import java.applet.*;

/* <applet code="AppletTest" width=200 height= 100>

</applet>

*/

public class AppletTest extends Applet

{

 public void init()

 {

System.out.println("Applet Initialised...");

 setBackground(Color.cyan);

 }

 public void start()

 {

 System.out.println("Applet Started....");

 }

 public void stop()

 {

System.out.println("Applet Stoppen....");

 }

 public void destroy()

 {

System.out.println("Applet Destryoed....");

 }

 public void paint(Graphics g)

 {

 g.drawString("Applet Text",200,400);

 showStatus("This is shown in Status.");

 }

}

 Save the file as AppletTest. Java

 Compile the file using javac AppletTest.java

 On successful compilation, execute the file using appletviewer AppletTest.java

The output appers as shown in following figure :

Example 2 // Example to illustrate Applet Lifecycle

import java.awt.*;

import java.applet.*;

/* <applet code="Sample" width=200 height= 100>

</applet>

*/

public class Sample extends Applet

{

String msg;

public void init()

{

setBackground(Color.cyan);

setForeground(Color.red);

msg = "Inside init()-";

}

public void start()

{

msg += "Inside start()-";

}

public void paint(Graphics g)

{

msg +="Inside paint()-";

g.drawString(msg,10,30);

showStatus("This is shown at status");

}

}

 Save the file as Sample. Java

 Compile the file using javac Sample.java

 On successful compilation, execute the file using appletviewer Sample.java

The output appers as shown in following figure :

Example 3 // Example for passing parameters

import java.awt.*;

import java.applet.*;

/* <applet code="ParamDemo" width=300 height= 80>

 <param name=fontName value=Courier>

 <param name=fontSize value=14>

 <param name=leading value = 2>

 <param name=accountEnabled value= true>

</applet>

*/

public class ParamDemo extends Applet

{

 String fontName;

 int fontSize;

 float leading;

 boolean active;

public void start()

{

 String param;

 fontName=getParameter("fontName");

 if(fontName==null)

 fontName= "Not Found";

 param=getParameter("fontSize");

 try

 {

 if(param!=null)

 fontSize=Integer.parseInt(param);

 else

 fontSize=0;

 }

catch(NumberFormatException e)

{

 fontSize=-1;

 }

param=getParameter("leading");

try

 {

 if(param!=null)

 leading=Float.valueOf(param).floatValue();

 else

 leading=0;

 }

catch(NumberFormatException e)

{

 leading=0;

 }

param=getParameter("accountEnabled");

if (param!=null)

active =Boolean.valueOf(param).booleanValue();

}

public void paint(Graphics g)

{

 g.drawString("Font Name." + fontName,0,10);

 g.drawString("Font Size." + fontSize,0,26);

 g.drawString("Leading." + leading,0,42);

 g.drawString("Account Active." + active,0,58);

}

}

 Save the file as ParamDemo. Java

 Compile the file using javac ParamDemo.java

 On successful compilation, execute the file using appletviewer ParamDemo.java

The output appers as shown in following figure :

Example 4 // Example for getDocumentBase() & getCodeBase()

import java.awt.*;

import java.applet.*;

import java.net.*;

/* <applet code="Bases" width=300 height= 50>

</applet>

*/

public class Bases extends Applet

{

public void paint(Graphics g)

{

String msg;

URL url= getCodeBase();

msg= "Code Base:" +url.toString();

g.drawString(msg,10,20);

url= getDocumentBase();

msg= "Document Base:" +url.toString();

g.drawString(msg,10,40);

}

}

 Save the file as Bases. Java

 Compile the file using javac Bases.java

 On successful compilation, execute the file using appletviewer Bases.java

The output appers as shown in following figure :

11

Graphical User Interface (GUI)

Unit Structure

11.1 GUI Components

11.2 Interface and Classes of AWT Package

11.2.1 Labels

11.2.2 Buttons

11.2.3 Check Boxes

11.2.4 Radio Button

11.2.5 Text Area

11.2.6 Text Field

11.2.7 Scrollbar

11.2.8 Panels

11.3 Layout managers

11.4 Methods of AWT

Introduction

 A type of user interface item that allows people to interact with programs in more ways

than typing such as computers and many hand-held devices such as mobile phones is called a

graphical user interface (GUI) . A GUI offers graphical icons, and visual indicators, as

opposed to text-based interfaces. This helps to develop more efficient programs that are easy to

work with. The user can interact with the application without any problem.

The GUI application is created in three steps. These are:

 Add components to Container objects to make your GUI.

 Then you need to setup event handlers for the user interaction with GUI.

 Explicitly display the GUI for application.

11.1GUI Components

It is visual object and the user interacts with this object via a mouse or a keyboard.

Components included, can be actually seen on the screen, such as, buttons, labels etc. Any

operation that is common to all GUI components are found in class Component. Different

components are available in the Java AWT (Abstract Window Toolkit)package for developing

user interface for your program.

A class library is provided by the Java programming language which is known as

Abstract Window Toolkit (AWT). The Abstract Window Toolkit (AWT) contains several

graphical widgets which can be added and positioned to the display area with a layout manager.

AWT is a powerful concept in JAVA. AWT is basically used to develop for GUI

application building. AWT is platform dependant. That means your .class file after the program

compilation is platform independent but the look of your GUI application is platform dependant.

AWT copies GUI component from local macines operating system. That means your

applications look will differ in MAC operating system, as you have seen in WINDOWS

operating system.

 11.2 Interface and Classes of AWT Package:

Some of the Classes Interfaces of AWT package are explained below

Interfaces Descriptions

ActionEvent This interface is used for handling events.

Adjustable This interface takes numeric value to adjust within the bounded

range.

Composite This interface defines methods to draw a graphical area. It

combines a shape, text, or image etc.

CompositeContext This interface allows the existence of several contexts

simultaneously for a single composite object. It handles the state of

the operations.

ItemSelectable This interface is used for maintaining zero or more selection for

items from the item list.

KeyEventDispatcher The KeyEventDispatcher implements the current

KeyboardFocusManager and it receives KeyEvents before

dispatching their targets.

KeyEventPostProcessor This interface also implements the current

KeyboardFocusManager. The KeyboardFocusManager receives the

KeyEvents after that dispatching their targets.

LayoutManager It defines the interface class and it has layout containers.

LayoutManager2 This is the interface extends from the LayoutManager and is

subinterface of that.

MenuContainer This interface has all menu containers.

Paint This interface is used to color pattern. It used for the Graphics2D

operations.

PaintContext This interface also used the color pattern. It provides an important

color for the Graphics2D operation and uses the ColorModel.

PaintGraphics This interface provides print a graphics context for a page.

Shape This interface used for represent the geometric shapes.

Stroke This interface allows the Graphics2D object and contains the

shapes to outline or stylistic representation of outline.

Transparency This interface defines the transparency mode for implementing

classes.

Class hierarchy of AWT classes can be given as follows.

Button Canvas CheckBox Choice Container Label List Scrollbar

Object

component

Window Panel Scroll Pane

Applet Dialog Frame

File Dialog

Text Field Text Area

Text Compontent

Some of the AWT components are explained below.

11.2.1 Labels:

This is the simplest component of Java Abstract Window Toolkit. This component is generally

used to show the text or string in your application and label never perform any type of action.

Syntax for defining the label only and with justification:

Label label_name = new Label ("This is the label text.");

above code simply represents the text for the label.

Label label_name = new Label ("This is the label text. ‖ , Label.CENTER);

Justification of label can be left, right or centered. Above declaration used the center justification

of the label using the Label.CENTER.

Example for Label.

import java.awt.*;

import java.applet.Applet;

 /*<applet code="LabelTest" width=200 height=100>

</applet>

*/

public class LabelTest extends Applet

{

 public void init()

 {

 add(new Label("A label"));

 // right justify next label

 add(new Label("Another label", Label.RIGHT));

 }

 }

 Save the file as LabelTest. Java

 Compile the file using javac LabelTest.java

 On successful compilation, execute the file using appletviewer LabelTest.java

The output appers as shown in following figure :

11.2.2 Buttons:

This is the component of Java Abstract Window Toolkit and is used to trigger actions and other

events required for your application. The syntax of defining the button is as follows:

Button button_name = new Button ("This is the label of the button.");

You can change the Button's label or get the label's text by using the Button.setLabel (String) and

Button.getLabel () method. Buttons are added to its container using the, add (button_name)

method.

Example for Buttons:-

import java.awt.*;

import java.applet.Applet;

/*<applet code="ButtonTest" width=200 height=100>

</applet>

* /

public class ButtonTest extends Applet

{

public void init()

 {

 Button button = new Button ("OK");

 add (button);

 }

 }

 Save the file as ButtonTest. Java

 Compile the file using javac ButtonTest.java

 On successful compilation, execute the file using appletviewer ButtonTest.java

The output appers as shown in following figure :

Note that in the above example there is no event handling added; pressing the button will not do

anything.

11.2.3 Check Boxes:

This component of Java AWT allows you to create check boxes in your applications. The syntax

of the definition of Checkbox is as follows:

Checkbox checkbox_name = new Checkbox ("Optional check box 1",

 false);

Above code constructs the unchecked Checkbox by passing the boolean valued argument false

with the Checkbox label through the Checkbox() constructor. Defined Checkbox is added to its

container using add (checkbox_name) method. You can change and get the checkbox's label

using the setLabel (String) and getLabel () method. You can also set and get the state of the

checkbox using the setState (boolean) and getState () method provided by the Checkbox class.

Example for Check Boxes:-

import java.awt.*;

import java.applet.Applet;

/*<applet code="CheckboxTest" width=200 height=100>

</applet>

*

public class CheckboxTest extends Applet

{

 public void init()

{

 Checkbox m = new Checkbox ("Allow Mixed Case");

 add (m);

 }

}

 Save the file as CheckboxTest. Java

 Compile the file using javac CheckboxTest.java

 On successful compilation, execute the file using appletviewer CheckboxTest.java

The output appers as shown in following figure :

11.2.4 Radio Button:

Radio buttons are a bunch of option boxes in a group. Only one of then can be checked at

a time. This is useful if you need to give the user a few options where only one will apply. This

is the special case of the Checkbox component of Java AWT package. This is used as a group

of checkboxes whos group name is same. Only one Checkbox from a Checkbox Group can be

selected at a time.

