
Lesson 01: Introduction to ADO.NET

ADO.NET is the new database technology of the .NET (Dot Net) platform, and it builds
on Microsoft ActiveX® Data Objects (ADO).

ADO is a language-neutral object model that is the keystone of Microsoft's Universal Data
Access strategy.

ADO.NET is an integral part of the .NET Compact Framework, providing access to relational
data, XML documents, and application data. ADO.NET supports a variety of development
needs. You can create database-client applications and middle-tier business objects used by
applications, tools, languages or Internet browsers.

This lesson is an introduction to ADO.NET. It introduces primary ADO.NET concepts and objects that
you will learn about in later lessons. Here are the objectives of this lesson:

• Learn what ADO.NET is.
• Understand what a data provider is.
• Understand what a connection object is.
• Understand what a command object is.
• Understand what a DataReader object is.
• Understand what a DataSet object is.
• Understand what a DataAdapter object is.

Introduction

ADO.NET is an object-oriented set of libraries that allows you to interact with data sources.
Commonly, the data source is a database, but it could also be a text file, an Excel spreadsheet, or an
XML file. For the purposes of this tutorial, we will look at ADO.NET as a way to interact with a data
base.

As you are probably aware, there are many different types of databases available. For example, there
is Microsoft SQL Server, Microsoft Access, Oracle, Borland Interbase, and IBM DB2, just to name a
few. To further refine the scope of this tutorial, all of the examples will use SQL Server.

Data Providers

We know that ADO.NET allows us to interact with different types of data sources and different types of
databases. However, there isn't a single set of classes that allow you to accomplish this universally.
Since different data sources expose different protocols, we need a way to communicate with the right
data source using the right protocol Some older data sources use the ODBC protocol, many newer
data sources use the OleDb protocol, and there are more data sources every day that allow you to
communicate with them directly through .NET ADO.NET class libraries.

ADO.NET provides a relatively common way to interact with data sources, but comes in different sets
of libraries for each way you can talk to a data source. These libraries are called Data Providers and
are usually named for the protocol or data source type they allow you to interact with. Table 1 lists
some well known data providers, the API prefix they use, and the type of data source they allow you
to interact with.

Table 1. ADO.NET Data Providers are class libraries that allow a common
way to interact with specific data sources or protocols. The library APIs have
prefixes that indicate which provider they support.

Provider Name
API
prefix

Data Source Description

ODBC Data
Provider

Odbc Data Sources with an ODBC interface. Normally older data bases.

OleDb Data
Provider

OleDb Data Sources that expose an OleDb interface, i.e. Access or Excel.

Oracle Data
Provider

Oracle For Oracle Databases.

SQL Data
Provider

Sql For interacting with Microsoft SQL Server.

Borland Data
Provider

Bdp
Generic access to many databases such as Interbase, SQL Server, IBM
DB2, and Oracle.

An example may help you to understand the meaning of the API prefix. One of the first ADO.NET
objects you'll learn about is the connection object, which allows you to establish a connection to a data
source. If we were using the OleDb Data Provider to connect to a data source that exposes an OleDb
interface, we would use a connection object named OleDbConnection. Similarly, the connection object
name would be prefixed with Odbc or Sql for an OdbcConnection object on an Odbc data source or a

SqlConnection object on a SQL Server database, respectively. Since we are using MSDE in this tutorial
(a scaled down version of SQL Server) all the API objects will have the Sql prefix. i.e. SqlConnection.

ADO.NET Objects

ADO.NET includes many objects you can use to work with data. This section introduces some of the
primary objects you will use. Over the course of this tutorial, you'll be exposed to many more
ADO.NET objects from the perspective of how they are used in a particular lesson. The objects below
are the ones you must know. Learning about them will give you an idea of the types of things you can
do with data when using ADO.NET.

The SqlConnection Object

To interact with a database, you must have a connection to it. The connection helps identify the
database server, the database name, user name, password, and other parameters that are required
for connecting to the data base. A connection object is used by command objects so they will know
which database to execute the command on.

The SqlCommand Object

The process of interacting with a database means that you must specify the actions you want to occur.
This is done with a command object. You use a command object to send SQL statements to the
database. A command object uses a connection object to figure out which database to communicate
with. You can use a command object alone, to execute a command directly, or assign a reference to a
command object to an SqlDataAdapter, which holds a set of commands that work on a group of data
as described below.

The SqlDataReader Object

Many data operations require that you only get a stream of data for reading. The data reader object
allows you to obtain the results of a SELECT statement from a command object. For performance
reasons, the data returned from a data reader is a fast forward-only stream of data. This means that
you can only pull the data from the stream in a sequential manner This is good for speed, but if you
need to manipulate data, then a DataSet is a better object to work with.

The DataSet Object

DataSet objects are in-memory representations of data. They contain multiple Datatable objects,
which contain columns and rows, just like normal database tables. You can even define relations
between tables to create parent-child relationships. The DataSet is specifically designed to help
manage data in memory and to support disconnected operations on data, when such a scenario make
sense. The DataSet is an object that is used by all of the Data Providers, which is why it does not have
a Data Provider specific prefix.

The SqlDataAdapter Object

Sometimes the data you work with is primarily read-only and you rarely need to make changes to the
underlying data source Some situations also call for caching data in memory to minimize the number
of database calls for data that does not change. The data adapter makes it easy for you to accomplish
these things by helping to manage data in a disconnected mode. The data adapter fills a DataSet
object when reading the data and writes in a single batch when persisting changes back to the
database. A data adapter contains a reference to the connection object and opens and closes the
connection automatically when reading from or writing to the database. Additionally, the data adapter

contains command object references for SELECT, INSERT, UPDATE, and DELETE operations on the
data. You will have a data adapter defined for each table in a DataSet and it will take care of all
communication with the database for you. All you need to do is tell the data adapter when to load
from or write to the database.

Summary

ADO.NET is the .NET technology for interacting with data sources. You have several Data Providers,
which allow communication with different data sources, depending on the protocols they use or what
the database is. Regardless, of which Data Provider used, you'll use a similar set of objects to interact
with a data source. The SqlConnection object lets you manage a connection to a data source.
SqlCommand objects allow you to talk to a data source and send commands to it. To have fast
forward-only read access to data, use the SqlDataReader. If you want to work with disconnected data,
use a DataSet and implement reading and writing to/from the data source with a SqlDataAdapter.

Lesson 02: The SqlConnection Object

This lesson describes the SqlConnection object and how to connect to a data base. Here are the
objectives of this lesson:

• Know what connection objects are used for.
• Learn how to instantiate a SqlConnection object.
• Understand how the SqlConnection object is used in applications.
• Comprehend the importance of effective connection lifetime management.

Introduction

The first thing you will need to do when interacting with a data base is to create a connection. The
connection tells the rest of the ADO.NET code which database it is talking to. It manages all of the low
level logic associated with the specific database protocols. This makes it easy for you because the
most work you will have to do in code is instantiate the connection object, open the connection, and
then close the connection when you are done. Because of the way that other classes in ADO.NET are
built, sometimes you don't even have to do that much work.

