

Relational Algebra

Module 3, Lecture 1

Relational Query Languages

- <u>Query languages</u>: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for much optimization.
- Query Languages != programming languages!
 - QLs not expected to be "Turing complete".
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

- Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
- <u>*Relational Algebra*</u>: More operational, very useful for representing execution plans.
- <u>Relational Calculus</u>: Lets users describe what they want, rather than how to compute it. (Non-operational, <u>declarative</u>.)
- Understanding Algebra & Calculus is key to
 understanding SQL, query processing!

Preliminaries

- A query is applied to *relation instances*, and the result of a query is also a relation instance.
 - Schemas of input relations for a query are fixed (but query will run regardless of instance!)
 - The schema for the *result* of a given query is also fixed! Determined by definition of query language constructs.
- Positional vs. named-field notation:
 - Positional notation easier for formal definitions, named-field notation more readable.
 - Both used in SQL

Example Instances

S

- "Sailors" and "Reserves" relations for our examples.
- We'll use positional or named field notation, assume that names of fields in query results are `inherited' from names of fields in query input relations.

R1	sid	<u>bid</u>	<u>day</u>
	22	101	10/10/96
	58	103	11/12/96

S1	sid	sname	rating	age
	22	dustin	7	45.0
	31	lubber	8	55.5
	58	rusty	10	35.0

52	sid	sname	rating	age
	28	yuppy	9	35.0
	31	lubber	8	55.5
	44	guppy	5	35.0
	58	rusty	10	35.0

Relational Algebra

Sasic operations:

- <u>Selection</u> ($\boldsymbol{\sigma}$) Selects a subset of rows from relation.
- <u>Projection</u> (π) Deletes unwanted columns from relation.
- <u>*Cross-product*</u> (X) Allows us to combine two relations.
- <u>Set-difference</u> (—) Tuples in reln. 1, but not in reln. 2.
- <u>Union</u> (\bigcup) Tuples in reln. 1 and in reln. 2.

Additional operations:

- Intersection, join, division, renaming: Not essential, but (very!) useful.
- Since each operation returns a relation, operations can be composed! (Algebra is "closed".)

Projection

- Deletes attributes that are not in *projection list*.
- Schema of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
- Projection operator has to eliminate *duplicates*! (Why??)
 - Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it. (Why not?)

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

 $\pi_{sname,rating}(S2)$

 $\pi_{age}(S2)$

Selection

- Selects rows that satisfy selection condition.
- No duplicates in result! (Why?)
- Schema of result identical to schema of (only) input relation.
- *Result* relation can be the *input* for another relational algebra operation! (*Operator composition*.)

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

 $\sigma_{rating>8}^{(S2)}$

sname	rating
yuppy	9
rusty	10

 $\pi_{sname, rating}(\sigma_{rating>8}(S2))$

Union, Intersection, Set-Difference

- All of these operations take two input relations, which must be <u>union-compatible</u>:
 - Same number of fields.
 - Corresponding' fields have the same type.
- What is the *schema* of result?

sid	sname	rating	age		
22	dustin	7	45.0		
S1-S2					

Database Management Systems, R. Ramakrishnan

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

 $S1 \cup S2$

sid	sname	rating	age		
31	lubber	8	55.5		
58	rusty	10	35.0		
$S1 \cap S2$					

Cross-Product

***** Each row of S1 is paired with each row of R1.

- * Result schema has one field per field of S1 and R1, with field names `inherited' if possible.
 - *Conflict*: Both S1 and R1 have a field called *sid*.

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

≪ <u>*Renaming operator*</u>: ρ (*C*(1→*sid*1, 5→*sid*2), *S*1×*R*1)

Joins

* <u>Condition Join</u>: $R \bowtie_c S = \sigma_c (R \times S)$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96

$$S1 \bowtie S1.sid < R1.sid$$

- * *Result schema* same as that of cross-product.
- Fewer tuples than cross-product, might be able to compute more efficiently
- * Sometimes called a *theta-join*.

