Relational Algebra

Module 3, Lecture 1

Relational Query Languages

* Query languages: Allow manipulation and retrieval of data from a database.
* Relational model supports simple, powerful QLs:
- Strong formal foundation based on logic.
- Allows for much optimization.
* Query Languages != programming languages!
- QLs not expected to be "Turing complete".
- QLs not intended to be used for complex calculations.
- QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:

- Relational Algebra: More operational, very useful for representing execution plans.
(2) Relational Calculus: Lets users describe what they want, rather than how to compute it. (Non-operational, declarative.)
- Understanding Algebra \& Calculus is key to - understanding SQL, query processing!

Preliminaries

*. A query is applied to relation instances, and the result of a query is also a relation instance.

- Schemas of input relations for a query are fixed (but query will run regardless of instance!)
- The schema for the result of a given query is also fixed! Determined by definition of query language constructs.
* Positional vs. named-field notation:
- Positional notation easier for formal definitions, named-field notation more readable.
- Both used in SQL

Example Instances

$R 1$	$\underline{\text { sid }}$	$\underline{\text { bid }}$	$\underline{\text { day }}$
22	101	$10 / 10 / 96$	
58	103	$11 / 12 / 96$	

* "Sailors" and "Reserves" relations for our examples.
* We'll use positional or named field notation, assume that names of fields in query results are `inherited' from names of fields in query input relations.

$\boldsymbol{s 1}$| $\underline{\underline{s i d}}$ | sname | rating | age |
| :--- | :--- | :---: | :--- |
| 22 | dustin | 7 | 45.0 |
| 31 | lubber | 8 | 55.5 |
| 58 | rusty | 10 | 35.0 |

S2 | sid | sname | rating | age |
| :--- | :--- | :---: | :--- |
| 28 | yuppy | 9 | 35.0 |
| 31 | lubber | 8 | 55.5 |
| 44 | guppy | 5 | 35.0 |
| 58 | rusty | 10 | 35.0 |

Relational Algebra

* Basic operations:
- Selection (σ) Selects a subset of rows from relation.
- Projection (π) Deletes unwanted columns from relation.
- Cross-product (X) Allows us to combine two relations.
- Set-difference (-) Tuples in reln. 1, but not in reln. 2.
- Union (U) Tuples in reln. 1 and in reln. 2.
* Additional operations:
- Intersection, join, division, renaming: Not essential, but (very!) useful.
* Since each operation returns a relation, operations can be composed! (Algebra is "closed".)

Projection

* Deletes attributes that are not in projection list.
* Schema of result contains exactly the fields in the projection list, with the same names that they

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

* Projection operator has to eliminate duplicates! (Why??)
- Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it. (Why not?)
π
(S2)
age
35.0
55.5
$\pi_{a g e}{ }^{(S 2)}$

Selection

* Selects rows that satisfy selection condition.
* No duplicates in result! (Why?)
* Schema of result identical to schema of (only) input relation.
* Result relation can be the input for another relational algebra operation! (Operator composition.)

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

$$
\sigma_{\text {rating }>8}(S 2)
$$

sname	rating
yuppy	9
rusty	10

$\pi_{\text {sname, rating }}\left(\sigma_{\text {rating }>8}(S 2)\right)$

Union, Intersection, Set-Difference

* All of these operations take two input relations, which must be union-compatible:
- Same number of fields.
- `Corresponding' fields have the same type.

sid	sname	rating	age	
22	dustin	7	45.0	
31	lubber	8	55.5	
58	rusty	10	35.0	
44	guppy	5	35.0	
28	yuppy	9	35.0	
$S 1 \cup S 2$				

* What is the schema of result?

sid	sname	rating	age
22	dustin	7	45.0

$$
S 1-S 2
$$

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0
$S 1 \cap S 2$			

Cross-Product

* Each row of S1 is paired with each row of R1.
* Result schema has one field per field of S1 and R1, with field names `inherited' if possible.
- Conflict: Both S1 and R1 have a field called sid.

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	$10 / 10 / 96$
22	dustin	7	45.0	58	103	$11 / 12 / 96$
31	lubber	8	55.5	22	101	$10 / 10 / 96$
31	lubber	8	55.5	58	103	$11 / 12 / 96$
58	rusty	10	35.0	22	101	$10 / 10 / 96$
58	rusty	10	35.0	58	103	$11 / 12 / 96$

- Renaming operator: $\rho(C(1 \rightarrow \operatorname{sid} 1,5 \rightarrow \operatorname{sid} 2), S 1 \times R 1)$

Joins

* Condition Join: $\quad R \bowtie{ }_{c} S=\sigma_{c}(R \times S)$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	$11 / 12 / 96$
31	lubber	8	55.5	58	103	$11 / 12 / 96$

$S 1 \bowtie_{S 1 . s i d}<$ R1.sid $R 1$

* Result schema same as that of cross-product.
* Fewer tuples than cross-product, might be able to compute more efficiently
* Sometimes called a theta-join.

Joins

* Equi-Join: A special case of condition join where the condition c contains only equalities.