Although working with connections is very easy in ADO.NET, you need to understand connections in
order to make the right decisions when coding your data access routines. Understand that a
connection is a valuable resource. Sure, if you have a stand-alone client application that works on a
single database one one machine, you probably don't care about this. However, think about an
enterprise application where hundreds of users throughout a company are accessing the same
database. Each connection represents overhead and there can only be a finite amount of them. To
look at a more extreme case, consider a Web site that is being hit with hundreds of thousands of hits
a day Applications that grab connections and don't let them go can have seriously negative impacts on
performance and scalability.

Creating a SqlConnection Object

A SqlConnection is an object, just like any other C# object. Most of the time, you just declare and
instantiate the SqlConnection all at the same time, as shown below:

 SqlConnection conn = new SqlConnection(
 "Data Source=(local);Initial Catalog=Northwind;Integrated
Security=SSPI");

The SqlConnection object instantiated above uses a constructor with a single argument of type string
This argument is called a connection string. Table 1 describes common parts of a connection string.

Table 1. ADO.NET Connection Strings contain certain key/value pairs for
specifying how to make a database connection. They include the location,
name of the database, and security credentials.
Connection String Parameter
Name

Description

Data Source
Identifies the server. Could be local machine, machine domain
name, or IP Address.

Initial Catalog Database name.

Integrated Security Set to SSPI to make connection with user's Windows login

User ID Name of user configured in SQL Server.

Password Password matching SQL Server User ID.

Integrated Security is secure when you are on a single machine doing development. However, you will
often want to specify security based on a SQL Server User ID with permissions set specifically for the
application you are using. The following shows a connection string, using the User ID and Password
parameters:

 SqlConnection conn = new SqlConnection(
 "Data Source=DatabaseServer;Initial Catalog=Northwind;User
ID=YourUserID;Password=YourPassword");

Notice how the Data Source is set to DatabaseServer to indicate that you can identify a database
located on a different machine, over a LAN, or over the Internet. Additionally, User ID and Password
replace the Integrated Security parameter.

Using a SqlConnection

The purpose of creating a SqlConnection object is so you can enable other ADO.NET code to work with
a database. Other ADO.NET objects, such as a SqlCommand and a SqlDataAdapter take a connection
object as a parameter. The sequence of operations occurring in the lifetime of a SqlConnection are as
follows:

1. Instantiate the SqlConnection.
2. Open the connection.
3. Pass the connection to other ADO.NET objects.
4. Perform database operations with the other ADO.NET objects.
5. Close the connection.

We've already seen how to instantiate a SqlConnection. The rest of the steps, opening, passing, using,
and closing are shown in Listing 1.

Listing 1. Using a SqlConnection

using System;
using System.Data;
using System.Data.SqlClient;

/// <summary>
/// Demonstrates how to work with SqlConnection objects
/// </summary>
class SqlConnectionDemo
{
 static void Main()
 {
 // 1. Instantiate the connection
 SqlConnection conn = new SqlConnection(
 "Data Source=(local);Initial Catalog=Northwind;Integrated Security=SSPI");

 SqlDataReader rdr = null;

 try
 {
 // 2. Open the connection
 conn.Open();

 // 3. Pass the connection to a command object
 SqlCommand cmd = new SqlCommand("select * from Customers", conn);

 //
 // 4. Use the connection
 //

 // get query results
 rdr = cmd.ExecuteReader();

 // print the CustomerID of each record
 while (rdr.Read())
 {
 Console.WriteLine(rdr[0]);

 }
 }
 finally
 {
 // close the reader
 if (rdr != null)

 {
 rdr.Close();
 }

 // 5. Close the connection
 if (conn != null)
 {
 conn.Close();
 }
 }
 }
}

As shown in Listing 1, you open a connection by calling the Open() method of
the SqlConnection instance, conn. Any operations on a connection that was not yet opened will
generate an exception. So, you must open the connection before using it.

Before using a SqlCommand, you must let the ADO.NET code know which connection it needs. In
Listing 1, we set the second parameter to theSqlCommand object with
the SqlConnection object, conn. Any operations performed with the SqlCommand will use that
connection.

The code that uses the connection is a SqlCommand object, which performs a query on the Customers
table. The result set is returned as aSqlDataReader and the while loop reads the first column from
each row of the result set, which is the CustomerID column. We'll discuss
theSqlCommand and SqlDataReader objects in later lessons. For right now, it is important for you to
understand that these objects are using theSqlConnection object so they know what database to
interact with.

When you are done using the connection object, you must close it. Failure to do so could have serious
consequences in the performance and scalability of your application. There are a couple points to be
made about how we closed the connection in Listing 1: the Close() method is called in a finally block
and we ensure that the connection is not null before closing it.

Another precaution you should take when closing connections is to make sure the connection object is
not null. If something goes wrong when instantiating the connection, it will be null and you want to
make sure you don't try to close an invalid connection, which would generate an exception.

This example showed how to use a SqlConnection object with a SqlDataReader, which required
explicitly closing the connection. However, when using a disconnected data model, you don't have to
open and close the connection yourself. We'll see how this works in a future lesson when we look at
the SqlDataAdapter object.

Summary

SqlConnection objects let other ADO.NET code know what database to connect to and how to make
the connection. They are instantiated by passing a connection string with a set of key/value pairs that
define the connection. The steps you use to manage the lifetime of a connection are create, open,
pass, use, and close. Be sure to close your connection properly when you are done with it to ensure
you don't have a connection resource leak.

Lesson 03: The SqlCommand Object

This lesson describes the SqlCommand object and how you use it to interact with a database. Here are
the objectives of this lesson:

• Know what a command object is.
• Learn how to use the ExecuteReader method to query data.
• Learn how to use the ExecuteNonQuery method to insert and delete data.
• Learn how to use the ExecuteScalar method to return a single value.

Introduction

A SqlCommand object allows you to specify what type of interaction you want to perform with a
database. For example, you can do select, insert, modify, and delete commands on rows of data in a
database table. The SqlCommand object can be used to support disconnected data management
scenarios, but in this lesson we will only use the SqlCommand object alone. A later lesson on the
SqlDataAdapter will explain how to implement an application that uses disconnected data. This lesson
will also show you how to retrieve a single value from a database, such as the number of records in a
table.

Creating a SqlCommand Object

Similar to other C# objects, you instantiate a SqlCommand object via the new instance declaration, as
follows:

 SqlCommand cmd = new SqlCommand("select CategoryName from Categories",
conn);

The line above is typical for instantiating a SqlCommand object. It takes a string parameter that holds
the command you want to execute and a reference to a SqlConnection object. SqlCommand has a few
overloads, which you will see in the examples of this tutorial.