Syntax for creating radio buttons is as follows:

CheckboxGroup chkboxgp = new CheckboxGroup ();

add (new Checkbox ("chkboxname", chkboxgp, value);

―Value‖ in the second statement can only be true or false.If you mention more than one

true valued for checkboxes then your program takes the last true and shows the last check box

as checked.

Example for Radio Buttons.

import java.awt.*;

import java.applet.Applet;

/*<applet code="Rbutton" width=200 height=100>

</applet>

*/

public class Rbutton extends Applet

{

 public void init()

 {

 CheckboxGroup chkgp = new CheckboxGroup ();

 add (new Checkbox ("One", chkgp, false));

 add (new Checkbox ("Two", chkgp, false));

 add (new Checkbox ("Three",chkgp, false));

 }

 }

In the above code we are making three check boxes with the label "One", "Two" and

"Three".

 Save the file as Rbutton. Java

 Compile the file using javac Rbutton.java

 On successful compilation, execute the file using appletviewer Rbutton.java

The output appers as shown in following figure :

11.2.5 Text Area:

This is the text container component of Java AWT package. The Text Area contains plain text.

TextArea can be declared as follows:

TextArea txtArea_name = new TextArea ();

You can make the Text Area editable or not using the setEditable (boolean) method. If you pass

the boolean valued argument false then the text area will be non-editable otherwise it will be

editable. The text area is by default in editable mode. Texts are set in the text area using the

setText (string) method of the TextArea class.

Example for Text Area:-

import java.awt.*;

import java.applet.Applet;

/*<applet code="TAreaTest" width=200 height=100>

</applet>

*/

public class TAreaTest extends Applet

{

 TextArea disp;

 public void init()

 {

 disp = new TextArea("Code goes here", 10, 30);

 add (disp);

 }

}

 Save the file as TAreaTest. Java

 Compile the file using javac TAreaTest.java

 On successful compilation, execute the file using appletviewer TAreaTest.java

The output appers as shown in following figure :

11.2.6 Text Field:

This is also the text container component of Java AWT package. This component contains single

line and limited text information. This is declared as follows:

TextField txtfield = new TextField (20);

You can fix the number of columns in the text field by specifying the number in the constructor.

In the above code we have fixed the number of columns to 20.

A displayed label object is known as the Label. Most of the times label is used to demonstrate

the significance of the other parts of the GUI. It helps to display the functioning of the next text

field. A label is also restricted to a single line of text as a button.

Example for Text Field:-

import java.awt.*;

import java.applet.Applet;

/*<applet code="TFieldTest" width=200 height=100>

</applet>

*/

public class TFieldTest extends Applet

{

 public void init()

 {

 TextField f1 =

 new TextField("type something");

 add(f1);

 }

 }

 Save the file as TFieldTest. Java

 Compile the file using javac TFieldTest.java

 On successful compilation, execute the file using appletviewer TFieldTest.java

The output appers as shown in following figure :

11.2.7 Scrollbar:-

Scrollbar is represented by a "slider" widget. The characteristics of it are specified by integer

values which are being set at the time of scrollbar construction. Both the types of Sliders are

available i.e. horizontal and vertical.

The example below shows the code for the scrollbar construction. The subtraction of scrollbar

width from the maximum setting gives the maximum value of the Scrollbar. In the program

code, '0' is the <<<<<<< scrollbar.shtml initial value of the scrollbar, '8' is the width of the

scrollbar.

Example for Scrollbar

 Save the file as ScrollbarDemo. Java

 Compile the file using javac ScrollbarDemo.java

 On successful compilation, execute the file using appletviewer ScrollbarDemo.java

The output appers as shown in following figure :

import java.awt.*;

import java.applet.Applet;

 /*<applet code="ScrollbarDemo" width=200 height=100>

</applet>

*/
public class ScrollbarDemo extends Applet

{
 public void init()

 {
 Scrollbar sb = new Scrollbar

 (Scrollbar.VERTICAL, 0, 8, -100, 100);
 add(sb);
 }

}

11.2.8 Panels

A panel is an object which holds other objects. It‘s just a container to organize and

arrange your GUI better. Once, you learn about Layout Managers you‘ll see why panels are a

useful tool. For now, just know that they‘re useful. Here‘s an example of a set of buttons added

into a panel:

Panel myPanel = new Panel();

myPanel.add(helloButton);

myPanel.add(goodbyeButton);

add(myPanel);

It looks no different than if you just added the buttons regularly, but you‘ll see why you

might want to use panels later on... This is what it looks like:

11.3 Layout managers

The layout manager are a set of classes that implement the java.AWT.LayoutManager

interface and help to position the components in a container. The interface takes a task of laying

out the child components in the container. The task is achieved by resizing and moving the child

components. The advantages of this type of mechanism is that when the container is resized the

layout manager automatically updates the interface

The basic layout managers includes:

1) FlowLayout : It is a simple layout manager that works like a word processor. It is also

the default Layout manager for the panel. The flow layout lays out components linewise

from left to right.

FlowLaout can be created using following constructors

 a. FlowLaout() : Constructs a new layout with centered alignment, leaving a

vertical and horizontal gap.

b. FlowLayout(int aling, int vgap, int hgap) : Constructs a new flowlayout with

the alignment specified, leaving a vertical and horizontal gap as specified.

Various methods can be used alog with the flow layout. For eg.

getAlignment(), getHgap(), getAlignment(int align) etc.

Example for Flow Layout

import java.awt.*;

import java.awt.event.*;

class FlowDemo extends Frame

{

Button b1 = new Button("one");

Button b2 = new Button("two");

public FlowDemo(String s)

{

super(s);

setSize(400,400);

setLayout(new FlowLayout(FlowLayout.LEFT));

addWindowListener(new WindowAdapter()

{

public void windowClosing(WindowEvent e)

{

System.exit(0);

}

});

add(b1);

add(b2);

}

public static void main(String arg[])

{

Frame f=new Frame();

f.show();

}

}

 Save the file as FlowDemo. Java

 Compile the file using javac FlowDemo.java

 On successful compilation, execute the file using java FlowDemo.java

2) Grid Layout : It lays out components in a way very similar to spredsheet(rows

 and columns). Specifying the number of rows and columns in grid creates the

 Grid layout.

 Grid Layout can be created using following constructors

a. GridLayout() : Creates a grid layout with a default of one column per

 component in a single row.

b. GridLayout(int rows, int cols, int hgap, int vgap) : Creates a grid layout

 with the specified rows and columns and specified horizontal and vertical

 gaps.

Various methods can be used alog with the Grid layout. For eg.

getColumns(), getRows(), geHgap(), getVgap() etc.

Example for Grid Layout

import java.applet.Applet;

import java.awt.*;

public class Grid1 extends Applet {

 LayoutManager Layout;

 Button [] Buttons;

 public Grid1 () {

 int i;

 Layout = new GridLayout (3, 2);

 setLayout (Layout);

 Buttons = new Button [5];

 for (i = 0; i < 5; ++i) {

 Buttons[i] = new Button ();

 Buttons[i].setLabel ("Button " + (i + 1));

 add (Buttons[i]);

 }

 }

}

 Save the file as Grid1. Java

 Compile the file using javac Grid1.java

 On successful compilation, execute the file using appletviewer Grid1.java

The output appers as shown in following figure :

3) BorderLayout : It is the class that enables specification, i.e. where on the border

 of container each component should be placed. All areas need not be filled. The

 size of the areas will depend on the components they contain.

 Border Layout can be created using following constructors

 a. BorderLayout() : It creates a new border layout with no gap between the

 components.

 b. BorderLayout(int hgap, int vgap) : It creates a border layout with the

 specified horizontal and vertical gap between components.

Various methods can be used alog with the Border layout. For eg.

getHgap(), getVgap(), setHgap(int hgap), setVgap(int vgap)

Example for Border Layout

import java.awt.*;

import java.applet.*;

import java.util.*;

/*<applet code="BorderDemo" width=300 height=100>

</applet>

*/

public class BorderDemo extends Applet

{

public void init()

{

setLayout(new BorderLayout());

add(new Button("This across the top"),BorderLayout.NORTH);

add(new Button("The Footer message might go here"),BorderLayout.SOUTH);

add(new Button("Right"),BorderLayout.EAST);

add(new Button("Left"),BorderLayout.WEST);

String msg=" This is border layout";

add(new TextArea(msg),BorderLayout.CENTER);

add(new Button("new"),BorderLayout.CENTER);

}

}

 Save the file as BorderDemo. Java

 Compile the file using javac BorderDemo.java

 On successful compilation, execute the file using appletviewer BorderDemo.java

The output appers as shown in following figure :

11.4 Methods of AWT:-

 The common methods of AWT components are as follow:

getLocation () - This method is used to get position of the component, as a Point. The usage of

the method is shown below.

Point p = someComponent.getLocation ();

int x = p.x;

int y = p.y;

the x and y parts of the location can be easily accessed by using getX () and getY (). It is always

efficient to use getX () and getY () methods.

For example,

int x = someComponent.getX();

int y = someComponent.getY();

getLocationOnScreen () - This method is used to get the position of the upper-left corner of the

screen of the component, as a Point. The usage of the method is shown below.

Point p = someComponent.getLocationOnScreen ();

int x = p.x;

int y = p.y;

It is always advisable to use getLocation () method (if working on Java 2 platform).

getBounds () - This method is used to get the current bounding Rectangle of component. The

usage of the method is shown below.

