
1

Core JAVA
nFundamental Concepts

nBootstrapping

nBasic Language Syntax

nCommon Caveats

nCoding Conventions

Core JAVA
nFundamental Concepts

nBootstrapping

nBasic Language Syntax

nCommon Caveats

nCoding Conventions

2

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

General Purpose Computers

n Most computers that we encounter are
application specific…
n Light switches, microwave oven controller,

VCR timer, DirecTV receiver

n GPCs are different…
n GPCs are built as generic problem solving

machines

n Programming is the bridge from the generic
tool to a useful “machine”

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

GPC (Computer) Organization

n CPU – Central Processing Unit
n Primary location for computations

n I/O – Input and Output Subsystem
n Devices and communication bus for user

interaction, import/export of data and
permanent storage

n RAM – Random Access Memory
n High speed, volatile, “scratchpad”

3

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Classic Computer Organization

RAM I/O

CPU

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Programming a GPC

n The hardware can be controlled using
“machine language”

• 01001011001010010010010010101

n Assembly language is an attempt to make
this more “friendly”

• MOV AX, BX

• ADD R3, #32, R9

• PUSH EAX

• JZ R25, [R12]

4

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

High Level Languages

n Machine and Assembly Language are
very hard to use…

• Try computing a 3rd order integral in assembly…

• How about writing a GUI?

n So we create high level languages and
compilers for translating high level
programs into assembly

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Multiuser/Multitasking

n GPCs are shared…
• … between multiple programs

• … between multiple users

n The operating system (OS) governs the
computer’s hardware resources

• It allocates time for each program to run

• It provides a unified interface for all of the
hardware devices

• It might also provide session support for multiple
users

5

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Typical Topology

n Most applications
talk to APIs
implemented by the
OS kernel.

n Most reasonable OS
kernels talk to
hardware through an
HAL

HARDWARE

Hardware Abstraction
Layer (HAL)

Operating System
(OS) (m)Kernel

Application Programming
Interfaces (APIs)

Application
(Your code)

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Why so many layers?

HARDWARE

Hardware Abstraction
Layer (HAL)

Operating System
(OS) (m)Kernel

Application Programming
Interfaces (APIs)

Application
(Your code)

n HAL makes all
hardware look the
“same” to mkernel

n The same mkernel
code that runs on an
Intel x86 PC can run
on a DEC 21x64
workstation

6

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

The same for your code!

n Assume that all OS’s
agree on a common
API

n You can write a single
piece of code that can
be recompiled onto
many platforms

HARDWARE

Hardware Abstraction
Layer (HAL)

Operating System
(OS) (m)Kernel

Application Programming
Interfaces (APIs)

Application
(Your code)

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

“Recompiled?”

n Platforms will differ in many ways…
• Static sizes for OS and device interfaces

• Availability/coding of machine instructions

n Recompilation requires the source…
• Your competitors will have access to code which

took you a very long time to develop

• Your users may not have a compiler… if they do,
they may not know how to use it

• Source code verification is critical!

7

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

The JAVA Way

n Run a JAVA Virtual
Machine as a regular
application on the OS

n The JVM simulates a
standard platform (GPC)
that all JAVA programs
can execute on

n Write once, run
anywhere! HARDWARE

HAL

OS mKernel

OS APIs

JVM

JAVA APIs

User Application

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Caveats of the JAVA Way

n Performance
• Clearly, JAVA will always be slower than a

natively coded application

• JIT JVM technology brings most applications
within 30% of native code

• Latest HotSpot JVMs are within 5% of C++

n Touching the hardware
• Not all local devices will have an interface

through the JVM… your favorite USB scanner
may simply not work (at least, for now…)

8

Core JAVA
nFundamental Concepts

nBootstrapping

nBasic Language Syntax

nCommon Caveats

nCoding Conventions

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

You need to “install JAVA”

n JAVA environment is like any other
program (you need to install it)

n At home, download and install the proper
JDK (J2SE SDK) for your platform

• http://java.sun.com/j2se

n Also get the J2SE documentation
• http://java.sun.com/docs

n This will have already been done for you
in the computer lab

9

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Add JAVA to your PATH

n Under both Windows and UNIX, the JAVA
executables reside in the “bin”
subdirectory of the installation site

n Add that directory to your PATH
• Win95/98 – edit your AUTOEXEC.BAT

• WinNT/2K/ME/XP – edit environment variables
found under advanced system properties

• Most UNIX – edit your .profile or .cshrc

• MacOS 9 – upgrade to OS X

• MacOS X – do nothing, it’s preinstalled!