Querying Data

When using a SQL select command, you retrieve a data set for viewing. To accomplish this with a
SqlCommand object, you would use the ExecuteReader method, which returns a SqlDataReader
object. We'll discuss the SqlDataReader in a future lesson. The example below shows how to use the
SqlCommand object to obtain a SqlDataReader object:

// 1. Instantiate a new command with a query and connection
SqlCommand cmd = new SqlCommand("select CategoryName from Categories", conn);

// 2. Call Execute reader to get query results
SqlDataReader rdr = cmd.ExecuteReader();

In the example above, we instantiate a SqlCommand object, passing the command string and
connection object to the constructor. Then we obtain a SqlDataReader object by calling the
ExecuteReader method of the SqlCommand object, cmd.

This code is part of the ReadData method of Listing 1 in the Putting it All Together section later in this
lesson.

Inserting Data

To insert data into a database, use the ExecuteNonQuery method of the SqlCommand object. The
following code shows how to insert data into a database table:

// prepare command string
 string insertString = @"
 insert into Categories
 (CategoryName, Description)
 values ('Miscellaneous', 'Whatever doesn''t fit elsewhere')";

 // 1. Instantiate a new command with a query and connection
 SqlCommand cmd = new SqlCommand(insertString, conn);

 // 2. Call ExecuteNonQuery to send command
 cmd.ExecuteNonQuery();

The SqlCommand instantiation is just a little different from what you've seen before, but it is basically
the same. Instead of a literal string as the first parameter of the SqlCommand constructor, we are
using a variable, insertString. The insertString variable is declared just above the SqlCommand
declaration.

Notice the two apostrophes ('') in the insertString text for the word "doesn''t". This is how you escape
the apostrophe to get the string to populate column properly.

Another observation to make about the insert command is that we explicitly specified the columns
CategoryName and Description. The Categories table has a primary key field named CategoryID. We
left this out of the list because SQL Server will add this field itself. trying to add a value to a primary
key field, such as CategoryID, will generate an exception.

To execute this command, we simply call the ExecuteNonQuery method on the SqlCommand instance,
cmd.

This code is part of the Insertdata method of Listing 1 in the Putting it All Together section later in this
lesson.

Updating Data

The ExecuteNonQuery method is also used for updating data. The following code shows how to update
data:

// prepare command string
 string updateString = @"
 update Categories
 set CategoryName = 'Other'
 where CategoryName = 'Miscellaneous'";

 // 1. Instantiate a new command with command text only
 SqlCommand cmd = new SqlCommand(updateString);

 // 2. Set the Connection property
 cmd.Connection = conn;

 // 3. Call ExecuteNonQuery to send command
 cmd.ExecuteNonQuery();

Again, we put the SQL command into a string variable, but this time we used a different SqlCommand
constructor that takes only the command. In step 2, we assign the SqlConnection object, conn, to the
Connection property of the SqlCommand object, cmd.

This could have been done with the same constructor used for the insert command, with two
parameters. It demonstrates that you can change the connection object assigned to a command at
any time.

The ExecuteNonQuery method performs the update command.

This code is part of the UpdateData method of Listing 1 in the Putting it All Together section later in
this lesson.

Deleting Data

You can also delete data using the ExecuteNonQuery method. The following example shows how to
delete a record from a database with the ExecuteNonQuery method:

// prepare command string
 string deleteString = @"
 delete from Categories
 where CategoryName = 'Other'";

 // 1. Instantiate a new command
 SqlCommand cmd = new SqlCommand();

 // 2. Set the CommandText property
 cmd.CommandText = deleteString;

 // 3. Set the Connection property
 cmd.Connection = conn;

 // 4. Call ExecuteNonQuery to send command
 cmd.ExecuteNonQuery();

This example uses the SqlCommand constructor with no parameters. Instead, it explicity sets the
CommandText and Connection properties of the SqlCommand object, cmd.

We could have also used either of the two previous SqlCommand constructor overloads, used for the
insert or update command, with the same result. This demonstrates that you can change both the
command text and the connection object at any time.

The ExecuteNonQuery method call sends the command to the database.

This code is part of the DeleteData method of Listing 1 in the Putting it All Together section later in
this lesson.

Getting Single values

Sometimes all you need from a database is a single value, which could be a count, sum, average, or
other aggregated value from a data set. Performing an ExecuteReader and calculating the result in
your code is not the most efficient way to do this. The best choice is to let the database perform the
work and return just the single value you need. The following example shows how to do this with the
ExecuteScalar method:

// 1. Instantiate a new command
 SqlCommand cmd = new SqlCommand("select count(*) from Categories", conn);

 // 2. Call ExecuteNonQuery to send command
 int count = (int)cmd.ExecuteScalar();

The query in the SqlCommand constructor obtains the count of all records from the Categories table.
This query will only return a single value. The ExecuteScalar method in step 2 returns this value. Since
the return type of ExecuteScalar is type object, we use a cast operator to convert the value to int.

This code is part of the GetNumberOfRecords method of Listing 1 in the Putting it All Together section
later in this lesson.

Putting it All Together

For simplicity, we showed snippets of code in previous sections to demonstrate the applicable
techniques. It is also useful to have an entire code listing to see how this code is used in a working
program. Listing 1 shows all of the code used in this example, along with a driver in the Main method
to produce formatted output.

Listing 1. SqlConnection Demo

 using System;
 using System.Data;
 using System.Data.SqlClient;

 /// <summary>
 /// Demonstrates how to work with SqlCommand objects
 /// </summary>
 class SqlCommandDemo
 {
 SqlConnection conn;

 public SqlCommandDemo()
 {
 // Instantiate the connection
 conn = new SqlConnection(
 "Data Source=(local);Initial Catalog=Northwind;Integrated Security=SSPI");
 }

 // call methods that demo SqlCommand capabilities
 static void Main()
 {
 SqlCommandDemo scd = new SqlCommandDemo();

 Console.WriteLine();
 Console.WriteLine("Categories Before Insert");
 Console.WriteLine("------------------------");

 // use ExecuteReader method
 scd.ReadData();

 // use ExecuteNonQuery method for Insert
 scd.Insertdata();
 Console.WriteLine();
 Console.WriteLine("Categories After Insert");
 Console.WriteLine("------------------------------");

 scd.ReadData();

 // use ExecuteNonQuery method for Update
 scd.UpdateData();

 Console.WriteLine();
 Console.WriteLine("Categories After Update");
 Console.WriteLine("------------------------------");

 scd.ReadData();

 // use ExecuteNonQuery method for Delete
 scd.DeleteData();

 Console.WriteLine();
 Console.WriteLine("Categories After Delete");
 Console.WriteLine("------------------------------");

 scd.ReadData();

 // use ExecuteScalar method

 int numberOfRecords = scd.GetNumberOfRecords();

 Console.WriteLine();
 Console.WriteLine("Number of Records: {0}", numberOfRecords);
 }

 /// <summary>
 /// use ExecuteReader method
 /// </summary>
 public void ReadData()
 {
 SqlDataReader rdr = null;

 try
 {
 // Open the connection
 conn.Open();