Joins

Equi-Join: A special case of condition join where
 the condition *c* contains only equalities.

sid	sname	rating	age	bid	day	
22	dustin	7	45.0		10/10/96	
58	rusty	10	35.0	103	11/12/96	
$S1 \bowtie_{sid} R1$						

Result schema similar to cross-product, but only one copy of fields for which equality is specified.
 Natural Join: Equijoin on *all* common fields.

Division

Not supported as a primitive operator, but useful for expressing queries like:

Find sailors who have reserved <u>all</u> boats.

- * Let *A* have 2 fields, *x* and *y*; *B* have only field *y*:
 - $-A/B = \{ \langle x \rangle \mid \exists \langle x, y \rangle \in A \ \forall \langle y \rangle \in B \}$
 - i.e., *A/B* contains all *x* tuples (sailors) such that for *every y* tuple (boat) in *B*, there is an *xy* tuple in *A*.
 - Or: If the set of *y* values (boats) associated with an *x* value (sailor) in *A* contains all *y* values in *B*, the *x* value is in *A*/*B*.
- ★ In general, *x* and *y* can be any lists of fields; *y* is the list of fields in *B*, and $x \cup y$ is the list of fields of *A*.

Examples of Division A/B

sno	pno	pno	pno	pno
s 1	p1	p2	p2	p1
s 1	p2	B1	p4	p2
s 1	p2 p3	DI	<i>B2</i>	p4
s 1	p4		$D \sim$	B 3
s2	p1	sno		DJ
s2	p2	s1		
s 3	p2	s2	sno	
s4	p2 p2	s 3	s 1	sno
s4	p4	s4	s4	s 1
A		A/B1	A/B2	A/B3

Expressing A/B Using Basic Operators

- * Division is not essential op; just a useful shorthand.
 - (Also true of joins, but joins are so common that systems implement joins specially.)
- ✤ *Idea*: For *A*/*B*, compute all *x* values that are not `disqualified' by some *y* value in *B*.
 - *x* value is *disqualified* if by attaching *y* value from *B*, we obtain an *xy* tuple that is not in *A*.

Disqualified *x* values: $\pi_{\chi}((\pi_{\chi}(A) \times B) - A)$ *A/B:* $\pi_{\chi}(A)$ – all disqualified tuples

Find names of sailors who've reserved boat #103

* Solution 1:
$$\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie \text{ Sailors})$$

* Solution 2: ρ (*Temp*1, σ *bid*=103 Reserves)

 ρ (*Temp2*, *Temp1* \bowtie *Sailors*)

 π_{sname} (Temp2)

* Solution 3:
$$\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$$

Find names of sailors who've reserved a red boat

 Information about boat color only available in Boats; so need an extra join:

 $\pi_{sname}((\sigma_{color='red'}Boats) \bowtie Reserves \bowtie Sailors)$

A more efficient solution:

 $\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'}Boats) \bowtie \operatorname{Res}) \bowtie \operatorname{Sailors})$

A query optimizer can find this given the first solution!

Find sailors who've reserved a red or a green boat

Can identify all red or green boats, then find sailors who've reserved one of these boats:

 ρ (Tempboats, ($\sigma_{color='red' \lor color='green'}$ Boats))

 π_{sname} (Tempboats \bowtie Reserves \bowtie Sailors)

♦ Can also define Tempboats using union! (How?)
♦ What happens if \lor is replaced by \land in this query?

Find sailors who've reserved a red <u>and</u> a green boat

Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that sid is a key for Sailors):

$$\rho$$
 (Tempred, π_{sid} (($\sigma_{color = red}$, Boats) \bowtie Reserves))

 ρ (Tempgreen, π_{sid} (($\sigma_{color = green}$, Boats) \bowtie Reserves))

 $\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$

Find the names of sailors who've reserved all boats

 Uses division; schemas of the input relations to / must be carefully chosen:

> $\rho (Tempsids, (\pi_{sid, bid} \text{Reserves}) / (\pi_{bid} Boats))$ $\pi_{sname} (Tempsids \bowtie Sailors)$

* To find sailors who've reserved all 'Interlake' boats: $/\pi \int d\sigma \sin \theta = Interlake'$