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Add JAVA to your PATH

n For example, under Win95/98, add the
following statement to the end of your
AUTOEXEC.BAT file:

• SET PATH=C:\JDK1.4.0_01\BIN;%PATH%

n Under UNIX, edit your .profile and add the
following statement:

• EXPORT PATH=$PATH:/opt/jdk1.3/bin

• Substitute your install path for /opt

10

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

WinNT/2K/ME/XP Path Addition

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

WinNT/2K/ME/XP Path Addition

11

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Hello World - Our First Program

n All JAVA modules begin with a class
definition … classes are “objects”

n The POI (point-of-entry) of a class is the
main method

public class HelloWorld {
 public static void main(String [] args) {
 System.out.println("Hello, world");
 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

HelloWorld under Windows

n Start :: Accessories :: Notepad

n Type in HelloWorld as given

n Save as type “All Files” with name
“HelloWorld.java”

12

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

HelloWorld under Windows

n Start a command prompt
• Win98: Start :: Run :: DOSPRMPT
• WinNT/2K: Start :: Run :: CMD

n Change to the proper directory

n Compile and Execute
• JAVAC HelloWorld.Java
• JAVA HelloWorld

n Watch the case!

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

HelloWorld under Windows

13

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

HelloWorld under UNIX

n Start your favorite text editor
• EMACS, PICO, VI or just use CAT

n Type in HelloWorld as given

n Save and exit the editor
• Use filename “HelloWorld.java”

n Compile and Execute
• JAVAC HelloWorld.Java
• JAVA HelloWorld

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

HelloWorld under UNIX

14

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

The “Real World”

n Text editors with command line
compilation are “stone age” tools for
program development

n Contemporary software engineering is
accomplished using RAD (rapid
application development) tools and IDEs
(integrated development environments)
with inline debuggers

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

JAVA RAD Tools and IDEs

n Many are available…
• Symantec Visual Cafe
• Borland J-Builder
• Microsoft Visual J++ (EOL), J#
• Sun Forte / NetBeans

n Recommendation: Sun Forte / NetBeans
• It’s free
• It’s the official Sun IDE
• It produces “clean code”
• It’s got modules for RMI and other cool stuff

15

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

The NetBeans / Forte IDE

n You must download and install Netbeans /
Forte as a separate package:

• http://www.netbeans.org

• http://www.sun.com/forte/ffj/ce/

n Prerequisites
• J2SE SDK
• J2SE Documentation (recommended)

• Installer automatically detects the location of your JDK
and documentation during the installation process

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

The Main IDE Screen

16

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Hello World in Forte/NetBeans

n Create a new package
• Right click on the explorer window…

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Hello World in Forte/NetBeans

n Create a new class
• Right click on the name of the new project that

you just created…

17

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Hello World in Forte/NetBeans

n The template does most of the work, just
add the System.out.println imperative

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Hello World in Forte/NetBeans

n Compile and run
n Right click on the name of the class…

18

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Features of Forte/NetBeans

n RAD (rapid application development)
n “Drag-and-drop” programming of GUIs

n Clean (pure JAVA) code generation

n Integrated debugger
n Real time variable watches

n Single click breakpoints

n Powerful templates
n You only need to write the “core” code

n … and much much more.

Core JAVA
nFundamental Concepts

nBootstrapping

nBasic Language Syntax

nCommon Caveats

nCoding Conventions

19

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Inline Comments

n Denoted by // (same as C++)

n Everything between // and EOL is not
compiled

n Write short notes about what this
particular piece of code is doing

public class HelloWorld {
 public static void main(String [] args) {
 // Next line prints out a message to the console
 System.out.println("Hello, world");
 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

JAVADOC Comments

n JAVADOC comments
are begun by the
sequence /**, continued
with a * at the beginning
of each line and
terminated by the */
sequence

n JAVADOC comments
are “official”
documentation of your
code

20

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

JAVADOC Comments

n JAVADOC comments can be compiled into
HTML files via Forte or via the JAVADOC
command line tool