 // 1. Instantiate a new command with a query and connection
 SqlCommand cmd = new SqlCommand("select CategoryName from Categories",
conn);

 // 2. Call Execute reader to get query results
 rdr = cmd.ExecuteReader();

 // print the CategoryName of each record
 while (rdr.Read())
 {
 Console.WriteLine(rdr[0]);
 }
 }
 finally
 {
 // close the reader
 if (rdr != null)
 {
 rdr.Close();
 }

 // Close the connection
 if (conn != null)
 {
 conn.Close();
 }
 }
 }

 /// <summary>
 /// use ExecuteNonQuery method for Insert
 /// </summary>
 public void Insertdata()
 {
 try

 {
 // Open the connection
 conn.Open();

 // prepare command string
 string insertString = @"
 insert into Categories
 (CategoryName, Description)
 values ('Miscellaneous', 'Whatever doesn''t fit elsewhere')";

 // 1. Instantiate a new command with a query and connection
 SqlCommand cmd = new SqlCommand(insertString, conn);

 // 2. Call ExecuteNonQuery to send command
 cmd.ExecuteNonQuery();
 }
 finally
 {
 // Close the connection
 if (conn != null)
 {
 conn.Close();
 }
 }
 }

 /// <summary>
 /// use ExecuteNonQuery method for Update
 /// </summary>
 public void UpdateData()
 {
 try
 {
 // Open the connection
 conn.Open();

 // prepare command string
 string updateString = @"
 update Categories
 set CategoryName = 'Other'
 where CategoryName = 'Miscellaneous'";

 // 1. Instantiate a new command with command text only
 SqlCommand cmd = new SqlCommand(updateString);

 // 2. Set the Connection property
 cmd.Connection = conn;

 // 3. Call ExecuteNonQuery to send command
 cmd.ExecuteNonQuery();
 }
 finally
 {

 // Close the connection
 if (conn != null)
 {
 conn.Close();
 }
 }
 }

 /// <summary>
 /// use ExecuteNonQuery method for Delete
 /// </summary>
 public void DeleteData()
 {
 try
 {
 // Open the connection
 conn.Open();

 // prepare command string
 string deleteString = @"
 delete from Categories
 where CategoryName = 'Other'";

 // 1. Instantiate a new command
 SqlCommand cmd = new SqlCommand();

 // 2. Set the CommandText property
 cmd.CommandText = deleteString;

 // 3. Set the Connection property
 cmd.Connection = conn;

 // 4. Call ExecuteNonQuery to send command
 cmd.ExecuteNonQuery();
 }
 finally
 {
 // Close the connection
 if (conn != null)
 {
 conn.Close();
 }
 }
 }

 /// <summary>
 /// use ExecuteScalar method
 /// </summary>
 /// <returns>number of records</returns>
 public int GetNumberOfRecords()
 {
 int count = -1;

 try
 {
 // Open the connection
 conn.Open();

 // 1. Instantiate a new command
 SqlCommand cmd = new SqlCommand("select count(*) from Categories", conn);

 // 2. Call ExecuteScalar to send command
 count = (int)cmd.ExecuteScalar();
 }
 finally
 {
 // Close the connection
 if (conn != null)
 {
 conn.Close();
 }
 }
 return count;
 }
 }

In Listing 1, the SqlConnection object is instantiated in the SqlCommandDemo structure. This is okay
because the object itself will be cleaned up when the CLR garbage collector executes. What is
important is that we close the connection when we are done using it. This program opens the
connection in a try block and closes it in a finally block in each method.

The ReadData method displays the contents of the CategoryName column of the Categories table. We
use it several times in the Main method to show the current status of the Categories table, which
changes after each of the insert, update, and delete commands. Because of this, it is convenient to
reuse to show you the effects after each method call.

Summary

A SqlCommand object allows you to query and send commands to a database. It has methods that are
specialized for different commands. The ExecuteReader method returns a SqlDataReader object for
viewing the results of a select query. For insert, update, and delete SQL commands, you use the
ExecuteNonQuery method. If you only need a single aggregate value from a query, the ExecuteScalar
is the best choice.

Lesson 04: Reading Data with the SqlDataReader

This lesson explains how to read data with a SqlDataReader object. Here are the objectives of this
lesson:

• Learn what a SqlDataReader is used for.
• Know how to read data using a SqlDataReader.
• Understand the need to close a SqlDataReader.

Introduction

A SqlDataReader is a type that is good for reading data in the most efficient manner possible. You can
not use it for writing data. SqlDataReaders are often described as fast-forward firehose-like streams
of data.

You can read from SqlDataReader objects in a forward-only sequential manner. Once you've read
some data, you must save it because you will not be able to go back and read it again.

The forward only design of the SqlDataReader is what enables it to be fast. It doesn't have overhead
associated with traversing the data or writing it back to the data source. Therefore, if your only
requirement for a group of data is for reading one time and you want the fastest method possible, the
SqlDataReader is the best choice. Also, if the amount of data you need to read is larger than what you
would prefer to hold in memory beyond a single call, then the streaming behavior of the
SqlDataReader would be a good choice.

Note: Observe that I used the term "one time" in the previous paragraph when discussing the reasons
why you would use a SqlDataReader. As with anything, there are exceptions. In many cases, it is
more efficient to use a cached DataSet. While caching is outside the scope of this tutorial, we will
discuss using DataSet objects in the next lesson.

Creating a SqlDataReader Object

Getting an instance of a SqlDataReader is a little different than the way you instantiate other ADO.NET
objects. You must call ExecuteReader on a command object, like this:

 SqlDataReader rdr = cmd.ExecuteReader();

The ExecuteReader method of the SqlCommand object, cmd , returns a SqlDataReader instance.
Creating a SqlDataReader with the new operator doesn't do anything for you. As you learned in
previous lessons, the SqlCommand object references the connection and the SQL statement necessary
for the SqlDataReader to obtain data.

Reading Data

previous lessons contained code that used a SqlDataReader, but the discussion was delayed so we
could focus on the specific subject of that particular lesson. This lesson builds from what you've seen
and explains how to use the SqlDataReader.

As explained earlier, the SqlDataReader returns data via a sequential stream. To read this data, you
must pull data from a table row-by-row Once a row has been read, the previous row is no longer
available. To read that row again, you would have to create a new instance of the SqlDataReader and
read through the data stream again.

The typical method of reading from the data stream returned by the SqlDataReader is to iterate
through each row with a while loop. The following code shows how to accomplish this:

 while (rdr.Read())
 {
 // get the results of each column
 string contact = (string)rdr["ContactName"];
 string company = (string)rdr["CompanyName"];
 string city = (string)rdr["City"];

 // print out the results
 Console.Write("{0,-25}", contact);
 Console.Write("{0,-20}", city);
 Console.Write("{0,-25}", company);
 Console.WriteLine();
 }

Notice the call to Read on the SqlDataReader, rdr, in the while loop condition in the code above. The
return value of Read is type bool and returns true as long as there are more records to read. After the
last record in the data stream has been read, Read returns false.