Rectangle r = someComponent.getBounds ();

int height = r.height;

int width = r.width;

int x = r.x;

int y = r.y;

if you need a Rectangle object then the efficient way is to use getX (), getY(), getWidth(), and

getHeight() methods.

getSize () - This method is used to get the current size of component, as a Dimension. The usage

of the method is shown below.

Dimension d = someComponent.getSize ();

int height = d.height;

int width = d.width;

use getWidth () and getHeight () methods to directly access the width and height. You can also

use getSize () if you require a Dimension object.

For Example,int height = someComponent.getHeight();

int width = someComponent.getWidth();

setBackground(Color)/setForeground(Color) - This method is used to change the

background/foreground colors of the component

setFont (Font) - This method is used to change the font of text within a component.

setVisible (boolean) - This method is used for the visibility state of the component. The

component appears on the screen if setVisible () is set to true and if it‘s set to false then the

component will not appear on the screen. Furthermore, if we mark the component as not visible

then the component will disappear while reserving its space in the GUI.

setEnabled (boolean) - This method is used to toggle the state of the component. The

component will appear if set to true and it will also react to the user. ON the contrary, if set to

false then the component will not appear hence no user interaction will be there.

As discussed earlier a container is a component that can be nested. The most widely

used Panel is the Class Panel which can be extended further to partition GUIs. There is

a Panel which is used for running the programs. This Panel is known as Class Applet

which is used for running the programs within the Browser.

Common Container Methods:-

All the subclasses of the Container class inherit the behavior of more than 50 common methods

of Container. These subclasses of the container mostly override the method of component.

Some of the methods of container which are most widely used are as follow:

getComponents ();

add();

getComponentCount();

getComponent(int);

ScrollPane:-

The ScrollPane container provides an automatic scrolling of any larger component introduced

with the 1.1 release of the Java Runtime Environment (JRE). Any image which is bigger in size

for the display area or a bunch of spreadsheet cells is considered as a large object. Moreover

there is no LayoutManager for a ScrollPane because only a single object exists within it.

However, the mechanism of Event Handling is being managed for scrolling.

The example below shows the Scrollpane. This scrollpane demonstrates the scrolling of the large

image. In the program code below, first of all we have created a scrollpane by creating its object,

and then we have passed the parameter of image in it. We have also set the border layout as

centre, as shown.

Example for Scroll Pane

*/

class Scrollpane extends Component {
 private Image image;
 public Scrollpane(Image m)

{
 image = m;

 }
 public void paint(Graphics g)

 {
 if (image != null)

 g.drawImage(image, 0, 0, this);
 }
}

public class ScrollingImageDemo extends Applet

{
 public void init()

import java.awt.*;
import java.applet.*;

 /*<applet code="ScrollingImageDemo" width=200 height=100>

</applet>

 {
 setLayout(new BorderLayout());

 ScrollPane SC = new ScrollPane(ScrollPane.SCROLLBARS_ALWAYS)

;
 Image mg = getImage(getCodeBase(), "cute-puppy.gif");
 SC.add(new Scrollpane(mg));

 add(SC, BorderLayout.CENTER);
 }
}

 Save the file as ScrollingImageDemo. Java

 Compile the file using javac ScrollingImageDemo.java

 On successful compilation, execute the file using appletviewer

ScrollingImageDemo.java

The output appers as shown in following figure :

12

EventHandling

Unit Structure

12.0 Introduction

12.1 Event

12.2 Event Source

12.3 Event Classes

12.4 Event Listener

12.5 Examples

12.6 Handling Windows Events

12.7 Adapter Classes

12.0 Introduction

Writing an applet that responds to user input, introduces us to event handling. We can

make our applet respond to user input by overriding event handler methods in our applet. There

are a variety of event handler methods which we will see further.

Each event must return a Boolean value (true or false), indicating whether the event

should be made available to other event handlers. If you've processed an event (for example,

keyDown) you might record the value, and return true to show that no other handlers should

receive the event. If, however, your custom edit box can't process the character, it may want to

return false to signal that other components (the panel or applet in which the component is

hosted) should process it.

12.1 Event:

An Event is an object that describes a state change in a source. It can be generated as a

consequence of a person interacting with the elements in a GUI. Some of the activities that cause

events to be generated are pressing a button, entering a character via the keyboard, selecting an

item in a list, and clicking the mouse.

Events may also occur that are not directly caused by interactions with user interface. For

e.g. an event may be generated when a timer expires, a counter exceeds a value, a software or

hardware failure occurs, or an operation is completed.

12.2 Event Source:

An event source is the object that generates an event. This occurs when the internal state

of that object changes in some way. Sources may generate more than one type of event. A source

may register listeners in order for the listeners to receive notifications about a specific type of

event. Each type of event has its own registration method. Example if you click a button an

ActionEvent Object is generated. The object of the ActionEvent class contains information about

the event.

In addition to GUI elements, other components such as an Applet, can generate Events.

For e.g. you receive key and mouse events from an Applet.

Following is the table to describe some of the Event Sources.

Event Sources Description

Button Generates action events when the button is pressed.

Checkbox Generates item events when the check box is selected or

deselected.

List Generates action events when an item is double-clicked;

generates item events when an item is selected or

deselected.

Choice Generates item events when the choice is changed.

MenuItem Generates action events when a menu item is selected;

generates item events when a checkable menu item is

selected or deselected.

Scrollbar Generates adjustment events when the scrollbar is

manipulated.

Text components Generates text events when the user enters a character.

Window Generates window events when a window is activated,

closed , deactivated, deiconified, iconified, opened, or

quit.

12.3 Event Classes

The „EventObject‟ class is at the top of the event class hierarchy. It belongs to the

java.util package. While most of the other event classes are present in java.awt.event package.

The getSource() method of the EventObject class returns the object that initiated the event. The

getId () method returns the nature of the event. For example, if a mouse event occurs, you can

find out whether the event was click, a press, a move or release from the event object.

 Following is the table to describe the Event Classes.

Event Class Discription

ActionEvent
A semantic event which indicates that a component-

defined action occurred.

AdjustmentEvent

The adjustment event emitted by Adjustable objects.

ComponentEvent

A low-level event which indicates that a component

moved, changed size, or changed visibility (also, the root

class for the other component-level events).

ContainerEvent

A low-level event which indicates that a container's

contents changed because a component was added or

removed.

InputEvent
The root event class for all component-level input events.

ItemEvent
A semantic event which indicates that an item was

selected or deselected.

KeyEvent
An event which indicates that a keystroke occurred in a

component.

MouseEvent
An event which indicates that a mouse action occurred in

a component.

MouseWheelEvent
An event which indicates that the mouse wheel was

rotated in a component.

PaintEvent

The component-level paint event.

TextEvent
A semantic event which indicates that an object's text

changed.

WindowEvent
A low-level event that indicates that a window has

changed its status.

12.4 Event Listener:

These are objects that define methods to handle certain type of events. An event source

(for example a PushButton) can generate one or more type of events, and maintain a list of event

listeners for each type of event. An event source can register listeners by calling addXListener

type of methods. For example a Button may register an object for handling ActionEvent by

calling addActionListener. This object would then need to implement the listener interface

corresponding to ActionEvent, which is ActionListener.

So to set up the processing of events the following tasks must be done.

I. For the GUI component (like pushbutton) associate a listener object class with the

component by calling a method of type addXListener (See table below for list of

methods).

II. Define this listener object. It must implement the corresponding interface. The name of

interface is of type EventListener. Table below gives list of event listeners.

III. The object must define all the methods defined in the interface it is implementing. See

table for the list of Event Listener methods defined in each Event Listener interface

Interface Description

ActionListener Define one method to receive action events

AdjustmentListener Defines one method to receive adjustment events.

ComponentListener Defines four methods to recognize when a component is

hidden, moved, resized, or shown.

ContainerListener Defines two methods to recognize when a component is

added to or removed from a container.

Focus Listener Defines two methods to recognize when a component

gains or loses keyboard focus.

ItemListener Defines one method to recognize when the state of an

item is changes.

KeyListener Defines 3 methods to recognize when a key is pressed,

released, or typed.

MouseListener Defines 5 methods to recognize when the mouse is

clicked, enters a component, exits a component, is

pressed, or is released

MouseMotionListener Defines two methods to recognize when the mouse is

dragged or moved.

MouseWheelListener Defines one method to recognize when mouse wheel is

moved.

TextListener Defines one method to recognize when a text value

changes.

WindowFocusListener Defines two methods to recognize when window gains

or loses focus.

WindowListner Defines 7 methods to recognize when a window is

activated, closed, deactivated, deiconified, iconified,

opened, or quit.

12.5 EXAMPLES

1) Example for MouseEvents & MouseListener

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*<applet code= "mouseEvent" width=400 height=300>

</applet?