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Primitive Variables

n A variable is an item of data named by an
identifier

• Variable declaration is manipulation of the
computer’s scratchpad (RAM)

• We are reserving a space in the scratchpad and
giving that space an easy-to-use name

n Examples:
• int x = 0;

• float f = 3.14159265;

21

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Fixed Point Data Types

n Byte - byte b = 16;

• 8-bits, -127 to 127

n Short - short s = -1543;

• 16-bits, -32767 to 32767

n Int - int i = 100340;

• 32-bits, -2 billion to 2 billion

n Long - long l = -123456789123;

• 64-bits, absurdly large numbers

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Fixed Point Data Types

n Used when representing integral
numeric data (like 4 or 5)

n Common misconception:
• Fixed point types can/is not used to represent

fractional values

n Used to represent data where the
decimal point position stays constant

• Example: money … $18.45

22

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Floating Point Data Types

n Used when data may take on wildly
different values or when scientific
precision must be preserved

n Float
• float f = 3.14159265;

• 32-bits (max value ̃10^38)

n Double
• double d = 5.6243*Math.pow(10,250);

• 64-bits (max value ~10^308)

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Why use fixed point?

n Why bother with implicit decimal points?
• You might forget about the point…

• Somebody else might modify your code…

n First guess: it’s the size
• 8 bits versus 32 or 64 bits…

• No… because of alignment issues

n The real reason… SPEED!

23

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Fixed vs. Floating Point

n On a MIPS R4000 class processor
(found in 1990 SGI Indy’s and Y2000 PDAs like the
Casio Cassiopeia)…

• Floating point division takes ~ 70 cycles

• Fixed point division takes ~ 13 cycles

n This is even more apparent with SIMD
instruction sets…

• MMX/SSE/3DNow, etc. can improve fixed
point performance by 4 to 16 times!

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Other Data Types

n Boolean
• 1-bit fixed point type

• Use the words “true” and “false” to assign and
compare values

n Char
• Holds a single unicode character

• 16-bits (unlike the “usual” 8-bit ASCII)

n Reference
• Called pointer in C/C++… this holds an

address in memory

24

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Literal Data

n How can you tell if 12 is a byte, short, int
or long?

n By default, literals w/o a decimal point are
int and with a decimal point are double

• You can use 12345L to make a long

• 12.3456F can be used for float

• Byte/Short don’t have equivalents

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Something to Try…
public class Test {
 public static void main(String args[]) {

 float f = 3.14159265; // this is okay.
 int x = 3.14159265; // is this valid?

 byte b = 32; // this is also okay.
 byte b2 = 130; // … how about this?

 }
}

25

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Another Thing to Try…
public class Test {
 public static void main(String args[]) {
 boolean firstGuy = true; // works.
 boolean secondGuy = 1; // this?
 boolean thirdGuy = -1; // this?
 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Aggregate Types - Arrays

n Easily access groups of variables
• All variables share the same prefix

• Variables must be of the same type

n Syntax:
int[] myArray = new int[64];
myArray[15] = 9226;
System.out.println(myArray[15]);

n Arrays start counting from ZERO!

26

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Something to Try:
public class ArrayTest {
 public static void main(String [] args) {
 int [] myArray = new int[5];
 for (int j = 0; j <= 5; j++) { // ???
 myArray[j] = j*100;
 System.out.println(myArray[j]);
 }
 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Type Casting

n If you want to “force” one type into
another, you have to “cast” it

n This code will not compile:
int x = 123;
byte b = x;

n This is the correct code:
int x = 123;
byte b = (byte)x;

27

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Something to Try:
public class Test {
 public static void main(String [] args) {
 int x = 5000;
 byte smallFry = 64;
 long bigGuy = 1234567890;
 x = smallFry; // will this work?
 x = bigGuy; // how about this?
 x = (int)bigGuy; // or this?
 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Scope

n Variables live within the nearest set of
curly braces…

public class myStuff {

 int x = 327; // this is visible classwide

 public static void main(String[] args) {
 int y = -33; // visible inside main
 }

}

28

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Something to Try:
public class Test {
 public static void main(String [] args) {
 int x = 32;
 System.out.println(x);
 {
 int x = 64; // this won’t work
 int y = 74;
 System.out.println(x);
 System.out.println(y);
 }
 System.out.println(x);
 System.out.println(y); // won’t work
 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Constants

n If you want to reserve a space in memory
as being “immutable”, use the “final”
keyword:

final int x = 327;
final double PI = 3.14159265;

