POLYNOMIALS

It is not once nor twice but times without number that the same ideas make their appearance in the world.

1. Find the value for K for which $x^{4}+10 x^{3}+25 x^{2}+15 x+K$ exactly divisible by $x+7$.
(Ans : K=-91)
Ans: Let $P(x)=x^{4}+10 x^{4}+25 x^{2}+15 x+K$ and $g(x)=x+7$
Since $P(x)$ exactly divisible by $g(x)$

$$
\therefore \quad r(x)=0
$$

now $\mathrm { x } + 7 \longdiv { x ^ { 3 } + 3 x ^ { 2 } + 4 x - 1 3 } \begin{array} { l } { x ^ { 4 } + 1 0 x ^ { 3 } + 2 5 x ^ { 2 } + 1 5 x + K } \\ { x ^ { 4 } + 7 x ^ { 3 } } \end{array}$

$$
x^{4}+7 x^{3}
$$

$$
\begin{aligned}
& 3 x^{3}+25 x^{2} \\
& 3 x^{3}+21 x^{2}
\end{aligned}
$$

$$
4 x^{2}+15 x
$$

$$
4 x^{2}+28 x
$$

$$
-13 x+K
$$

$$
-13 x-91
$$

$$
K+91
$$

$\therefore \mathrm{K}+9 \quad 1=0$

$$
\mathrm{K}=-91
$$

2. If two zeros of the polynomial $f(x)=x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $2 \pm \sqrt{3}$. Find the other zeros.

Ans: Let the two zeros are $2+\sqrt{3}$ and $2-\sqrt{3}$

$$
\begin{aligned}
\text { Sum of Zeros } & =2+\sqrt{3}+2-\sqrt{3} \\
& =4 \\
\text { Product of Zeros } & =(2+\sqrt{3})(2-\sqrt{3}) \\
& =4-3 \\
& =1
\end{aligned}
$$

Quadratic polynomial is $\mathrm{x}^{2}-($ sum $) \mathrm{x}+$ Product

$$
\begin{aligned}
& x^{2}-2 x-35 \\
& \mathrm { x } ^ { 2 } - 4 \mathrm { x } + 1 \longdiv { x ^ { 4 } - 6 x ^ { 3 } - 2 6 x ^ { 2 } + 1 3 8 x - 3 5 } \\
& x^{4}-4 x^{3}+x^{2} \\
& -2 x^{3}-27 x^{2}+138 x \\
& -2 x^{3}+8 x^{2}-2 x \\
& -35 x^{2}+140 x-35 \\
& -35 x^{2}+140 x-35
\end{aligned}
$$

$$
\begin{aligned}
\therefore & x^{2}-2 x-35=0 \\
& (x-7)(x+5)=0
\end{aligned}
$$

$$
x=7,-5
$$

3. Find the Quadratic polynomial whose sum and product of zeros are $\sqrt{2}+1, \frac{1}{\sqrt{2}+1}$.

Ans: \quad sum $=2 \sqrt{2}$
Product $=1$
Q.P =
$X^{2}-($ sum $) X+$ Product
$\therefore \mathrm{x}^{2}-(2 \sqrt{2}) \mathrm{x}+1$
4. If α, β are the zeros of the polynomial $2 x^{2}-4 x+5$ find the value of a) $\alpha^{2}+\beta^{2}$ b) $(\alpha-\beta)^{2}$.
(Ans: a) $-1, b)-6$)

Ans: $p(x)=2 x^{2}-4 x+5$

$$
\alpha+\beta=\frac{-b}{a}=\frac{4}{2}=2
$$

$\alpha \beta=\frac{c}{a}=\frac{5}{2}$
$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$
Substitute then we get, $\alpha^{2}+\beta^{2}=-1$
$(\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4 \alpha \beta$

Substitute, we get $=(\alpha-\beta)^{2}=-6$
5. If α, β are the zeros of the polynomial $x^{2}+8 x+6$ frame a Quadratic polynomial whose zeros are a) $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ b) $1+\frac{\beta}{\alpha}, 1+\frac{\alpha}{\beta}$.
(Ans: $x^{2}+\frac{4}{3} x+\frac{1}{6}, x^{2}-\frac{32}{3} x+\frac{32}{3}$)
Ans: $p(x)=x^{2}+8 x+6$
$\alpha+\beta=-8$ and $\alpha \beta=6$
a) Let two zeros are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$
$\operatorname{Sum}=\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \cdot \beta}=\frac{-8}{6}=\frac{-4}{3}$
Product $=\frac{1}{\alpha} \times \frac{1}{\beta}=\frac{1}{\alpha . \beta}=\frac{1}{6}$
Required Q.P is

$$
x^{2}+\frac{4}{3} x+\frac{1}{6}
$$

b) Let two Zeros are $1+\frac{\beta}{\alpha}$ and $1+\frac{\alpha}{\beta}$

$$
\begin{aligned}
\operatorname{sum} & =1+\frac{\beta}{\alpha}+1+\frac{\alpha}{\beta} \\
& =2+\frac{\alpha}{\beta}+\frac{\beta}{\alpha} \\
& =2+\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}
\end{aligned}
$$