*/

public class mouseEvent extends Applet implements MouseListener, MouseMotionListener

{

 public void init ()

 {

 addMouseListener (this);

 addMouseMotionListener (this);

 }

public void mouseClicked(MouseEvent e)

 {

 showStatus ("Mouse has been clicked at " + e.getX()+ "," + e.getY());

 }

public void mouseEntered (MouseEvent e)

 {

 showStatus ("Mouse has been Entered at " + e.getX()+ "," + e.getY());

 // For loop: to make sure mouse entered is on status bar for a few sec

 for (int i= 0; i<1000000; i++);

 }

public void mouseExited (MouseEvent e)

 {

 showStatus ("Mouse has been Exited at " + e.getX()+ "," + e.getY());

 }

public void mousePressed (MouseEvent e)

 {

 showStatus ("Mouse pressed at " + e.getX()+ "," + e.getY());

 }

public void mouseReleased (MouseEvent e)

 {

 showStatus ("Mouse released at " + e.getX()+ "," + e.getY());

 }

public void mouseDragged (MouseEvent e)

 {

 showStatus ("Mouse dragged at " + e.getX()+ "," + e.getY());

 }

public void mouseMoved(MouseEvent e)

 {

 showStatus ("Mouse moved at " + e.getX()+ "," + e.getY());

 }

//public void paint(Graphics g)

// {

//g.drawString(msg, e.getX(), e.getY());

// }

}

 Save the file as mouseEvent. Java

 Compile the file using javac mouseEvent.java

 On successful compilation, execute the file using appletviewer mouseEvent.java

The output appers as shown in following figure :

2) Example for Key events and KeyListener.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*<applet code="keyTest" width =400 height=300>

</applet>

*/

public class keyTest extends Applet implements KeyListener

{

 public void init()

 {

 Label lab = new Label ("Enter Characters :");

 add (lab);

 TextField tf = new TextField (20);

 add (tf);

 tf.addKeyListener(this);

 }

 public void keyPressed(KeyEvent e)

{

 showStatus("key Down");

}

 public void keyReleased(KeyEvent e)

{

 showStatus("key Up");

}

 public void keyTyped(KeyEvent e)

{

 showStatus(" Recently typed characters are : " + e.getKeyChar());

 }

 }

 Save the file as keyTest. Java

 Compile the file using javac keyTest.java

 On successful compilation, execute the file using appletviewer keyTest.java

The output appers as shown in following figure :

3) Example for Button Event and Action Listener

import java.awt.*;

import java.awt.event.*;

import java.applet.Applet;

/*

<applet code = "ButtonEvent" height = 400 width = 400>

</applet>

*/

public class ButtonEvent extends Applet implements ActionListener

{

 Button b;

 public void init()

{

 b = new Button("Click me");

 b.addActionListener(this);

 add (b);

 }

 public void actionPerformed (ActionEvent e)

 {

 // If the target of the event was our //Button

 // In this example, the check is not

 // Truly necessary as we only listen//to

 // A single button

if(e.getSource () == b)

{

 getGraphics().drawString("OUCH Buddy",20,20);

 }

 }

}

 Save the file as ButtonEvent. Java

 Compile the file using javac ButtonEvent.java

 On successful compilation, execute the file using appletviewer ButtonEvent.java

The output appers as shown in following figure :

12.6 Handling Windows Events:

When you use interfaces for creating listeners, the listener class has to override all the

methods that are declared in the interface. Some of the interfaces have only one method, whereas

others(windowListener) have many. So even if you want to handle only a single event, you have

to override all the methods. To overcome this, the event packages provide seven adapter classes,

which we will see shortly. Now coming back to handle window-related events, you need to

register the listener object that implements the windowListener interface. The WindowListener

interface contains a set of methods that are used to handle window events.

Category Event Method

Windows Events

The user clicks on the cross

button.

void windowClosing

(WindowEvent e)

The window opened for the

first time.

void windowOpened

(WindowEvent e)

The window is activated. void windowActivated

(WindowEvent e)

The window is deactivated. void windowDeactivated

(WindowEvent e)

The window is closed. void windowClosed

(WindowEvent e)

The window is minimized void windowIconified

(WindowEvent e)

The window maximized void windowDeiconified

(WindowEvent e)

4) example for Window Events

import java.awt.*;

import java.awt.event.*;

Class OurWindowListener implements windowListener

{

 //Event handler for the window closing event

 public void windowClosing (windowEvent we)

 {

 System.exit(0);

 }

 public void windowClosed (windowEvent we)

 {

 }

public void windowOpened (windowEvent we)

 {

 }

 public void windowActivated (windowEvent we)

 {

 }

public void windowDeactivated (windowEvent we)

 {

 }

public void windowIconified (windowEvent we)

 {

 }

public void windowDeiconified (windowEvent we)

 {

 }

}

public class MyFrame extends Frame

{

 Button b1;

 // Main Method

 public static void main (String arg[])

 {

 MyFrame f = new MyFrame();

 }

 //Constructor for the event derived class

 public MyFrame()

 {

 Super (―Windows Events-Title‖);

 b1 = new button(―Click Me‖);

 //place the button object on the window

 add(―center‖,b1);

 //Register the listener for the button

 ButtonListener listen = new ButtonListener();

 b1.addActionListener(listen);

 //Register a listener for the window.

 OurWindowListener wlisten = new OurWindowListener();

 addWindowListener(wlisten);

 //display the window in a specific size

 setVisible(true);

 setSize(200,200);

 }//end of frame class

 //The Listener Class

 Class ButtonListener implements ActionListener

 {

 //Definition for ActionPerformed() method

 public void ActionPerformed(ActionEvent evt)

 {

 Button source = (Button)evt.getSource();

 Source.setLabel(―Button Clicked, Buddy!‖);

 }

 }

}

In the above example MyFrame class makes a call to the addWindowListener() method, which

registers object for the window. This enables the application to handle all the window-related

events. When the user interacts with the application by clicking close button, maximizing or

minimizing a WindowEvent object is created and delegated to the pre-registered listener of the

window. Subsequently the designated event-handler is called.

In the above example, the class OurWindowListener has methods that do not contain any code.

This is because the windowListener interface contains declarations for all these methods forcing

you to override them.

12.7 Adapter Classes:

Java provides us with adapter classes that implement the corresponding listener interfaces

containing one or more methods. The methods in these classes are empty. The Listener class that

you define can extend the Adapter class and override the methods that you need. The adapter

class used for WindowListener interface is the WindowAdapter class.

So you can simplify the above code (example 2) using Adapter class in the following manner:

Example :Save as MyFrames.java and complie.

import java.awt.*;

import java.awt.event.*;

Class MyFrames extends frame

{

 public static void main(String arg[])

 {

 MyFrames f = new MyFrames();

 }

 //constructor of the Frame derived class

 public MyFrames

 {

 //Register the Listener for the window

 super(―The Window Adapter Sample‖);

 MyWindowListener mlisten = new MyWindowListener();

 addWindowListener(mlisten);

 setVisible(true);

 }

}

Class MyWindowListener extends WindowAdapter

{

 //event handler for windows closing event

 public void windowClosing(WindowEvent we)

 {

 MyFrames f;

 f = (MyFrames)we.getSource();

 f.dispose();

 System.exit(0);

 }

 }

The Following is a list of Adapter classes and Listener Interfaces In Java:

Event Category Interface Name Adapter Name Method

Window Window Listener Window Adapter Void

windowClosing

(WindowEvent e)

Void

windowOpened

(WindowEvent e)

Void

windowActivated

(WindowEvent e)

Void

windowDeactivated

(WindowEvent e)

Void windowClosed

(WindowEvent e)

Void

windowIconified

(WindowEvent e)

Void

windowDeiconified

(WindowEvent e)

Action ActionListener Void

actionPerformed(Ac

tionEvent e)

Item ItemListener Void

itemStateChanged(It

emEvent e)

Mouse Motion

MouseMotionListen

er

MouseMotionAdapt

er

Void

mouseDragged(Mou

seEvent e)

Void

mouseMoved(Mous

eEvent e)

Mouse Button MouseListener MouseAdapter Void

mousePressed(Mous

eEvent e)

Void

mouseReleased(Mo

useEvent e)

Void

mouseEntered(Mou

seEvent e)

Void

mouseClicked(Mou

seEvent e)

Void

mouseExited(Mouse

Event e)

Key KeyListener KeyAdapter Void

keyPressed(KeyEve

nt e)

Void

keyReleased(KeyEv

ent e)

Void

keyTyped(KeyEven

t e)

Focus FocusListener Void

focusGained(Focus

Event e)

Void

focusLost(FocusEve

nt e)

Component ComponentListener ComponentAdapter Void

componentMoved(C

omponentEvent e)

Void

componentResized(

ComponentEvent e)

Void

componentHidden(

ComponentEvent e)

Void

componentShown(C

omponentEvent e)

{mospagebreak title=Dissecting Java As Far As Inner Classes} Inner Classes:

Inner classes are classes that are declared within other classes. They are also knows as nested

classes and provide additional clarity to the program. The scope of the inner class is limited to

the class that encloses it. The object of the inner class can access the members of the outer class.

While the outer class can access the members of the inner class through an object of the inner

class.

Syntax:

 class

{

 class

 {

 }

 //other attributes and methods

}

Example: Save as MyFrame.java then compile and excute the program.

import java.awt.*;

import java.awt.event.*;

Class MyFrame extends Frame

{

 //inner class declaration

 class MyWindowListener extends MyAdapter

 {

 //event handler for windows closing event

 public void windowClosing(WindowEvent w)

 {

 MyFrame frm;

 frm = (MyFrames)w.getSource();

 frm.dispose();

 System.exit(0);

 }

 public static void main(String arg[])

 {

 MyFrame frm = new MyFrame();

 }

 //constructor of the Frame class

 public MyFrames

 {

 //Register the Listener for the window

 super(―Illustration For Inner or Nested Classes‖);

 //creating an object of inner class

 MyWindowListener wlisten = new MyWindowListener();

 addWindowListener(wlisten);

 setVisible(true);

 setSize(100,100);

 }

}

The above example code declares an object of the inner class in the constructor of an outer class.

To create an object of the inner class from an unrelated class, you can use the new operator as if

it were a member of the outer class.

Example:

MyFrame frame = new MyFrame(―Title‖);

Frame.MyWindowsListener listen = new MyFrame().MyWindowListener();

You can create a class inside a method. The methods of the inner class can have access to the

variables define in the method containing them. Inner class must be declared after the declaration

of the variables of the method so those variables are accessible to the inner class.

Example : Save As RadioTest.java, Compile And View Using Appletviewer

In this Applet example we examine MouseAdapters, and its methods like mouseClicked(). Plus

ItemListener interface implementation and itemStateChanged() method and use getItem()

method to display the item the user as selected in the Applet‘s status bar using the

showStatus()method. We will use interface components like checkbox, which are of two types-

exclusive checkboxes (which means only one among the group can be selected) also called

Radio Buttons. We also use non-inclusive checkboxes, which can be selected independently. The

Choice class implements the pop-up menu that allows users to select items from a menu. This UI

component dispalys the currently selected item with a arrow to its right.