29

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Something to Try:
public class Test {
 public static void main(String [] args) {
 final int x = 32;
 int y = 64;
 System.out.println(x);
 System.out.println(y);
 x = 24; // this won’t work
 y = 32;
 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Infix Arithmetic

n The + - / * operators work as you think
that they would:

int z = y + x;
double fz = fx * fy + fw;

n In addition there is the % operator which
is called modulo, it divides and takes the
remainder

30

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Something to Try:
public class Test {
 public static void main(String [] args) {
 int ix = 9;
 double fx = 9.0;
 int iy = 5;
 double fy = 5.0;
 System.out.println(ix/iy);
 System.out.println(fx/fy);
 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Prefix/Postfix Arithmetic

n The – operator negates a value:
int y = -z;

n The + operator promotes:
byte x = 32;
int y = +x;

n The ++ and -- operators increment and
decrement by 1

int z = x++;
int y = ++x;

31

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

++X versus X++?

nConsider the following piece of code:
int x = 1;
System.out.println(x);
System.out.println(x++);
System.out.println(x);
System.out.println(++x);
System.out.println(x);

nWhat’s the output?

1
1
2
3
3

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Relational Operators

n Unlike arithmetic, these process numeric
data into a boolean result

n The common ones are:
• >, >=, <, <=, == and !=

n They work as you would expect
int y = 8; int x = 3;
boolean myGuy = (y < x);
System.out.println(myGuy);

32

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Combining Relational Ops

n Conditional Combinations
• &&, ||, ^ - implement the logical AND, OR and

XOR functions

• boolean result = ((x > y) && (x < y));

n Negation
• The ! operator can prefix any boolean variable or

expression

• It inverts the logical value of the variable or
expression that it prefixes

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Something To Try:
public class Test {
 int x = 32, y = 32, z = 64;
 boolean a = (x > y);
 System.out.println(a); // output?
 boolean b = (x == y);
 System.out.println(b); // output?
 boolean c = ((y == x) && (z > y));
 System.out.println(c); // output?
}

33

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Bitwise Operations
n Bitwise Conditional Operations

• &,| and ^ perform bitwise AND/OR/XOR on
numeric data…

•int x = 6 & 3;
int y = 6 | 3;
System.out.println(x + “, “ +y);

n Remember that 6 is 0110 and 3 is
0011 in binary…

 0110 0110 0110
& 0011 | 0011 ^ 0011
 0010 0111 0101

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Bit Shifting

n The >>, >>> and << operators move the
bits around…

•int x = 16 >> 2;
System.out.println(x);

n Shifting can be used for quickly
multiplying and dividing by two

n >>> differs from >> in that >>> is
unsigned… >> simply pads zero

34

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Why bitwise ops?

n Hardware interaction…
• Most hardware provides a stream of data in

the form of bytes that need to be sliced,
shifted and otherwise massaged into usable
form

n Flags…
• Rather than having many boolean variables,

you can have a fixed point “flag” variable with
up to 64 flags

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Assignment Operations

n You can assign with the = operator, but
you can also combine most other
operations…

•int x = 0;
x += 5; // same as x = x + 5;

n +=, -=, *=, /=, &=, >>=, etc. are all valid
assignment operations

n y += 6 bis faster than y = y + 6;

35

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

String Manipulation

n The + infix operator does something
slightly different with Strings…

String firsGuy = “Hello“;
String secGuy = “World”;
String sum = firstGuy + “ “ + secGuy;
System.out.println(sum);

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

String Comparison

n You cannot use == to compare Strings directly!

n Call “compareTo”
n Returns the lexographic difference

n Zero means they’re the same

n Syntax:
if (myString.compareTo(“hello”) == 0) {

// executes if myString == “hello”
}

36

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Conditional Execution

n Execute a statement block if a certain
condition is met…

 if (x > 0) {
 System.out.println(“x is good!”);
} else if (x < 0) {
 System.out.println(“problem!”);
} else {
 System.out.println(“borderline!”);
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Something to Try:
public class Test {
 public static void main(String [] args) {
 double x = 32;
 if(x < 0) {
 System.out.println(“x less than zero”);
 } else if (x > 0) {
 System.out.println(“x greater than zero”);
 boolean positiveNumberFlag = true;
 } else {
 System.out.println(“x is zero”);
 }
 System.out.println(positiveNumberFlag); // ???
 }
}