$=2+\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}$ after solving this problem,
We get $=\frac{32}{3}$

Product $=\left(1+\frac{\beta}{\alpha}\right)\left(1+\frac{\alpha}{\beta}\right)$
$=1+\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+1$
$=2+\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}$
Substitute this sum,
We get $=\frac{32}{3}$
Required Q.P. is $x^{2}-\frac{32}{3} x+\frac{32}{3}$
6. On dividing the polynomial $4 x^{4}-5 x^{3}-39 x^{2}-46 x-2$ by the polynomial $g(x)$ the quotient is $x^{2}-3 x-5$ and the remainder is $-5 x+8$. Find the polynomial $g(x)$. (Ans: $4 x^{2}+7 x+2$)

$$
\text { Ans: } \begin{aligned}
& \mathrm{p}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x}) \\
& \mathrm{g}(\mathrm{x})=\frac{p(x)-r(x)}{q(x)} \\
& \text { let } \mathrm{p}(\mathrm{x})=4 \mathrm{x}^{4}-5 \mathrm{x}^{3}-39 \mathrm{x}^{2}-46 \mathrm{x}-2 \\
& \\
& \mathrm{q}(\mathrm{x})=\mathrm{x}^{2}-3 \mathrm{x}-5 \text { and } \mathrm{r}(\mathrm{x})=-5 \mathrm{x}+8
\end{aligned}
$$

$$
\begin{aligned}
& \quad \text { now } \mathrm{p}(\mathrm{x})-\mathrm{r}(\mathrm{x})=4 \mathrm{x}^{4}-5 \mathrm{x}^{3}-39 \mathrm{x}^{2}-41 \mathrm{x}-10 \\
& \quad \text { when } \frac{p(x)-r(x)}{q(x)}=4 \mathrm{x}^{2}+7 \mathrm{x}+2 \\
& \therefore \mathrm{~g}(\mathrm{x})=4 \mathrm{x}^{2}+7 \mathrm{x}+2
\end{aligned}
$$

7. If the squared difference of the zeros of the quadratic polynomial $x 2+\mathrm{p} x+45$ is equal to 144 , find the value of p.

Ans: Let two zeros are α and β where $\alpha>\beta$
According given condition

$$
(\alpha-\beta)^{2}=144
$$

Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{px}+45$
$\alpha+\beta=\frac{-b}{a}=\frac{-p}{1}=-\mathrm{p}$
$\alpha \beta=\frac{c}{a}=\frac{45}{1}=45$
now $(\alpha-\beta)^{2}=144$
$(\alpha+\beta)^{2}-4 \alpha \beta=144$
$(-\mathrm{p})^{2}-4(45)=144$
Solving this we get $p= \pm 18$
8. If α, β are the zeros of a Quadratic polynomial such that $\alpha+\beta=24, \alpha-\beta=8$. Find a Quadratic polynomial having α and β as its zeros.

Ans: $\quad \alpha+\beta=24$
$\alpha-\beta=8$

$2 \alpha=32$

$$
\alpha=\frac{32}{2}=16, \therefore \alpha=16
$$

Work the same way to $\alpha+\beta=24$

So, $\beta=8$
Q.P is $\mathrm{x}^{2}-($ sum $) \mathrm{x}+$ product
$=x^{2}-(16+8) x+16 x 8$
Solve this,
it is $k\left(x^{2}-24 x+128\right)$
9. If $\alpha \& \beta$ are the zeroes of the polynomial $2 x^{2}-4 x+5$, then find the value of
a. $\alpha^{2}+\beta^{2}$
b. $1 / \alpha+1 / \beta$
c. $(\alpha-\beta)^{2}$
d. $1 / \alpha^{2}+1 / \beta^{2}$
e. $\alpha^{3}+\beta^{3}$
(Ans:-1, $\frac{4}{5},-6, \frac{-4}{25},-7$)
Ans: Let $\mathrm{p}(\mathrm{x})=2 \mathrm{x}^{2}-4 \mathrm{x}+5$

$$
\begin{aligned}
& \alpha+\beta=\frac{-b}{a}=\frac{4}{2}=2 \\
& \alpha \beta=\frac{c}{a}=\frac{5}{2}
\end{aligned}
$$

a) $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$

Substitute to get $=\alpha^{2}+\beta^{2}=-1$
b) $\frac{1}{a}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}$
substitute, then we get $=\frac{1}{a}+\frac{1}{\beta}=\frac{4}{5}$
b) $(\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4 \alpha \beta$