In previous lessons, we extracted the first column from the row by using the SqlDataReader indexer,
i.e. rdr[0]. You can extract each column of the row with a numeric indexer like this, but it isn't very
readable. The example above uses a string indexer, where the string is the column name from the
SQL query (the table column name if you used an asterisk, *. String indexers are much more
readable, making the code easier to maintain.

Regardless of the type of the indexer parameter, a SqlDataReader indexer will return type object. This
is why the example above casts results to a string. Once the values are extracted, you can do
whatever you want with them, such as printing them to output with Console type methods.

Finishing Up

Always remember to close your SqlDataReader, just like you need to close the SqlConnection. Wrap
the data access code in a try block and put the close operation in the finally block, like this:

 try
 {
 // data access code
 }
 finally
 {
 // 3. close the reader
 if (rdr != null)
 {
 rdr.Close();
 }

 // close the connection too
 }

The code above checks the SqlDataReader to make sure it isn't null. After the code knows that a good
instance of the SqlDataReader exists,it can close it. Listing 1 shows the code for the previous sections
in its entirety.

Listing 1: Using the SqlDataReader
using System;
using System.Data;
using System.Data.SqlClient;

namespace Lesson04
{
 class ReaderDemo
 {
 static void Main()
 {
 ReaderDemo rd = new ReaderDemo();
 rd.SimpleRead();
 }

 public void SimpleRead()
 {
 // declare the SqlDataReader, which is used in
 // both the try block and the finally block
 SqlDataReader rdr = null;

 // create a connection object
 SqlConnection conn = new SqlConnection(
"Data Source=(local);Initial Catalog=Northwind;Integrated Security=SSPI");

 // create a command object
 SqlCommand cmd = new SqlCommand(
 "select * from Customers", conn);

 try
 {
 // open the connection
 conn.Open();

 // 1. get an instance of the SqlDataReader
 rdr = cmd.ExecuteReader();

 // print a set of column headers
 Console.WriteLine(
"Contact Name City Company Name");
 Console.WriteLine(
"------------ ------------ ------------");

 // 2. print necessary columns of each
 record
 while (rdr.Read())
 {
 // get the results of each column
 string contact =
(string)rdr["ContactName"];
 string company =
(string)rdr["CompanyName"];
 string city = (string)rdr["City"];

 // print out the results
 Console.Write("{0,-25}", contact);
 Console.Write("{0,-20}", city);
 Console.Write("{0,-25}", company);
 Console.WriteLine();
 }
 }
 finally
 {
 // 3. close the reader
 if (rdr != null)
 {
 rdr.Close();
 }

 // close the connection
 if (conn != null)
 {
 conn.Close();
 }
 }
 }
 }
}

Summary

SqlDataReader objects allow you to read data in a fast forward-only manner. You obtain data by
reading each row from the data stream. Call the Close method of the SqlDataReader to ensure there
are not any resource leaks.

Lesson 05: Working with Disconnected Data - The DataSet and
SqlDataAdapter

This lesson explains how to work with disconnected data, using the DataSet and SqlDataAdapter
objects. Here are the objectives of this lesson:

• Understand the need for disconnected data.
• Obtain a basic understanding of what a DataSet is for.
• Learn to use a SqlDataAdapter to retrieve and update data.

Introduction

In Lesson 3, we discussed a fully connected mode of operation for interacting with a data source by
using the SqlCommand object. In Lesson 4, we learned about how to read data quickly an let go of the
connection with the SqlDataReader. This Lesson shows how to accomplish something in-between
SqlConnection and SqlDataReader interaction by using the DataSet and SqlDataAdapter objects.

A DataSet is an in-memory data store that can hold numerous tables. DataSets only hold data and do
not interact with a data source. It is the SqlDataAdapter that manages connections with the data
source and gives us disconnected behavior. The SqlDataAdapter opens a connection only when
required and closes it as soon as it has performed its task. For example, the SqlDataAdapter performs
the following tasks when filling a DataSet with data:

1. Open connection
2. Retrieve data into DataSet
3. Close connection

and performs the following actions when updating data source with DataSet changes:

1. Open connection
2. Write changes from DataSet to data source
3. Close connection

In between the Fill and Update operations, data source connections are closed and you are free to
read and write data with the DataSet as you need. These are the mechanics of working with
disconnected data. Because the applications holds on to connections only when necessary, the
application becomes more scalable.

A couple scenarios illustrate why you would want to work with disconnected data: people working
without network connectivity and making Web sites more scalable. Consider sales people who need
customer data as they travel. At the beginning of the day, they'll need to sync up with the main
database to have the latest information available. During the day, they'll make modifications to
existing customer data, add new customers, and input new orders. This is okay because they have a
given region or customer base where other people won't be changing the same records. At the end of
the day, the sales person will connect to the network and update changes for overnight processing.

Another scenario is making a Web site more scalable. With a SqlDataReader, you have to go back to
the database for records every time you show a page. This requires a new connection for each page
load, which will hurt scalability as the number of users increase. One way to relieve this is to use a
DataSet that is updated one time and stored in cache. Every request for the page checks the cache
and loads the data if it isn't there or just pulls the data out of cache and displays it. This avoids a trip
to the database, making your application more efficient.

Exceptions to the scenario above include situations where you need to update data. You then have to
make a decision, based on the nature of how the data will be used as to your strategy. Use
disconnected data when your information is primarily read only, but consider other alternatives (such
as using SqlCommand object for immediate update) when your requirements call for something more
dynamic. Also, if the amount of data is so large that holding it in memory is impractical, you will need
to use SqlDataReader for read-only data. Really, one could come up with all kinds of exceptions, but
the true guiding force should be the requirements of your application which will influence what your
design should be.

Creating a DataSet Object

There isn't anything special about instantiating a DataSet. You just create a new instance, just like
any other object:

DataSet dsCustomers = new DataSet();

The DataSet constructor doesn't require parameters. However there is one overload that accepts a
string for the name of the DataSet, which is used if you were to serialize the data to XML. Since that
isn't a requirement for this example, I left it out. Right now, the DataSet is empty and you need a
SqlDataAdapter to load it.

Creating A SqlDataAdapter

The SqlDataAdapter holds the SQL commands and connection object for reading and writing data. You
initialize it with a SQL select statement and connection object:

SqlDataAdapter daCustomers = new SqlDataAdapter(
 "select CustomerID, CompanyName from Customers", conn);

The code above creates a new SqlDataAdapter, daCustomers. The SQL select statement specifies what
data will be read into a DataSet. The connection object, conn, should have already been instantiated,
but not opened. It is the SqlDataAdapter's responsibility to open and close the connection during Fill
and Update method calls.

As indicated earlier, the SqlDataAdapter contains all of the commands necessary to interact with the
data source. The code showed how to specify the select statment, but didn't show the insert, update,
and delete statements. These are added to the SqlDataAdapter after it is instantiated.