/*

<applet code = "RadioTest.class" height = 300 width = 300 >

</applet>

*/

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

public class RadioTest extends Applet

{

 public void init()

 {

 CheckboxGroup cbg = new CheckboxGroup();

 // Checkbox(label, specific checkgroup, checked:boolean)

 Checkbox c1 = new Checkbox("Black and White",cbg,false);

 Checkbox c2 = new Checkbox("Color",cbg,false);

 //adding mouselistener to the corresponding

 // component to trap the event

 c1.addMouseListener(new check1());

 c2.addMouseListener(new check2());

 //adding components to the container

 add(c1);

 add(c2);

 //To create a Choice Menu(say to list the various choices)

 // a Choice Object is instantiated.

 // In short-Choice() constructor creates a new choice menu

 //& you add items using addITem()

 Choice c = new Choice();

 c.add("LG");

 c.add("Onida");

 c.add("BPL");

 c.add("Samsung");

 c.add("Philips");

 c.add("Sony");

 // adding ItemListener to choice then adding it to the container

 c.addItemListener(new Ch());

 add(c);

 }

 Class check1 extends MouseAdapter

 {

 Public void mouseClicked(MouseEvent e)

 {

 showStatus("You have selected Black & White TV option");

 }

 }

 Class check2 extends MouseAdapter

 {

 Public void mouseClicked(MouseEvent e)

 {

 showStatus("You have selected Color TV option");

 }

 }

 Class Ch implements ItemListener

 {

 Public void itemStateChanged(ItemEvent e)

 {

 String s =(String)e.getItem();

 showStatus("You have selected" + s + " brand for your TV");

 }

 }

}

13

Swing

Unit Structure

13.1 Introduction to JFC (Java Foundation Classes)

13.2 Swing

13.3 Swing Features

13.4 JComponent

13.5 JApplet

13.6 JFrame

13.7 JPannel

13.8 JButtons, checkboxes and Radiobuttons

13.1 Introduction to JFC (Java Foundation Classes)

The earlier versions of java were released with some simple libraries. JDK1.2 was

introduced with a new set of packages – the java foundation classes, or JFC – that includes an

improved user interface called the swing components.

The JFC were developed, to address the shortcomings of AWT(Abstract Windowing

Toolkit). The development of JFC was unique. JFC 1.2 is an extension of the AWT, not a

replacement for it. The JFC visual components extend the AWT container class. The methods

contained in the component and container classes that AWT programmers are familiar with are

still valid for JFC visual classes.

The AWT user interface classes are now superseded by classes provided by the JFC. The

support classes play an important role in JFC applications . AWT support classes , those that do

not create a native window are not replaced by JFC classes.

13.2 Swing

Swing components facilitate efficient graphical user interface (GUI) development. These

components are a collection of lightweight visual components. Swing components contain a

replacement for the heavyweight AWT components as well as complex user-interface

components such as trees and tables.

Swing components contain a pluggable look and feel(PL&F). This allows all applications

to run with the native look and feel on different platforms. PL&F allows applications to have the

same behavior on various platforms. JFC contains operating systems neutral look and feel.

Swing components do not contain peers. Swing components allow mixing AWT heavyweight

and swing lightweight components in an application. The major difference between lightweight

and heavyweight components is that lightweight components can have transparent pixels while

heavyweight components are always opaque. Lightweight components can be non-regular while

heavyweight components are always rectangular.

Swing components are JavaBean compliant. This allows components to be used easily in

a Bean aware applications building program. The root of the majority of the swing hierarchy is

the Jcomponent class. The class is an extension of the AWT container class .

Difference between Swing and AWT

Swing AWT

Swing component does not need any native

code to implement.

AWT component can be implementing with

code.

Swing lets you specify which look and feel

your programs GUI uses.

AWT components always have the look and

feel of the native platform.

Swing components don‘t have to be

rectangular. For ex. Buttons can be rounded.

AWT components are always rectangular.

The swing architecture is shown in the figure given below.

Swing components comprises of a large percentage of the JFC release. The swing component

toolkit consists of over 250 pure java classes and 75 interfaces contained in about 10 packages.

They are used to build lightweight user interface. Swing consists of user interface(UI) classes

and non user interface classes. The non-UI classes provide services and other operations for the

UI classes.

Application code

JFC

 Swing

 AWT

 Java 2D

Drag & drop

Accessibility

Swing packages:

Some of the Swing packages are given below.

 Javax.swing.plaf.basic : Contains classes that define the default look and feel of swing

components.

 Javax.swing.border : Contains border interface and their related interfaces.

 Javax.swing. event: Define events specific to swing components.

 Javax.swing.plaf.multi: Consist of multiplexing UI classes

 Javax.swing.plaf: Consist of classes that provide swing components with pluggable look

and feel capabilities.

 Javax.swing.table: Contains classes and interfaces specific to the swing table components

 Javax.swing.text: Contains classes and interfaces for text manipulation components

contained in swing toolkit.

 Javax.swing.tree: Contains classes that are used with the swing tree component

 Javax.swing.undo: contains interfaces and classes required to implement the undo

functionality.

13.3 Swing Features :

 MVC Architecture: The user can provide his own data-model for a component by

subclassing the Model class or by implementing the appropriate interface. The Model-

View-Controller (MVC) architecture is used consistently throughout the swing

component set. The view and controller parts of the architecture are combined in the

component.

 Nested Containers: Swing was designed to manage nested containers gracefully. The

main heavyweight containers(JWindow, JFrame etc.) as well as the major ‗lightweight‘

containers(JInternalFrame and JComponent) all delegate their operations to a JRootPane.

This commonly produces high degree of regularity in container nesting. In particular

since the fundamental component class(JComponent) contains a JRootPane, virtually any

component can be nested within another.

 Keystroke Handling: A user can register interest in a particular combination of

keystrokes by creating a keystroke object and registering it with the component. When

the keystroke combination is registered along with its association action, certain

conditions have to be specified. These determine the time of initiation of the action.

 Action Objects: action interface objects provide a single point of control for program

actions. An example of this would be a toolbar icon and a menu item referencing the

same Action objects. When action object disabled, the GUI items that reference it are

automatically disabled.

 Virtual Desktops: The JdesktopPane and JInternalFrame classes can be used to create a

virtual desktop or multiple document interface. A JInternalFrame can be specified as

cognizable, expandable or closable, while the JDesktopPane Provides real estate for them

to operate in.

 Pluggable look and feel: The user can select a look and feel and this can be plugged in.

An interface made of Swing components can look like a Win32 app, a Motif app. It can

use the new Metal look and feel.

 Wide variety of components: Class names that starts with J are the components that are

added to and application. For ex. JButton, JList, JPanel.

13.4 JComponent

The JComponent class is the root of the visual component class hierarchy in the JFC. The visual

components are known as the ―J‖ classes. The functionality contained in the JComponent class is

available to all the visual components contained in the JFC. The JComponent class is repository

of functionality for all visual components.

The JComponent class is at the top of the hierarchy of all visual components contained in the

JFC. The hierarchy is shown in the following figure.

13.5 JApplet

The JApplet class is an extended version of the AWT applet class that adds support for

root panes and other panes.. This class is the preferred entry point when creating applets that

contain JFC components. The components are added to the ContentPane.

 The constructor that can be used to create a JApplet are listed below:

 JApplet() : It creates a swing applet instance

Some of the methods that can be used in conjunction with the JApplet is given below:

 createRootPane(): Called by the constructor methods to create the default root pane.

 getContentPane() : Returns the content pane object for the applet

 getGlassPane() : Returns the glass pane object for the applet

 Window

 J Window Frame Dialog

 J Dialog J Frame

 Applet

 J Applet

 JComponent

 J Color

 Chooser

 Abstract

 Button

 J File

 Chooser

 J Lable J List J Menu

 Bar

 J Combo Box J Internal Frame

 J Menu Item J Button J Toggle Button

 J Radio Button J Check Box

 Menu Item

 J Check Box J Radio Button

 Menu Item

 J Menu

 getJMenuBar() : Returns the menu bar set on the applet

 setContentPane() : sets the content pane properly

 setGlassPane() : sets the glass pane properly

 setLayout(LayoutManagermanager) : By default the layout of this component may not be

set, the layout of its contentPane should be set instead.

13.6 JFrame

Frame windows: A frame is a top-level window that contains a title, border, minimize and

maximize buttons. JFC provides the JFrame class. This is used as a top-level-frame.

JFrame : A Swing frame is represented by the class Jframe, is an extension of the AWT Frame

classes. It is the part of javax.swing package. A Swing frame is a container that functions as the

main window for programs that use Swing components. An instance of the JFrame Class is a

heavyweight component.

The JFrame can be created using the constructors mentioned below:

 JFrame() : Constructs a new frame that is initially invisible.

 JFrame(String title) : Constructs a new frame, initially invisible with the specified title.

Some of the methods that may be used in conjunction with the JFrame() are listed below:

 createRootPane() : Called by the constructor methods to create the default root pane

 frameInit() : Called by the constructor to init the JFrame properly.

 getContentPane() : Returns the content pane object for this frame

 getGlassPane() : Returns the glass pane object for this frame

 getJMenuBar() : Returns the menu bar set on this frame

 getLayeredPane() : Returns the layered pane for this frame

 setContentPane() : Sets the content pane property

 setGlassPane() : Sets the glass pane property

 setJMenuBar() : Sets the menu bar for the frame

 setLayout(LayoutManager manager) : By default the layout of this component may not

be set, the layout of its contentPane should be set instead.

13.7 JPannel

 JPanel is a Swing lightweight container that is often used for grouping components

within one of an applet or a frame. It can also be used to group other panels. The primary

purpose of the class is to provide a concrete container for the JFC. The JPanel class is provided

to gibve a concrete container class. Being an extennsion of the Jcpmponent class, JPanel is a

container and inherits the features contained in that class.

The various constructros that can be used to create a JPanel are as given below.

 JPanel() : Create a new JPanel with a double buffer and a flow layout.

 JPanel(Boolean is DoubleBuffered) : Create a new JPanel with FlowLayout and the

specified buffering stratergy.