Therefore we get, $(\alpha-\beta)^{2}=-6$
d) $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta^{2}}=\frac{-1}{\left(\frac{5}{2}\right)^{2}}$
$\therefore \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{-4}{25}$
e) $\alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}+\beta^{2}-\alpha \beta\right)$

Substitute this,
to get, $\alpha^{3}+\beta^{3}=-7$
10. Obtain all the zeros of the polynomial $p(x)=3 x^{4}-15 x^{3}+17 x^{2}+5 x-6$ if two zeroes are $-1 / \sqrt{3}$ and $1 / \sqrt{ } 3$.
(Ans:3,2)
11. Give examples of polynomials $p(x), g(x), q(x)$ and $r(x)$ which satisfy the division algorithm.
a. $\operatorname{deg} \mathrm{p}(\mathrm{x})=\operatorname{deg} \mathrm{q}(\mathrm{x})$
b. $\operatorname{deg} q(x)=\operatorname{deg} r(x)$
c. $\operatorname{deg} q(x)=0$.
12. If the ratios of the polynomial $a x^{3}+3 b x^{2}+3 c x+d$ are in $A P$, Prove that $2 b^{3}$ $3 a b c+a^{2} d=0$

Ans: Let $p(x)=a x^{3}+3 b x^{2}+3 c x+d$ and α, β, r are their three Zeros but zero are in AP
let $\alpha=\mathrm{m}-\mathrm{n}, \beta=\mathrm{m}, \mathrm{r}=\mathrm{m}+\mathrm{n}$
$\operatorname{sum}=\alpha+\beta+r=\frac{-b}{a}$
substitute this sum, to get $=\mathrm{m}=\frac{-b}{a}$

Now taking two zeros as sum $\alpha \beta+\beta \mathrm{r}+\alpha \mathrm{r}=\frac{-}{a}$

$$
(\mathrm{m}-\mathrm{n}) \mathrm{m}+\mathrm{m}(\mathrm{~m}+\mathrm{n})+(\mathrm{m}+\mathrm{n})(\mathrm{m}-\mathrm{n})=\frac{3 c}{a}
$$

Solve this problem, then we get

$$
\frac{3 b^{2}-3 a c}{a^{2}}=\mathrm{n}^{2}
$$

Product $\alpha \beta r=\frac{d}{a}$
$(\mathrm{m}-\mathrm{n}) \mathrm{m}(\mathrm{m}+\mathrm{n})=\frac{-d}{a}$

$$
\left(\mathrm{m}^{2}-\mathrm{n}^{2}\right) \mathrm{m}=\frac{-d}{a}
$$

$$
\left[\left(\frac{-b}{a}\right)^{2}-\left(\frac{3 b^{2}-3 a c}{a^{2}}\right)\right]\left(\frac{-b}{a}\right)=\frac{-d}{a}
$$

Simplifying we get
$2 b^{3}-3 a b c+a^{2} d=0$
13. Find the number of zeros of the polynomial from the graph given.

(Ans:1)
14. If one zero of the polynomial $3 x^{2}-8 x+2 k+1$ is seven times the other, find the zeros and the value of k
(Ans k=2/3)

Self Practice

14. If $(\mathrm{n}-\mathrm{k})$ is a factor of the polynomials $x^{2}+\mathrm{px}+\mathrm{q} \& x^{2}+\mathrm{m} x+n$. Prove that

$$
\mathrm{k}=\mathrm{n}+\frac{n-q}{m-p}
$$

Ans : since $(\mathrm{n}-\mathrm{k})$ is a factor of $\mathrm{x}^{2}+\mathrm{px}+\mathrm{q}$

$$
\begin{array}{r}
\therefore(\mathrm{n}-\mathrm{k})^{2}+\mathrm{p}(\mathrm{n}-\mathrm{k})+\mathrm{q}=0 \\
\text { And }(\mathrm{n}-\mathrm{k})^{2}+\mathrm{m}(\mathrm{n}-\mathrm{k})+\mathrm{n}=0
\end{array}
$$

Solve this problem by yourself,

$$
\therefore \mathrm{k}=\mathrm{n}+\frac{n-q}{m-p}
$$

SELF PRACTICE

16. If $2,1 / 2$ are the zeros of $\mathrm{px}^{2}+5 \mathrm{x}+r$, prove that $\mathrm{p}=r$.
17. If m, n are zeroes of $a x^{2}-5 x+c$, find the value of a and c if $m+n=m \cdot n=10$
(Ans: $a=1 / 2, c=5$)
18. What must be subtracted from $8 x^{4}+14 x^{3}-2 x^{2}+7 x-8$ so that the resulting polynomial is exactly divisible by $4 x^{2}+3 x-2$.
(Ans: $14 \mathrm{x}-10$)
19. What must be added to the polynomial $p(x)=x^{4}+2 x^{3}-2 x^{2}+x-1$ so that the resulting polynomial is exactly divisible by $x^{2}+2 x-3$.
(Ans: x-2)