There are two ways to add insert, update, and delete commands: via SqlDataAdapter properties or
with a SqlCommandBuilder. In this lesson, I'm going to show you the easy way of doing it with the
SqlCommandBuilder. In a later lesson, I'll show you how to use the SqlDataAdapter properties, which
takes more work but will give you more capabilities than what the SqlCommandBuilder does. Here's
how to add commands to the SqlDataAdapter with the SqlCommandBuilder:

SqlCommandBuilder cmdBldr = new SqlCommandBuilder(daCustomers);

Notice in the code above that the SqlCommandBuilder is instantiated with a single constructor
parameter of the SqlDataAdapter, daCustomers, instance. This tells the SqlCommandBuilder what
SqlDataAdapter to add commands to. The SqlCommandBuilder will read the SQL select statement
(specified when the SqlDataAdapter was instantiated), infer the insert, update, and delete commands,
and assign the new commands to the Insert, Update, and Delete properties of the SqlDataAdapter,
respectively.

As I mentioned earlier, the SqlCommandBuilder has limitations. It works when you do a simple select
statement on a single table. However, when you need a join of two or mor tables or must do a stored
procedure, it won't work. I'll describe a work-around for these scenarios in future lessons.

Filling the DataSet

Once you have a DataSet and SqlDataAdapter instances, you need to fill the DataSet. Here's how to
do it, by using the Fill method of the SqlDataAdapter:

daCustomers.Fill(dsCustomers, "Customers");

The Fill method, in the code above, takes two parameters: a DataSet and a table name. The DataSet
must be instantiated before trying to fill it with data. The second parameter is the name of the table
that will be created in the DataSet. You can name the table anything you want. Its purpose is so you
can identify the table with a meaningful name later on. Typically, I'll give it the same name as the
database table. However, if the SqlDataAdapter's select command contains a join, you'll need to find
another meaningful name.

The Fill method has an overload that accepts one parameter for the DataSet only. In that case, the
table created has a default name of "table1" for the first table. The number will be incremented
(table2, table3, ..., tableN) for each table added to the DataSet where the table name was not
specified in the Fill method.

Using the DataSet

A DataSet will bind with both ASP.NET and Windows forms DataGrids. Here's an example that assigns
the DataSet to a Windows forms DataGrid:

dgCustomers.DataSource = dsCustomers;
dgCustomers.DataMember = "Customers";

The first thing we do, in the code above, is assign the DataSet to the DataSource property of the
DataGrid. This lets the DataGrid know that it has something to bind to, but you will get a '+' sign in
the GUI because the DataSet can hold multiple tables and this would allow you to expand each

available table. To specify exactly which table to use, set the DataGrid's DataMember property to the
name of the table. In the example, we set the name to Customers, which is the same name used as
the second parameter to the SqlDataAdapter Fill method. This is why I like to give the table a name in
the Fill method, as it makes subsequent code more readable.

Updating Changes

After modifications are made to the data, you'll want to write the changes back to the database. Refer
to previous discussion in the Introduction of this article on update guidance. The following code shows
how to use the Update method of the SqlDataAdapter to push modifications back to the database.

daCustomers.Update(dsCustomers, "Customers");

The Update method, above, is called on the SqlDataAdapter instance that originally filled
the dsCustomers DataSet. The second parameter to the Update method specifies which table, from
the DataSet, to update. The table contains a list of records that have been modified and the Insert,
Update, and Delete properties of the SqlDataAdapter contain the SQL statements used to make
database modifications.

Putting it All Together

Until now, you've seen the pieces required to implement disconnected data managment. What you
really need is to see all this implemented in an application. Listing 1 shows how the code from all the
previous sections is used in a working program that has been simplified to enhance the points of this
lesson:

Listing 1: Implementing a Disconnected Data Management Strategy
using System;
using System.Data;
using System.Data.SqlClient;
using System.Drawing;
using System.Windows.Forms;

class DisconnectedDataform : Form
{
 private SqlConnection conn;
 private SqlDataAdapter daCustomers;

 private DataSet dsCustomers;
 private DataGrid dgCustomers;

 private const string tableName = "Customers";

 // initialize form with DataGrid and Button
 public DisconnectedDataform()
 {
 // fill dataset
 Initdata();

 // set up datagrid
 dgCustomers = new DataGrid();
 dgCustomers.Location = new Point(5, 5);
 dgCustomers.Size = new Size(
 this.ClientRectangle.Size.Width - 10,

 this.ClientRectangle.Height - 50);
 dgCustomers.DataSource = dsCustomers;
 dgCustomers.DataMember = tableName;

 // create update button
 Button btnUpdate = new Button();
 btnUpdate.Text = "Update";
 btnUpdate.Location = new Point(
 this.ClientRectangle.Width/2 - btnUpdate.Width/2,
 this.ClientRectangle.Height - (btnUpdate.Height + 10));
 btnUpdate.Click += new EventHandler(btnUpdateClicked);

 // make sure controls appear on form
 Controls.AddRange(new Control[] { dgCustomers, btnUpdate });
 }

 // set up ADO.NET objects
 public void Initdata()
 {
 // instantiate the connection
 conn = new SqlConnection(
 "Server=(local);DataBase=Northwind;Integrated
Security=SSPI");

 // 1. instantiate a new DataSet
 dsCustomers = new DataSet();

 // 2. init SqlDataAdapter with select command and connection
 daCustomers = new SqlDataAdapter(
 "select CustomerID, CompanyName from Customers", conn);

 // 3. fill in insert, update, and delete commands
 SqlCommandBuilder cmdBldr = new
SqlCommandBuilder(daCustomers);

 // 4. fill the dataset
 daCustomers.Fill(dsCustomers, tableName);
 }

 // Update button was clicked
 public void btnUpdateClicked(object sender, EventArgs e)
 {
 // write changes back to DataBase
 daCustomers.Update(dsCustomers, tableName);
 }

 // start the Windows form
 static void Main()
 {
 Application.Run(new DisconnectedDataForm());
 }
 }

The Initdata method in Listing 1 contains the methods necessary to set up the SqlDataAdapter and
DataSet. Notice that various data objects are defined at class level so they can be used in multiple
methods. The DataGrid's DataSource property is set in the constructor. Whenever a user clicks the

Update button, the Update method in the btnUpdateClicked event handler is called, pushing
modifications back to the database.

Summary

DataSets hold multiple tables and can be kept in memory and reused. The SqlDataAdapter enables
you to fill a DataSet and Update changes back to the database. You don't have to worry about opening
and closing the SqlConnection because the SqlDataAdapter does it automatically. A
SqlCommandBuilder populates insert, update, and delete commands based on the SqlDataAdapter's
select statement. Use the Fill method of the SqlDataAdapter to fill a DataSet with data. Call the
SqlDataAdapter's Update method to push changes back to a database.