 JPanel (LayoutManager layout) : create a buffered JPanel with the specified layout

manager.

 JPanel(LayoutManager layout, boolean is DoubleBuffered) : Creates a new JPanel with

the specified layout manager and buffering stratergy.

The methods supported by this class includes :

 getAccessibleContext() : Gets the AccessibleContext associated with this JComponent.

 getUIClassID() : Returns a string that specifies the name of the L&F clss tht renders theis

component.

 paramString() : Returns a string representation of the corresponding JPanel.

 update() : Notification fro the UIFactory that the L&F has changed.

13.8 JButtons, checkboxes and Radiobuttons

JButton: JButtons behaves In a way that is similar to Button. It can be added to JPanel and its

actions can be monitored via the ActionListener. The JButton has to be pushed to make

something happen. It consist of label and /or an icon that describes its function, an empty area

around the text/icon and a border. By default, the border is a special border that reflects the status

of the button.

A JButton can be constructed by any of the constructors mentioned below:

 JButtons() : Creates a button with no text or icon

 JButton(Icon icon) : Creates a button with icon.

 JButton(String text) : Creates a button with text

 JButton(String text, Icon icon) : Creates a button with text and icon

Some methods can be used in conjuctoin with a JButton are listed below:

 isDefaultButton() : Returns whether or not the corresponding button is the default button

on the RootPane.

 isDefaultCapable() : Returns whether or not the corresponding button is capable of being

the default button on the RootPane.

 setDefaultCapable(booleandefaultCapable) : Sets whether or not the corresponding

button is capable of being the default button on the RootPane.

Right-clicks on a Button

The default action of a JButton is to receive a left mouse click. The button could be

programmed to receive a right mouse click also. There are ways in which this can be achived.

 Creating our own UI for JButton

 Overlay the button with an invisible component that would intercept all events and pass

through all except right clicks.

 Subclass JButton and override the process MouseEvent() method

JCheckBox: A JCheckBox is a control that may be turned on and off by the user to designate

some kind of property being selected or not selected. It consist of a background rectangle, and a

text string and/or icon. The JCheckBox normally shows its current state visually. This is done by

placing a check mark in a box, or by changing the icon.

A JCheckbox generates item events when its state changes. The checkbox can be created by

using any one of the constructors mentioned below:

 JCheckBox() : Creates an initially unchecked checkbox with no text or icon.

 JCheckBox(Icon icon) : Creates an initially unchecked checkbox with an icon.

 JCheckBox(Icon icon, Boolean selected) : Creates a checkbox with an icon and specifies

whether or not it is initially selected

 JCheckBox(String text) : Creates an initially unchecked checkbox with the specified text.

 JCheckBox(String text, Boolean selected) : Creates a checkbox with the specified text

and specifies whether or not it is initially selected.

 JCheckBox(String text, Icon icon) : Creates an initially unselected checkbox with the text

and icon specified.

 JCheckBox(String text, Icon icon, Boolean selected) : Creates a checkbox with icon and

text and specifies whether or not it is initially selected.

JRadioButtons: This is normally used as one of a group of radio buttons of which only one may

be selected at a time. These are grouped using a ButtonGroup and are usually used to select from

a set of mutually exclusive options. It consists of a background rectangle and text and/or an icon.

If it includes an icon, the icon is used to visually reflect the current state of the radio button.

Using the constructors listed below , radio buttons can be created:

 JRadioButton() : Creates an initially unselected radio button with no set text.

 JRadioButton(Icon icon) : Creates an initially unselected radio button with the specified

image but no text.

 JRadioButton(Icon icon, Boolean selected) : Creates a radio button with the specified

image and selection state, but no text.

 JRadioButton(String text) : Creates an initially unselected radio button with the specified

text.

 JRadioButton(String text, boolean selected) : Creates a radio button with specified text

and selection state.

 JRadioButton(String text, Icon icon) : Creates a radio button that has the specified text

and image, and that is initially unselected.

 JRadioButton(String text, Icon icon, boolean selected) : Creates a radio button that has

the specified text, image, and selection state.

Programs:

Followig is the programm to display an Applet.

import java.awt.event.*;

import java.awt.*;

import javax.swing.*;

/*

<applet code = "Applets.class" width = 250 height = 250 >

</applet>

*/

public class Applets extends JApplet

{

 JButton B1;

 public void init()

 {

 JPanel contentpane = (JPanel)getContentPane();

 B1= new JButton("My First Applet");

 contentpane.add(B1);

 }

}

 Save the file as Applets. Java

 Compile the file using javac Applet.java

 On successful compilation, execute the file using appletviewer Applets.java

The output appers as shown in following figure :

The following program is an example of Jframe/JButton

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class Button1 extends JFrame implements ActionListener

{

 JButton mtextbtn1;

 JButton mtextbtn2;

 public Button1()

 {

 setTitle("Button Example");

 JPanel contentpane = (JPanel)getContentPane();

 contentpane.setLayout(new GridLayout(2,2));

 mtextbtn1= new JButton("Enabled");

 mtextbtn1.setMnemonic('E');

 mtextbtn1.addActionListener(this);

 contentpane.add(mtextbtn1);

 mtextbtn2 = new JButton("Disabled");

 mtextbtn2.setMnemonic('D');

 mtextbtn2.addActionListener(this);

 contentpane.add(mtextbtn2);

 mtextbtn1.setEnabled(true);

 myadapter myapp = new myadapter();

 addWindowListener(myapp);

 }

 class myadapter extends WindowAdapter

 {

 public void windowclosing(WindowEvent e)

 {

 System.exit(0);

 }

 }

public void actionPerformed(ActionEvent e)

{

 if (e.getSource() == mtextbtn1)

 {

 setTitle("First button clicked");

 }

 else if (e.getSource() == mtextbtn2)

 {

 setTitle("Second button clicked");

 }

}

public static void main(String args[])

{

 Button1 b = new Button1();

 b.setSize(100,100);

 b.setVisible(true);

}

}

 Save the file as Button1.java

 Compile the program using javac Button1.java

 Execute the program using java Button1

The output appears as shown in following figure.

Example program for JCheckBoxes/JFrame.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class checkbox1 extends JFrame implements ItemListener

{

 JCheckBox checkbox;

 public checkbox1()

 {

 setTitle("Check box Example");

 JPanel contentpane = (JPanel)getContentPane();

 contentpane.setLayout(new GridLayout(2,2));

 checkbox = new JCheckBox("Toggle");

 checkbox.addItemListener(this);

 contentpane.add(checkbox);

 myadapter myapp = new myadapter();

 addWindowListener(myapp);

 }

class myadapter extends WindowAdapter

{

 public void windowclosing(WindowEvent e)

 {

 System.exit(0);

 }

}

public void itemStateChanged(ItemEvent e)

{

if (e.getStateChange() == ItemEvent.SELECTED)

{

 setTitle("Checkbox selected");

}

 else

{

 setTitle("Checkbox unselected");

}

}

public static void main(String args[])

{

 checkbox1 c = new checkbox1();

 c.setSize(250,250);

 c.setVisible(true);

}

}

 Save the file as checkbox1.java

 Compile the file using javac checkbox1.java

 Execute the file using java checkbox

The output appears as shown in the follwing figure;

Example program for JRadioButtons

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class Radiobuttons extends JFrame implements ItemListener

{

 JRadioButton rb1, rb2;

 ButtonGroup grp = new ButtonGroup();

 public Radiobuttons()

 {

 setTitle("Radio Buttons Example");

 JPanel contentpane = (JPanel)getContentPane();

 contentpane.setLayout(new FlowLayout());

 rb1 = new JRadioButton("Enabled");

 rb1.addItemListener(this);

 rb1.setEnabled(true);

 contentpane.add(rb1);

 rb2 = new JRadioButton("Disabled");

 rb2.addItemListener(this); //rb2.setActionCommand("Two Activated");

 contentpane.add(rb2);

 rb2.setEnabled(false);

 grp.add(rb1);

 grp.add(rb2);

 myadapter myapp = new myadapter();

 addWindowListener(myapp);

 }

class myadapter extends WindowAdapter

{

 public void windowClosing(WindowEvent e)

 {

 System.exit(0);

 }

}

public void itemStateChanged(ItemEvent e)

{

 if (e.getSource()==rb1)

 {

 setTitle("First radio button enabled");

 rb1.setEnabled(false);

 rb2.setEnabled(true);

 }

 else if(e.getSource()==rb2)

 {

 setTitle("Second radio button enabled");

 rb1.setEnabled(true);

 rb2.setEnabled(false);

 }

}

public static void main(String args[])

 {

 Radiobuttons rb = new Radiobuttons();

 rb.setSize(300,300);

 rb.setVisible(true);

 }

}

 Save the file as Radiobuttons.java

 Compile the file using javac Radiobuttons.java

 On successful compilation execute the file using java Radiobuttons

The output appears as shown in the following figure :

14

JDBC ARCHITECTURE

Unit Structure

14.1 Introduction to JDBC

14.2 Java and JDBC

14.3 JDBC VS ODBC

14.4 JDBC DRIVER MODEL

14.5 JDBC Driver Types

14.6 Two-tier Architecture for Data Access

14.7 Three-tier Architecture for Data Access

14.8 SQL CONFORMANCE

14.9 Types of Driver Managers

14.1

Introduction to JDBC

JDBC stands for Java Database Connectivity. It is set of Java API‘s(application programming

interface) used for executing SQL statements. This API consists of a set of classes and interfaces to

enable programmers to write pure Java Database applications.

 JDBC is a software layer that allows developers to write real client –server projects in Java.

JDBC does not concern itself with specific DBMS functions. JDBC API defines how an application

opens a connection, communicates with a database, executes SQL statements, and retrieves query result.

Following fig. will illustrate the role of JDBC. JDBC is based on the X/OPEN call level interface (CLI)

for SQL.

