POLYNOMIALS

It is not once nor twice but times without number that the same ideas make their appearance in the world.

1. Find the value for K for which $x^4 + 10x^3 + 25x^2 + 15x + K$ exactly divisible by x + 7.

(Ans: K= -91)

Ans: Let $P(x) = x^4 + 10x^4 + 25x^2 + 15x + K$ and g(x) = x + 7Since P(x) exactly divisible by g(x)*.*.. r(x) = 0now $x+7 \int x^4 + 10x^3 + 25x^2 + 15x + K$ $x^4 + 7 x^3$ _____ $3x^3 + 25x^2$ $3x^3 + 21x^2$ ----- $4x^2 + 15x$ $4x^{2} + 28x$ _____ -13x + K- 13x - 91 -----K + 91_____

 $\therefore K+9 \qquad 1=0$

- 2. If two zeros of the polynomial $f(x) = x^4 6x^3 26x^2 + 138x 35$ are $2^{\pm}\sqrt{3}$. Find the other zeros. (Ans:7, -5)
- **Ans**: Let the two zeros are $2 + \sqrt{3}$ and $2 \sqrt{3}$

Sum of Zeros $= 2 + \sqrt{3} + 2 - \sqrt{3}$ = 4Product of Zeros $= (2 + \sqrt{3})(2 - \sqrt{3})$ = 4 - 3= 1

Quadratic polynomial is $x^2 - (sum) x + Product$

$$x^{2} - 2x - 35$$

$$x^{2} - 4x + 1 \overline{\smash{\big)} x^{4} - 6x^{3} - 26x^{2} + 138x - 35}}_{x^{4} - 4x^{3} + x^{2}}$$

$$-2x^{3} - 27x^{2} + 138x_{x^{2}}$$
-2x^{3} + 8x^{2} - 2x_{x^{2}}

$$-35x^{2} + 140x - 35_{x^{2}} + 140x - 35_{x^{2}}$$
0

 $\therefore x^{2} - 2x - 35 = 0$ (x - 7)(x + 5) = 0 x = 7, -5 other two Zeros are 7 and -5

- 3. Find the Quadratic polynomial whose sum and product of zeros are $\sqrt{2} + 1$, $\frac{1}{\sqrt{2} + 1}$.
- Ans: $sum = 2\sqrt{2}$ Product = 1 Q.P = $X^2 - (sum) x + Product$

$$\therefore x^2 - (2\sqrt{2}) x + 1$$

- 4. If α,β are the zeros of the polynomial $2x^2 4x + 5$ find the value of a) $\alpha^2 + \beta^2$ b) $(\alpha - \beta)^2$.
 - (Ans: a) -1, b) -6)

Ans:
$$p(x) = 2x^2 - 4x + 5$$

 $\alpha + \beta = \frac{-b}{a} = \frac{4}{2} = 2$
 $\alpha \beta = \frac{c}{a} = \frac{5}{2}$
 $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2 \alpha \beta$
Substitute then we get, $\alpha^2 + \beta^2 = -1$
 $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4 \alpha \beta$

Substitute, we get $= (\alpha - \beta)^2 = -6$

5. If α,β are the zeros of the polynomial $x^2 + 8x + 6$ frame a Quadratic polynomial whose zeros are a) $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ b) $1 + \frac{\beta}{\alpha}$, $1 + \frac{\alpha}{\beta}$. (Ans: $x^2 + \frac{4}{3}x + \frac{1}{6}, x^2 - \frac{32}{3}x + \frac{32}{3}$) **Ans:** p (x) = $x^2 + 8x + 6$ $\alpha + \beta = -8$ and $\alpha \beta = 6$

a) Let two zeros are
$$\frac{1}{\alpha}$$
 and $\frac{1}{\beta}$

$$\operatorname{Sum} = \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \cdot \beta} = \frac{-8}{6} = \frac{-4}{3}$$