37

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Conditional Execution

n Another alternative:
switch(x) {
 case 0: System.out.println(“border!”);
 break;
 case 1: System.out.println(“good”);
 break;
 default: System.out.println(“BAD!”);
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Something to Try:
public class test {
 public static void main(String [] args) {
 int x = 2;
 switch(x) {
 case 1: System.out.println(“one”);
 break;
 case 2: System.out.println(“two”);
 // whoops, forgot the break!
 case 3: System.out.println(“three”);
 break;
 default: System.out.println(“unknown”);
 }
 }
}

38

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Iteration

n To repeat a task a specified number of
times, use the “for” construct:
 for(int i = 0; i < 10; i++) {
 System.out.println(i);
 }

n To repeat until a condition is met:
 while(i < 10) {
 System.out.println(i);
 i++;
 }

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

More Iteration

n Another variation on the while loop:
 int i = 0;
 do {
 System.out.println(i);
 i++;
 } (while (i < 10));

n The do/while loop will always run the loop
at least once

n This is often used for user input

39

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Something to Try:
public class Test {
 public static void main(String [] args) {
 int j = 0;
 // print out all even numbers up to 100
 while (j != 99) {
 System.out.println(j);
 j += 2;
 }
 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Changing the flow

n Break and continue can be used to stop/jump
iteration blocks

n OUT: for (int j = 0; j < 100; j++)
{
 for (k = 0; k < 100; k++) {
 if ((j % k)==0) continue OUT;
 System.out.println(j);
 }
}

40

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Something to Try:
public class Test {
 public static void main(String [] args) {
 for (int w = 0; w < 4; w++) {
 MID: for (int y = 0; y < 5; y+= 2) {
 for (int k = 3; k > 0; k++) {
 if ((w + y + k) == 4) break;
 if ((w * y) > 6) continue MID;
 }
 }
 }
 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Basic I/O using a CLI

n Soon, we will be building all of our
applications with GUIs, but for now, we
can take user input from the command
line interface

n There are two basic ways to get user
input from the CLI

• The command line arguments

• Reading from the console

41

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Command Line Arguments

n When you run a program, you often
supply it with arguments

•dir myfile* /a
•ls –la myfile*

n You can supply a JAVA program
command line arguments as well

•java myProgram myFirstArg anotherArg

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Retrieving Arguments

nRecall the declaration of main:
public static void main(String [] args)

n The array “args” can be used to
access the parameters

n The scope of the “args” array is
inside main

n args.length gives us how many
parameters were passed

42

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Something to Try:
public class EchoArgs {
 public static void main(String [] args) {

 for (int j = 0; j < args.length; j++) {
 System.out.println(args[j]);
 }

 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Arguments are Strings!

n Be careful… the command line
arguments in the args array is of type
String

n You must convert it to a numeric type if
you plan on doing arithmetic

•int myArg =
 Integer.parseInt(args[2]);

•float gimme =
 Float.parseFloat(args[1]);

43

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Something to Try:
public class Test {
 public static void main(String [] args) {
 if (args.length < 2) {
 System.out.println(“Must have two args”);
 System.exit(-1);
 }
 double a0 = Double.parseDouble(args[0]);
 double a1 = Double.parseDouble(args[1]);
 System.out.println(args[0] + args[1]);
 System.out.println(a0 + a1);
 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Reading from the Console

n Unfortunately, this is pretty complicated…
the reason is because Sun wants JAVA to
be very “clean”

n Refer to the NumberInput.java sample
program…

• Basically you have to open System.in

• Then you have to readLine and parse

• You also have to make sure the user types in
something that’s valid using a loop