Call Level Interface is a library of function calls that supports SQL statements. CLI requires

neither host variables nor other embedded SQL concepts that would make it less flexible from a

programmer‘s perspective. It is still possible, however, to maintain and use specific functions of a

database management system when accessing the database through a CLI.

JDBC was designed to be very compact, simple interface focusing on the execution of raw SQL

statements and retrieving the results. The goal of creating JDBC is to create an interface that keeps simple

tasks, while ensuring the more difficult and uncommon tasks are at least made possible.

The following are the characteristics of JDBC.

 It is a call-level SQL interface for java

 It does not restrict the type of queries passed to an underlying DBMS driver

 JDBC mechanism are simple to understand and use

 It provides a java interface that stays consistent with the rest of the Java system

 JDBC may be implemented on top of common SQL level APIs.

Microsoft ODBC API offers connectivity to almost all databases on all platforms and is the most

widely used programming interface for accessing relational database. But ODBC cannot be directly used

with java programs due to various reasons enumerated in the JDBC vs. ODBC section. Hence the need

for JDBC came into existence.

It is possible to access various relational databases like Sybase, Oracle, Informix, Ingers, using

JDBC API. Using JDBC, we can write individual programs to connect to individual database or one

program that take care of connecting to the respective database.

14.2

 Java and JDBC

The combination of java with JDBC is very useful because it lets the programmer run his/her

program on different platforms, Java programs are secure, robust, automatically downloaded from the

network and java is a good language to create database applications. JDBC API enables Java applications

to interact with different types of database. It is possible to publish vital information from a remote

database on a web page using a java applet. With increasing inclination of programmers towards Java,

knowledge about JDBC is essential.

Some of the advantages of using Java with JDBC are as follows:

 Easy and economical

 Continued usage of already installed databases

 Development time is short

 Installation and version control simplified

How does JDBC work

JDBC defines a set of API objects and methods to interact with the underlying database.

A Java program first opens a connection to the database, makes a statement object, passes SQL

statements to the underlying database management system (DBMS) through the statement object

and retrieve the results as well as information about the result set.

There are two types of interfaces – low –level interface and high-level interface. While

high level interfaces are user-friendly, low-level interfaces are not. JDBC is a low-level API

interface, ie. it used to invoke or call SQL commands directly. The required SQL statements are

passed as strings to Java methods.

 Some of the current trend that are being developed to add more features to JDBC are

embedded SQL for java and direct mapping of relational database to java classes.

Embedded SQL enables mixing of java into SQL statements. These statements are

translated into JDBC calls using SQL Processor. In this type of direct mapping of relational

database tables to java, each row of the table becomes an instance of the class and each column

value corresponds to an attribute of that instance. Mapping is being provided that makes rows of

multiple tables to form a java class.

14.3 JDBC VS ODBC

 The most widely used interface to access relational database today is Microsoft‘s ODBC

API. ODBC performs similar tasks as that of JDC(Java Development Connection) and yet JDBC

is preferred due to the following reasons :

 ODBC cannot be directly used with Java because it uses a C interface. Calls from Java to

native C code have a number of drawbacks in the security, implementation, robustness

and automatic portability of applications.

 ODBC makes use of pointers which have been totally removed from Java

 ODBC mixes simple and advanced features together and has complex options for simple

queries. But JDBC is designed to keep things simple while allowing advanced

capabilities when required.

 JDBC API is a natural Java Interface and is built on ODBC. JDBC retains some of the

basic features of ODBC like X/Open SQL Call Level Interface.

 JDBC is to Java programs and ODBC is to programs written in languages other than

Java.

 ODBC is used between applications and JDBC is used by Java programmers to connect

to databases.

Details about JDBC

The JDBC API is in the package java.sql it consists of 8 interfaces, 6 classes and 3 exceptions in JDK1.1.

Interfaces:

 CallableStatement

 Connection

 DatabaseMetaData

 Driver

 PreparedStatement

 ResultSet

 ResultSetMetaData

 Statement

Classes:

 Date

 DriverManager

 DriverPropertyInfo

 Time

 Timestamp

 Types

Exceptions:

 DataTruncation

 SQLException

 SQLWarning

14.4

JDBC DRIVER MODEL

14.5

JDBC Driver Types

There are 4 types of JDBC drivers. Commonest and most efficient of which are type 4 drivers. Here is the

description of each of them:

 JDBC Type 1 Driver - They are JDBC-ODBC Bridge drivers ie. Translate JDBC into ODBC

and use Windows ODBC built in drivers. They delegate the work of data access to ODBC API.

They are the slowest of all. SUN provides a JDBC/ODBC driver implementation.

 JDBC Type 2 Driver - They mainly use native API for data access ie. Converts JDBC to data

base vendors native SQL calls and provide Java wrapper classes to be able to be invoked using

JDBC drivers like Type 1 drivers; requires installation of binaries on each client.

 JDBC Type 3 Driver - Translates JDBC to a DBMS independent network protocol. They are

written in 100% Java and use vendor independent Net-protocol to access a vendor independent

remote listener. This listener in turn maps the vendor independent calls to vender dependent ones.

This extra step adds complexity and decreases the data access efficiency.

 JDBC Type 4 Driver - They are also written in 100% Java and are the most efficient among all

driver types. It compiles into the application, applet or servlet; doesn‘t require anything to be

installed on client machine, except JVM. It also converts JDBC directly to native API used by the

RDBMS.

The JDBC API supports both two-tier and three-tier processing models for database access.

14.6

 Two-tier Architecture for Data Access

 In the two-tier model, a Java application talks directly to the data source. This requires a

JDBC driver that can communicate with the particular data source being accessed. A

user's commands are delivered to the database or other data source, and the results of

those statements are sent back to the user. The data source may be located on another

machine to which the user is connected via a network. This is referred to as a

client/server configuration, with the user's machine as the client, and the machine housing

the data source as the server. The network can be an intranet, which, for example,

connects employees within a corporation, or it can be the Internet.

Client Machine

 Protocol (DBMS)

Server

Java Application

JDBC

DBMS

 In the three-tier model, commands are sent to a "middle tier" of services, which then

sends the commands to the data source. The data source processes the commands and

sends the results back to the middle tier, which then sends them to the user. MIS directors

find the three-tier model very attractive because the middle tier makes it possible to

maintain control over access and the kinds of updates that can be made to corporate data.

Another advantage is that it simplifies the deployment of applications. Finally, in many

cases, the three-tier architecture can provide performance advantages.

14.7

 Three-tier Architecture for Data Access

Client Machine

 (GUI)

Java Applet \

HTML Browser

Java Application

Server

 Until recently, the middle tier has often been written in languages such as C or C++,

which offer fast performance. However, with the introduction of optimizing compilers

that translate Java byte code into efficient machine-specific code and technologies such

as Enterprise JavaBeans™, the Java platform is fast becoming the standard platform for

middle-tier development. This is a big plus, making it possible to take advantage of Java's

robustness, multithreading, and security features.

 With enterprises increasingly using the Java programming language for writing server

code, the JDBC API is being used more and more in the middle tier of a three-tier

architecture. Some of the features that make JDBC a server technology are its support for

connection pooling, distributed transactions, and disconnected row sets. The JDBC API is

also what allows access to a data source from a Java middle tier.

14.8

SQL CONFORMANCE

Structured Query Language (SQL) is the standard language used to access relational

databases, unfortunately, there are no standards set at present for it for ex, problems may arise

due to the variations in different data types of different databases. JDBC defines a set of generic

SWL types identifiers in the class Java.SQL.Types

Ways of dealing with SQL conformance

JDBC deals with SQL conformance by performing the following :

 JDBC API allows any query string to be passed through to an underlying DBMS driver.

But there are possibilities of getting an error on some DBMS.

 Provision of ODBC style escape closes.

 Provision of descriptive information about the DBMS using an interface,

DatabaseMetaData.

The designation JDBC Compliant was created to set a standard level of JDBC

functionality on which users can rely. Only the ANSI SQL 2 enty level supported drivers can

make use of this designation. The conformance tests check for the existence of all classes and

methods defined in the JDBC API and SQL entry level functionality.

14.9

Types of Driver Managers

JDBC contains three components: Application, Driver Manager, Driver. The user

application invokes JDBC methods to send SQL statements to the database and retrieves results.

JDBC driver manager is used to connect Java applications to the correct JDBC driver . JDBC

driver test suite is used to ensure that the installed JDBC driver is JDBC Compliant. There are

four different types of JDBC drivers as follows

1.The JDBC-ODBC Bridge plus ODBC driver :

The JDBC-ODBC Bridge plus ODBC driver is a JavaSoft Bridge protocol that provides

JDBC access via ODBC drivers. But as we have mentioned earlier, combining ODBC brings in a

lot of drawbacks and limitations, since the ODBC driver has to be installed on each client

machine, it is not advisable to choose this type of driver for large networks.

2. Native-API partly-Java driver :

Native-API partly-Java driver converts JDBC calls into calls on the client API for Oracle,

Sybase, Informix or other DBMS. But some binary code has to be loaded on all client like the

bridge driver and hence is not suitable for large networks.

3.JDBC-Net pure Java driver:

JDBC-Net pure Java driver translates JDBC calls into DBMS independent net protocol.

A server again translates this protocol to a DBMS protocol. The net server middleware connects

its pure Java clients to many different databases. The type of protocol in this middleware

depends on the vendor.

4.Native-protocol pure Java driver :

Native-protocol pure Java driver convert JDBC calls to network protocols used by the

DBMSs directly. Requests from client machines are made directly to the DBMS server.

Drivers 3 and 4 are the most preferred ways to access databases from JDBC drivers.

15

Database connectivity

Unit Structure

15.1 Introduction

15.2 A connection can be open with the help of following steps

15.3 Connecting to an ODBC Data Source

15.4 JDBC Programs

15.1

Introduction :
A Database connection is a facility in computer science that allows client software to

communicate with database server software, whether on the same machine or not. A connection

is required to send commands and receive answers.