Lesson 06: Adding Parameters to Commands

This lesson shows you how to use parameters in your commands.2 Here are the objectives of this
lesson:

• Understand what a parameter is.
• Be informed about the benefits of using parameters.
• Learn how to create a parameter.
• Learn how to assign parameters to commands.

Introduction

When working with data, you'll often want to filter results based on some criteria. Typically, this is
done by accepting input from a user and using that input to form a SQL query. For example, a sales
person may need to see all orders between specific dates. Another query might be to filter customers
by city.

As you know, the SQL query assigned to a SqlCommand object is simply a string. So, if you want to
filter a query, you could build the string dynamically, but you wouldn't want to. Here is a bad example
of filtering a query.

 // don't ever do this
 SqlCommand cmd = new SqlCommand(
 "select * from Customers where city = '" + inputCity + "'";

Don't ever build a query this way! The input variable, inputCity, is typically retrieved from a TextBox
control on either a Windows form or a Web Page. Anything placed into that TextBox control will be put
into inputCity and added to your SQL string. This situation invites a hacker to replace that string with
something malicious. In the worst case, you could give full control of your computer away.

Instead of dynamically building a string, as shown in the bad example above, use parameters.
Anything placed into a parameter will be treated as field data, not part of the SQL statement, which
makes your application much more secure.

Using parameterized queries is a three step process:

1. Construct the SqlCommand command string with parameters.
2. Declare a SqlParameter object, assigning values as appropriate.
3. Assign the SqlParameter object to the SqlCommand object's Parameters property.

The following sections take you step-by-step through this process.

preparing a SqlCommand Object for Parameters

The first step in using parameters in SQL queries is to build a command string containing parameter
placeholders. These placeholders are filled in with actual parameter values when the SqlCommand
executes. Proper syntax of a parameter is to use an '@' symbol prefix on the parameter name as
shown below:

 // 1. declare command object with parameter
 SqlCommand cmd = new SqlCommand(
 "select * from Customers where city = @City", conn);

In the SqlCommand constructor above, the first argument contains a parameter declaration, @City.
This example used one parameter, but you can have as many parameters as needed to customize the
query. Each parameter will match a SqlParameter object that must be assigned to this SqlCommand
object.

Declaring a SqlParameter Object

Each parameter in a SQL statement must be defined. This is the purpose of the SqlParameter type.
Your code must define a SqlParameter instance for each parameter in a SqlCommand object's SQL
command. The following code defines a parameter for the @City parameter from the previous section:

 // 2. define parameters used in command object
 SqlParameter param = new SqlParameter();
 param.ParameterName = "@City";
 param.Value = inputCity;

Notice that the ParameterName property of the SqlParameter instance must be spelled exactly as the
parameter that is used in the SqlCommand SQL command string. You must also specify a value for the
command. When the SqlCommand object executes, the parameter will be replaced with this value.

Associate a SqlParameter Object with a SqlCommand
Object

For each parameter defined in the SQL command string argument to a SqlCommand object, you must
define a SqlParameter. You must also let the SqlCommand object know about the SqlParameter by
assigning the SqlParameter instance to the Parameters property of the SqlCommand object. The
following code shows how to do this:

 // 3. add new parameter to command object
 cmd.Parameters.Add(param);

The SqlParameter instance is the argument to the Add method of the Parameters property for the
SqlCommand object above. You must add a unique SqlParameter for each parameter defined in the
SqlCommand object's SQL command string.

Putting it All Together

You already know how to use SqlCommand and SqlDataReader objects. The following code
demonstrates a working program that uses SqlParameter objects. So, everything should be familiar by
now, except for the new parts presented in this article:

Listing 1: Adding Parameters to Queries
using System;
using System.Data;
using System.Data.SqlClient;

class ParamDemo
{
 static void Main()
 {
 // conn and reader declared outside try
 // block for visibility in finally block
 SqlConnection conn = null;
 SqlDataReader reader = null;

 string inputCity = "London";

 try
 {
 // instantiate and open connection
 conn = new

 SqlConnection("Server=(local);DataBase=Northwind;Integrated
Security=SSPI");
 conn.Open();

 // don't ever do this
 // SqlCommand cmd = new SqlCommand(
 // "select * from Customers where city = '" + inputCity + "'";

 // 1. declare command object with parameter
 SqlCommand cmd = new SqlCommand(
 "select * from Customers where city = @City",
conn);

 // 2. define parameters used in command object
 SqlParameter param = new SqlParameter();
 param.ParameterName = "@City";
 param.Value = inputCity;

 // 3. add new parameter to command object
 cmd.Parameters.Add(param);

 // get data stream
 reader = cmd.ExecuteReader();

 // write each record
 while(reader.Read())
 {
 Console.WriteLine("{0}, {1}",
 reader["CompanyName"],
 reader["ContactName"]);
 }
 }
 finally
 {
 // close reader
 if (reader != null)
 {
 reader.Close();
 }

 // close connection
 if (conn != null)
 {
 conn.Close();
 }
 }
 }
}

The code in Listing 1 retrieves records for each customer that lives in London. This was made more
secure through the use of parameters. Besides using parameters, all of the other code contains
techniques you've learned in previous lessons.

Summary

You should use parameters to filter queries in a secure manner. The process of using parameter
contains three steps: define the parameter in the SqlCommand command string, declare the
SqlParameter object with applicable properties, and assign the SqlParameter object to the
SqlCommand object. When the SqlCommand executes, parameters will be replaced with values
specified by the SqlParameter object.

Lesson 07: Using Stored Procedures

This lesson shows how to use stored procedures in your data access code. Here are the objectives of
this lesson:

• Learn how to modify the SqlCommand object to use a stored procedure.
• Understand how to use parameters with stored procedures.

Introduction

A stored procedures is a pre-defined, reusable routine that is stored in a database. SQL Server
compiles stored procedures, which makes them more efficient to use. Therefore, rather than
dynamically building queries in your code, you can take advantage of the reuse and performance
benefits of stored procedures. The following sections will show you how to modify the SqlCommand
object to use stored procedures. Additionally, you'll see another reason why parameter support is an
important part of the ADO.NET libraries.

Executing a Stored Procedure

In addition to commands built with strings, the SqlCommand type can be used to execute stored
procedures. There are two tasks require to make this happen: let the SqlCommand object know which
stored procedure to execute and tell the SqlCommand object that it is executing a stored procedure.
These two steps are shown below:

 // 1. create a command object identifying
 // the stored procedure
 SqlCommand cmd = new SqlCommand(
 "Ten Most Expensive Products", conn);

 // 2. set the command object so it knows
 // to execute a stored procedure
 cmd.CommandType = CommandType.StoredProcedure;

While declaring the SqlCommand object above, the first parameter is set to "Ten Most Expensive
Products". This is the name of a stored procedure in the Northwind database. The second parameter is
the connection object, which is the same as the SqlCommand constructor used for executing query
strings.