44

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

One more thing…

n You must import java.io.*;
n This loads a package, we’ll revisit this later

n The try-catch construct is required when doing
any kind of I/O

• try {
 String input = console.readLine();
} catch(Exception e) {
 System.out.println(“An error occurred.”);
}

n This is called an exception handler, we will revisit this
later

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Something to Try:
import java.io.*;
public class Test {
 public static void main(String [] args) {
 InputStreamReader in = new InputStreamReader(System.in);
 BufferedReader con = new BufferedReader(in);
 boolean isGood = false;
 while(isGood != true) {
 try {
 System.out.print(“Enter a number: “);
 double input = Double.parseDouble(con.readLine());
 isGood = true;
 } catch (Exception e) {
 System.out.println(“That was not a number!”);
 }
 }
 if (input > 0) { System.out.println(“positive”); }
 else { System.out.println(“not positive”);

}
}

45

Core JAVA
nFundamental Concepts

nBootstrapping

nBasic Language Syntax

nCommon Caveats

nCoding Conventions

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

javac: Command not found

n You have not put the jdk/bin directory into
your executable path…

• Under Win9X/ME, edit autoexec.bat

• Under WinNT/2K, modify system properties

• Under UNIX variants, edit .profile/.cshrc

n Better yet, use Forte (or some other IDE)
that has a built in compiler

46

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Blah.java:14: ‘;’ expected

n You forgot to end the line with the
semicolon character

n You forgot to match your curly braces…
for every { you need a }

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Can't find class MyStuff.class

n You attempted to run a JAVA program
incorrectly:

• java MyStuff.class

n You should run JAVA programs w/o the
trailing .class:

• java MyStuff

47

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

It’s a Jungle Out There

n Keep your variables to the absolute
minimum scope that they need

n This helps prevent namespace
collisions…

• Namespace collisions are usually quite painful to
debug, especially if it’s some obscure control flow
variable

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Infinite Loops

n Loops terminate upon a condition…
n If you make a blunder on the condition, the

loop may never terminate.

n The while loop is prone to this particular
problem

n If you know how many times you are
going to run a loop at compile time, use a
for loop

48

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Comments, who needs those?

n Properly documenting a software
engineering project is 100000 times more
important than creating the project itself…

n In JAVA, this means proper JAVADOC
and inline comments

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Test as you write code!

n Design your approach on “paper” first…
make a flowchart, etc.

n Write small test programs with code
fragments to test your ideas

n Test integrated code as you go along…
don’t wait for the last step and hope
things will just work

49

Core JAVA
nFundamental Concepts

nBootstrapping

nBasic Language Syntax

nCommon Caveats

nCoding Conventions

Adapted with permission from JAVA CODE CONVENTIONS.
Copyright 1995-1999 Sun Microsystems, Inc. All rights
reserved

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Why bother? It’s arbitrary!

n 80% of the lifetime cost of a piece of software
goes to maintenance.

n Hardly any software is maintained for its whole
life by the original author.

n Code conventions improve the readability of the
software, allowing engineers to understand new
code easily.

n If you publish your source code, you need to
make sure it is as well packaged and clean as
any other product you create.

50

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Comments

n We have already talked about this

n JAVADOC comments at the beginning of
every class, method and field

n Inline comments every other line to
describe what the following line of code
does

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Line Length

n No line of code should be > 80 characters
in length

n Line breaks should make sense…

longName1 = longName2 * (longName3 + longName4 - longName5)
 + 4 * longname6; // PREFER

longName1 = longName2 * (longName3 + longName4
 - longName5) + 4 * longname6; // AVOID

51

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Variables

n Initialize all variables all of the time

n Only declare one variable per line

n For local variables, use an inline
comment immediately after the variable
declaration to describe what the variable
is for

n For fields, use a JAVADOC comment

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Indentation

n All open curly braces imply that the next
line should be indented

n Indentation should be uniform across all
files

n Large indentations are a bad idea
because you run out of room to nest
blocks of code

52

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Parentheses

n Be explicit everywhere

n Order of operations applies, but you
should be explicit to make sure that
anyone reading your code can easily
understand what is going on

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Identifiers

n Class names should start with a capital
letter and have an additional capital letter
for each word in the noun phrase
(MyClassName)

n Methods and Variables names do not
have a leading capital letter (myVar)

n Constants all all caps with _ breaking the
words (MY_CONSTANT)

53

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Clean code is good code

n The vast majority of software defects can
be avoided through a combination of:
n Thorough paper designs

n Writing clean, standardized code

n Proper unit testing while coding

n Meticulous documentation