Product =
$$\frac{1}{\alpha} \ge \frac{1}{\beta} = \frac{1}{\alpha \cdot \beta} = \frac{1}{6}$$

Required Q.P is

$$x^2 + \frac{4}{3}x + \frac{1}{6}$$

b) Let two Zeros are $1 + \frac{\beta}{\alpha}$ and $1 + \frac{\alpha}{\beta}$ sum = $1 + \frac{\beta}{\alpha} + 1 + \frac{\alpha}{\beta}$ = $2 + \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ = $2 + \frac{\alpha^2 + \beta^2}{\alpha\beta}$

$$= 2 + \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$$
 after solving this problem,

We get
$$=\frac{32}{3}$$

Product =
$$(1 + \frac{\beta}{\alpha})(1 + \frac{\alpha}{\beta})$$

= $1 + \frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 1$
= $2 + \frac{\alpha^2 + \beta^2}{\alpha\beta}$

Substitute this sum,

We get =
$$\frac{32}{3}$$

Required Q.P. is $x^2 - \frac{32}{3}x + \frac{32}{3}$

6. On dividing the polynomial $4x^4 - 5x^3 - 39x^2 - 46x - 2$ by the polynomial g(x) the quotient is $x^2 - 3x - 5$ and the remainder is -5x + 8. Find the polynomial g(x). (Ans:4 x^2+7x+2)

2

Ans:
$$p(x) = g(x) q(x) + r(x)$$

 $g(x) = \frac{p(x) - r(x)}{q(x)}$
let $p(x) = 4x^4 - 5x^3 - 39x^2 - 46x - 10x^2$

$$q(x) = x^2 - 3x - 5$$
 and $r(x) = -5x + 8$

now p(x) - r(x) = 4x⁴ - 5x³ - 39x² - 41x - 10
when
$$\frac{p(x) - r(x)}{q(x)} = 4x^2 + 7x + 2$$

∴ g(x) = 4x² + 7x + 2

7. If the squared difference of the zeros of the quadratic polynomial $x^2 + px + 45$ is equal to 144, find the value of p. (Ans: \pm 18).

Ans: Let two zeros are α and β where $\alpha > \beta$ According given condition $(\alpha - \beta)^2 = 144$ Let $p(x) = x^2 + px + 45$ $\alpha + \beta = \frac{-b}{a} = \frac{-p}{1} = -p$ $\alpha\beta = \frac{c}{a} = \frac{45}{1} = 45$ now $(\alpha - \beta)^2 = 144$ $(\alpha + \beta)^2 - 4 \alpha\beta = 144$ $(-p)^2 - 4 (45) = 144$

Solving this we get $p = \pm 18$

8. If α,β are the zeros of a Quadratic polynomial such that $\alpha + \beta = 24, \alpha - \beta = 8$. Find a Quadratic polynomial having α and β as its zeros. (Ans: $k(x^2 - 24x + 128)$)

Ans:
$$\alpha + \beta = 24$$

 $\alpha - \beta = 8$
 $------2\alpha = 32$

$$\alpha = \frac{32}{2} = 16, \therefore \alpha = 16$$

Work the same way to $\alpha + \beta = 24$

So,
$$\beta = 8$$

Q.P is x^{2} – (sum) x + product = x^{2} – (16+8) x + 16 x 8 Solve this, it is k (x^{2} – 24x + 128)

9. If $\alpha \& \beta$ are the zeroes of the polynomial $2x^2 - 4x + 5$, then find the value of a. $\alpha^2 + \beta^2$ b. $1/\alpha + 1/\beta$ c. $(\alpha - \beta)^2$ d. $1/\alpha^2 + 1/\beta^2$ e. $\alpha^3 + \beta^3$ (Ans:-1, $\frac{4}{5}$, -6, $\frac{-4}{25}$, -7)

Ans: Let
$$p(x) = 2x^2 - 4x + 5$$

 $\alpha + \beta = \frac{-b}{a} = \frac{4}{2} = 2$
 $\alpha\beta = \frac{c}{a} = \frac{5}{2}$
a) $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$