The second command tells the SqlCommand object what type of command it will execute by setting
its CommandType property to theStoredProcedure value of the CommandType enum. The default
interpretation of the first parameter to the SqlCommand constructor is to treat it as a query string. By
setting the CommandType to StoredProcedure, the first parameter to the SqlCommand constructor will
be interpreted as the name of a stored procedure (instead of interpreting it as a command string). The
rest of the code can use the SqlCommand object the same as it is used in previous lessons.

Sending Parameters to Stored Procedures

Using parameters for stored procedures is the same as using parameters for query string commands.
The following code shows this:

 // 1. create a command object identifying
 // the stored procedure
 SqlCommand cmd = new SqlCommand(
 "CustOrderHist", conn);

 // 2. set the command object so it knows
 // to execute a stored procedure
 cmd.CommandType = CommandType.StoredProcedure;

 // 3. add parameter to command, which
 // will be passed to the stored procedure
 cmd.Parameters.Add(
 new SqlParameter("@CustomerID", custId));

The SqlCommand constructor above specifies the name of a stored procedure, CustOrderHist, as its
first parameter. This particular stored procedure takes a single parameter, named @CustomerID.
Therefore, we must populate this parameter using a SqlParameter object. The name of the parameter
passed as the first parameter to the SqlParameter constructor must be spelled exactly the same as
the stored procedure parameter. Then execute the command the same as you would with any other
SqlCommand object.

A Full Example

The code in Listing 1 contains a full working example of how to use stored procedures. There are
separate methods for a stored procedure without parameters and a stored procedure with parameters.

Listing 1: Executing Stored Procedures
using System;
using System.Data;
using System.Data.SqlClient;

class StoredProcDemo
{
 static void Main()
 {
 StoredProcDemo spd = new StoredProcDemo();

 // run a simple stored procedure
 spd.RunStoredProc();

 // run a stored procedure that takes a parameter
 spd.RunStoredProcParams();
 }

 // run a simple stored procedure
 public void RunStoredProc()
 {
 SqlConnection conn = null;
 SqlDataReader rdr = null;

 Console.WriteLine("\nTop 10 Most Expensive Products:\n");

 try
 {
 // create and open a connection object
 conn = new

 SqlConnection("Server=(local);DataBase=Northwind;Integrated
Security=SSPI");
 conn.Open();

 // 1. create a command object identifying
 // the stored procedure
 SqlCommand cmd = new SqlCommand(
 "Ten Most Expensive Products", conn);

 // 2. set the command object so it knows
 // to execute a stored procedure
 cmd.CommandType = CommandType.StoredProcedure;

 // execute the command
 rdr = cmd.ExecuteReader();

 // iterate through results, printing each to console
 while (rdr.Read())
 {
 Console.WriteLine(
 "Product: {0,-25} Price:
${1,6:####.00}",
 rdr["TenMostExpensiveProducts"],
 rdr["UnitPrice"]);
 }
 }
 finally
 {
 if (conn != null)
 {
 conn.Close();
 }
 if (rdr != null)
 {
 rdr.Close();
 }
 }

 }

 // run a stored procedure that takes a parameter
 public void RunStoredProcParams()
 {
 SqlConnection conn = null;
 SqlDataReader rdr = null;

 // typically obtained from user
 // input, but we take a short cut
 string custId = "FURIB";

 Console.WriteLine("\nCustomer Order History:\n");

 try
 {
 // create and open a connection object
 conn = new

 SqlConnection("Server=(local);DataBase=Northwind;Integrated
Security=SSPI");
 conn.Open();

 // 1. create a command object identifying
 // the stored procedure
 SqlCommand cmd = new SqlCommand(
 "CustOrderHist", conn);

 // 2. set the command object so it knows
 // to execute a stored procedure
 cmd.CommandType = CommandType.StoredProcedure;

 // 3. add parameter to command, which
 // will be passed to the stored procedure
 cmd.Parameters.Add(
 new SqlParameter("@CustomerID", custId));

 // execute the command
 rdr = cmd.ExecuteReader();

 // iterate through results, printing each to console
 while (rdr.Read())
 {
 Console.WriteLine(
 "Product: {0,-35} Total: {1,2}",
 rdr["ProductName"],
 rdr["Total"]);
 }
 }
 finally
 {
 if (conn != null)
 {
 conn.Close();
 }
 if (rdr != null)
 {

 rdr.Close();
 }
 }
 }
}

The RunStoredProc method in Listing 1 simply runs a stored procedure and prints the results to the
console. In the RunStoredProcParamsmethod, the stored procedure used takes a single parameter.
This demonstrates that there is no difference between using parameters with query strings and stored
procedures. The rest of the code should be familiar to those who have read previous lessons in this
tutorial.

Summary

To execute stored procedures, you specify the name of the stored procedure in the first parameter of
a SqlCommand constructor and then set the CommandType of the SqlCommand to StoredProcedure.
You can also send parameters to a stored procedure by using SqlParameter objects, the same way it is
done with SqlCommand objects that execute query strings. Once the SqlCommand object is
constructed, you can use it just like any other SqlCommand object as described in previous lessons.

	Lesson 01: Introduction to ADO.NET
	Introduction
	Data Providers
	Table 1. ADO.NET Data Providers are class libraries that allow a common way to interact with specific data sources or protocol
	ADO.NET Objects
	The SqlConnection Object
	The SqlCommand Object
	The SqlDataReader Object
	The DataSet Object
	The SqlDataAdapter Object
	Summary

	Lesson 02: The SqlConnection Object
	Introduction
	Creating a SqlConnection Object
	Table 1. ADO.NET Connection Strings contain certain key/value pairs for specifying how to make a database connection. They inc
	Using a SqlConnection
	Listing 1. Using a SqlConnection
	Summary

	Lesson 03: The SqlCommand Object
	Introduction
	Creating a SqlCommand Object
	Querying Data
	Inserting Data
	Updating Data
	Deleting Data
	Getting Single values
	Putting it All Together
	Listing 1. SqlConnection Demo
	Summary

	Lesson 04: Reading Data with the SqlDataReader
	Introduction
	Creating a SqlDataReader Object
	Reading Data
	Finishing Up
	Listing 1: Using the SqlDataReader
	Summary

	Lesson 05: Working with Disconnected Data - The DataSet and SqlDataAdapter
	Introduction
	Creating a DataSet Object
	Creating A SqlDataAdapter
	Filling the DataSet
	Using the DataSet
	Updating Changes
	Putting it All Together
	Listing 1: Implementing a Disconnected Data Management Strategy
	Summary

	Lesson 06: Adding Parameters to Commands
	Introduction
	preparing a SqlCommand Object for Parameters
	Declaring a SqlParameter Object
	Associate a SqlParameter Object with a SqlCommand Object
	Putting it All Together
	Listing 1: Adding Parameters to Queries
	Summary

	Lesson 07: Using Stored Procedures
	Introduction
	Executing a Stored Procedure
	Sending Parameters to Stored Procedures
	A Full Example
	Listing 1: Executing Stored Procedures
	Summary