 Connections are built by supplying an underlying driver or provider with a connection

string, which is a way of addressing a specific database or server and instance as well as user

authentication credentials (for example, Server=sql_box;Database=Common;User

ID=uid;Pwd=password;). Once a connection has been built it can be opened and closed at will,

and properties (such as the command time-out length, or transaction, if one exists) can be set.

The Connection String is composed of a set of key/value pairs as dictated by the data access

interface and data provider being used.

15.2

A connection can be open with the help of following steps

1. Importing Packages

2. Registering the JDBC Drivers

3. Opening a Connection to a Database

4. Creating a Statement Object

5. Executing a Query and Returning a Result Set Object

6. Processing the Result Set

7. Closing the Result Set and Statement Objects

8. Closing the Connection

Step 1. Importing Packages

The following JDBC packages will be imported for creating connection.

 java.sql.

 java.math.

 java.io.

oracle.jdbc.driver.

Step 2. Registering the JDBC Drivers

Following four parameters are required to register JDBC Drivers.

o Database URL

o JDBC Driver name

o User Name

o Password

JDBC Drivers can be register using following methods.

o Class drvClass=Class.forName(m_driverName);

o DriverManager.registerDriver((Driver)drvClass.newInstance());

Step 3 : Opening a Connection to a Database
Connection to the underlying database can be opened using

Connection m_con=DriverManager.getConnection(m_url,m_userName,m_password);

Step 4 : Creating a Statement Object

SQL Statements

Once a connection is established, It is used to pass SQL statements to its underlying

database. JDBC provides three classes for sending SQL Statements to the database, where

PreparedStatement extends from Statement, and CallableStatement extends from

PreparedStatement:

o Statement : For simple SQL statements (no parameter)

o PreparedStatement : For SQL statements with one or more IN parameters, or simple

 SQL statements that are executed frequently.

o CallableStatement : For executing SQL stored procedures.

The statement interface provides three different methods for executing SQL statements :

o executeQuery : For statements that produce a single result set.

o executeUpdate : For executing INSERT, UPDATE, or DELETE statements and

 also SQL DDL (Data Definition Language) statements.

o execute : For executing statements that return more than one result set,

 more than one update count, or a combination of the two.

A Statement object is used with following steps:

Statement

Statement stmt=m_con.createStatement();

Statement stmt=m_con.createStatement(int resultSetType, int resultSetConcurrency);

PreparedStatement

PreparedStatement pstmt=m_con.prepareStatement(String sql);

PreparedStatement pstmt=m_con.prepareStatement(String sql, int resultSetType, int

 resultSetConcurrency),

Note:

The SQL parameter could contain one or more ‗?‘ in it. Before a PreparedStatement

object is executed, the value of each ‗?‘ parameter must be set by calling a setXXX method,

where XXX stands for appropriate type for the parameter. For ex. If the parameter has a java

type of String, the method to use is setString.

CallableStatement

CallableStatemet csmt=m_con.prepareCall(String sql);

CallableStatemet csmt=m_con.prepareCall(String sql, int resultSetType, int

 resultSetConcurrency),);

Note :

The sql parameter is in the form of ―{call <stored_procedure_name>[(arg1, arg2,...)]} ―

or‖ { ?=call <stored_procedure_name>[(arg1,arg2...)]}‖. It could contain one or more ‗?‘s in it,

which indiacates IN, OUT or INOUT parameters. The value of each IN parameter is set by

calling a setXXX mehod, while each OUT parameter should be registered by calling a

registerOutParameter method.

Step 5: Executing a Query and Returning a Result Set Object AND

Step 6: Processing the Result set

Execute the Statement

Statement :

ResultSet res=stmt.executeQuery(String sql);

int rowCount=stmt.executeUpdate(String sql);

boolean result=stmt.execute(String sql);

PrepaedStatement :

ResultSet res=pstmt.executeQuery();

int rowCount=pstmt.executeUpdate();

boolean result=pstmt.execute();

CallableStatement :

ResultSet res=cstmt.executeQuery();

int rowCount=cstmt.executeUpdate();

boolean result=cstmt.execute();

Processing the Result set

A result set contains all of the rows which satisfied the conditions in an SQL statement

and it provides access to the data in those rows through getXXX mehods that allow access to the

various columns of the current row.

 The ResultSet.next() method is used to move to the next row of the ResultSet, making the

next row become the current row. ResultSet.next() returns true if the new current row is valid,

false if there are no more rows. After all the works have been done, the ResultSet should be

closed with ResultSet.close() method.

Because of limitations imposed by some DBMSs, it is recommended that for maximum

portability, all of the results generated by the execution of a CallableStatement object should be

retrieved before OUT parameters are retrieved using CallableStatement.getXXX methods.

Step 7: Closing the Result Set and Statement Objects

Close the statement

After all the works have been done, the result set and statement should be closed with the

following code :

Resultset : rset.close();

Statement : stmt.close();

PrepaedStatement : pstmt.close();

CallableStatement : cstmt.close();

Step 8: Closing the Connection

After all the works have been done, the Connection should be closed with the following code:

(Connection name)m_con.close();

15.3

Connecting to an ODBC Data Source

A database can be created and managed through Java applications. Java application that

uses a JDBC-ODBC bridge to connect to a database file either a dbase, Excel, FoxPro, Access,

SQL Server, Oracle or any other. Open the ODBC Data source from the control panel. A

database can be created and managed through Java applications.

Follow the following steps to connect to an ODBC Data Source for ―ORACLE‖.

1. Select Control Panel.

2. Select Administrative Tool

3. Select “Data Sources (ODBC)” icon

4. Select the MS-ODBC for oracle or any other driver that felt it required.

5. Once clicking the finish button, the following window appears asking for Data Source

name, description etc.

6. Provide “Data Source Name”, “Discription”,”Username” and “Server” name. The

username and Server name can be obtained from the Administrator. Click on ok button.

The DSN is now ready and the Java code can be written to access the database‘s tables.

15.4

JDBC Programs

1. Example for creating Table.

// Create Table

import java.sql.*; // imports all classes that belongs to the package java.sql.*

public class CreateTab

{

 public static void main(String args[])

 {

 try

 {

 Class.forName(―sun.jdbc.odbc.JdbcOdbcDriver‖);

Connectioncon= DriverManager.getConnection

 (jdbc:odbc:nitin‖ ,scott‖,‖tiger‖);

// specifies the type of driver as JdbcOdbcDriver.

Statement stat= con.createStatement();

String str=‖Create table T1(Rno number(2), Stdname varchar2(20))‖;

Stat.executeUpdate(str);

System.out.println(―Table created successfully‖);

 }

 Catch(SQLExecution e 1)

 {

 System.out.println(―Errors‖ + e 1);

 }

 Catch(ClassNotFoundException e 2)

 {

 System.out.println(―Errors‖ + e 2);

 }

}

}

2.Example for inserting records into a Table

// Insert into table

import java.sql.*;

public class InsertTab

{

 public static void main(String args[])

 {

 ResultSet result;

 try

 {

 Class.forName(―sun.jdbc.odbc.JdbcOdbcDriver‖);

Connectioncon= DriverManager.getConnection

 (jdbc:odbc:nitin‖ ,scott‖,‖tiger‖);

Statement stat= con.createStatement();

 Stat.executeUpdate(―Insert into T1 values(20,‘Smith‘)‖);

 Stat.executeUpdate(―Insert into T1 values(21,‘John‘)‖);

 Stat.executeUpdate(―Insert into T1 values(22,‘Kate‘)‖);

 Stat.executeUpdate(―Insert into T1 values(23,‘Stive‘)‖);

 System.out.println(Rows Inserted successfully‖);

 result=stat.executeQuery(―Select * from T1‖);

 while(result.next())

 {

 System.out.println(result.getInt(I)+result.getString(2));

 }

 }

 catch(Exception e)

 {

 System.out.println(―Errors‖+e);

 }

}

}

3.Example for viewing rows from a table

// viwing from emp table

import java.sql.*;

public class SelectEmp

{

 public stativ void main(String args[])

 {

 String url=‖jdbc:odbc:nitin‖;

 Connection con;

 String s= ―select ename from emp 1‖;

 Statement stmt;

 try

 {

 Class.forName(―sun.jdbc.odbc.JdbcOdbcDriver‖);

 }

 catch(java.lang.ClassNotFoundException e)

 {

 System.err.println(―ClassNotFoundException:‖);

 System.err.println(e.getMessage());

 }

try

{

 con=DriverManager.getConnection(url,‖Scott‖,‖Tiger‖);

 stmt=con.createStatement();

 resultSet rs=stmt.executeQuery(s);

 while(rs.next())

 {

 String s1=rs.getString(―ename‖);

 System.out.println(―Employee name:‖ +s1);

 }

 stmt.close();

 con.close();

 }

catch(SQLException ex)

 {

 System.err.println(―SQLException:‖+ex.getMessage());

 }

}

}

4. Example using prepared statements

import java.sql.*;

public class PreStExample

{

 public static void main(String[] args)

 {

 Connection con = null;

 PreparedStatement prest;

 try{

 Class.forName(―sun.jdbc.odbc.JdbcOdbcDriver‖);

 Connectioncon= DriverManager.getConnection(jdbc:odbc:nitin‖ ,scott‖,‖tiger‖);

 try{

 String sql = "SELECT stdname FROM T1 WHERE Rno = ?";

 prest = con.prepareStatement(sql);

 prest.setInt(1,21);

 ResultSet rs1 = prest.executeQuery();

 while (rs1.next())

 {

 String stname = rs1.getString(1);

 System.out.println("student name is: "+stname);

 }

 prest.setInt(1,23);

 ResultSet rs2 = prest.executeQuery();

 while (rs2.next())

 {

 String stname1 = rs2.getString(1);

 System.out.println("student name is: "+stname1);

 }

 }

 catch (SQLException s){

 System.out.println("SQL statement is not executed!");

 }

 }

 catch (Exception e){

 e.printStackTrace();

 }

 }

}