Substitute to get = $\alpha^2 + \beta^2 = -1$ b) $\frac{1}{a} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta}$ substitute, then we get = $\frac{1}{a} + \frac{1}{\beta} = \frac{4}{5}$ b) $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4 \alpha\beta$ Therefore we get, $(\alpha - \beta)^2 = -6$

d)
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha \beta^2} = \frac{-1}{\left(\frac{5}{2}\right)^2}$$

 $\therefore \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{-4}{25}$

e) $\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta)$ Substitute this,

to get,
$$\alpha^3 + \beta^3 = -7$$

- 10. Obtain all the zeros of the polynomial $p(x) = 3x^4 15x^3 + 17x^2 + 5x 6$ if two zeroes are $-1/\sqrt{3}$ and $1/\sqrt{3}$. (Ans:3,2)
- 11. Give examples of polynomials p(x), g(x), q(x) and r(x) which satisfy the division algorithm.

a. deg p(x) = deg q(x) b. deg q(x) = deg r(x) c. deg q(x) = 0.

12. If the ratios of the polynomial $ax^3+3bx^2+3cx+d$ are in AP, Prove that $2b^3-3abc+a^2d=0$

Ans: Let
$$p(x) = ax^3 + 3bx^2 + 3cx + d$$
 and α , β , r are their three Zeros
but zero are in AP
let $\alpha = m - n$, $\beta = m$, $r = m + n$
sum $= \alpha + \beta + r = \frac{-b}{a}$
substitute this sum, to get $= m = \frac{-b}{a}$

Now taking two zeros as sum $\alpha\beta + \beta r + \alpha r = -\frac{1}{a}$

$$(m-n)m + m(m+n) + (m+n)(m-n) = \frac{3c}{a}$$

Solve this problem, then we get

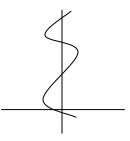
$$\frac{3b^2 - 3ac}{a^2} = n^2$$

Product $\alpha\beta$ r = $\frac{d}{a}$ (m-n)m (m+n) = $\frac{-d}{a}$ (m² -n²)m = $\frac{-d}{a}$ $\left[\left(\frac{-b}{a}\right)^{2} - \left(\frac{3b^{2} - 3ac}{a^{2}}\right)\right]\left(\frac{-b}{a}\right) = \frac{-d}{a}$

Simplifying we get

$$2b^3 - 3abc + a^2 d = 0$$

13. Find the number of zeros of the polynomial from the graph given.



(Ans:1)

14. If one zero of the polynomial $3x^2 - 8x + 2k+1$ is seven times the other, find the zeros and the value of k (Ans k= 2/3)

Self Practice

14. If (n-k) is a factor of the polynomials $x^2 + px + q \& x^2 + m x + n$. Prove that

$$\mathbf{k} = \mathbf{n} + \frac{n-q}{m-p}$$

Ans : since (n - k) is a factor of $x^2 + px + q$

: $(n-k)^2 + p(n-k) + q = 0$ And $(n-k)^2 + m(n-k) + n = 0$

Solve this problem by yourself,

$$\therefore \mathbf{k} = \mathbf{n} + \frac{n^{-}q}{m^{-}p}$$

SELF PRACTICE

16. If 2, $\frac{1}{2}$ are the zeros of px^2+5x+r , prove that p=r.

17. If m, n are zeroes of ax^2-5x+c , find the value of a and c if m + n = m.n=10

(Ans: a=1/2,c=5)

- 18. What must be subtracted from $8x^4 + 14x^3 2x^2 + 7x 8$ so that the resulting polynomial is exactly divisible by $4x^2+3x-2$. (Ans: 14x 10)
- 19. What must be added to the polynomial $p(x)=x^4 + 2x^3 2x^2 + x 1$ so that the resulting polynomial is exactly divisible by x^2+2x-3 . (Ans: x-2)