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	$10 / 10 / 96$
58	rusty	10	35.0	103	$11 / 12 / 96$

$S 1 \bowtie_{\text {sid }} R 1$

* Result schema similar to cross-product, but only one copy of fields for which equality is specified.
* Natural Join: Equijoin on all common fields.

Division

* Not supported as a primitive operator, but useful for expressing queries like:

Find sailors who have reserved all boats.

* Let A have 2 fields, x and $y ; B$ have only field y :
$-A / B=\{\langle x\rangle \mid \exists\langle x, y\rangle \in A \quad \forall\langle y\rangle \in B\}$
- i.e., A / B contains all x tuples (sailors) such that for every y tuple (boat) in B, there is an $x y$ tuple in A.
- Or: If the set of y values (boats) associated with an x value (sailor) in A contains all y values in B, the x value is in A / B.
* In general, x and y can be any lists of fields; y is the list of fields in B, and $x \cup y$ is the list of fields of A.

Examples of Division A / B

sno pno	pno	pno	pno
s1 p1	p2	p2	p1
s1 p2	B1	p4	p2
s1 p3		B2	p4
s1 p4			B3
s2 p1	sno		B3
s2 p2	s1		
s3 p2	s2	sno	
s4 p2	s3	s1	sno
s4 p4	s4	s4	s1
A	A/B1	A/B2	A/B3

Expressing A / B Using Basic Operators

* Division is not essential op; just a useful shorthand.
- (Also true of joins, but joins are so common that systems implement joins specially.)
* Idea: For A / B, compute all x values that are not `disqualified' by some y value in B.
$-x$ value is disqualified if by attaching y value from B, we obtain an $x y$ tuple that is not in A.

Disqualified x values: $\pi_{x}\left(\left(\pi_{x}(A) \times B\right)-A\right)$

$$
A / B: \quad \pi_{x}(A)-\text { all disqualified tuples }
$$

Find names of sailors who've reserved boat \#103

* Solution 1: $\quad \pi_{\text {sname }}\left(\left(\sigma_{\text {bid=103 }}\right.\right.$ Reserves $) \bowtie$ Sailors $)$
* Solution 2: $\quad \rho\left(\right.$ Temp1, $\sigma_{\text {bid }=103}$ Reserves)
ρ (Temp2, Temp1 \bowtie Sailors)
$\pi_{\text {sname }}($ Temp 2$)$
* Solution 3: $\quad \pi_{\text {sname }}\left(\sigma_{\text {bid=103 }}(\right.$ Reserves \bowtie Sailors $\left.)\right)$

Find names of sailors who've reserved a red boat

* Information about boat color only available in Boats; so need an extra join:
$\pi_{\text {sname }}\left(\left(\sigma_{\text {color }}=\right.\right.$ 'red ${ }^{\prime}$ Boats $) \bowtie$ Reserves \bowtie Sailors $)$
* A more efficient solution:

$$
\pi_{\text {sname }}\left(\pi_{\text {sid }}\left(\left(\pi_{\text {bid }} \sigma_{\text {color }}=\text { 'red }{ }^{\prime} \text { Boats }\right) \bowtie \operatorname{Res}\right) \bowtie \text { Sailors }\right)
$$

- A query optimizer can find this given the first solution!

Find sailors who've reserved a red or a green boat

* Can identify all red or green boats, then find sailors who've reserved one of these boats:

$$
\begin{aligned}
& \rho\left(\text { Tempboats, }\left(\sigma_{\text {color }}{ }^{\prime} \text { red' } \vee \text { color }=\text { ' } \text { green' }{ }^{\prime} \text { Boats }\right)\right) \\
& \pi_{\text {sname }}(\text { Tempboats } \bowtie \operatorname{Re} \text { serves } \bowtie \text { Sailors })
\end{aligned}
$$

* Can also define Tempboats using union! (How?)
*What happens if \vee is replaced by \wedge in this query?

Find sailors who've reserved a red and a green boat

* Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that sid is a key for Sailors):
ρ (Tempred, $\pi_{\text {sid }}\left(\left(\sigma_{\text {color }}=\right.\right.$ red ${ }^{\prime}$ Boats $) \bowtie$ Reserves $\left.)\right)$
$\rho\left(\right.$ Tempgreen, $\pi_{\text {sid }}\left(\left(\sigma_{\text {color }}=\right.\right.$ green' ${ }^{\prime}$ Boats $) \bowtie$ Reserves $\left.)\right)$
$\pi_{\text {sname }}(($ Tempred \cap Tempgreen $) \bowtie$ Sailors $)$

Find the names of sailors who've reserved all boats

* Uses division; schemas of the input relations to / must be carefully chosen:
$\rho\left(\right.$ Tempsids, $\left(\pi_{\text {sid,bid }}\right.$ Reserves $) /\left(\pi_{\text {bid }}\right.$ Boats $\left.)\right)$
$\pi_{\text {sname }}($ Tempsids \bowtie Sailors $)$
* To find sailors who've reserved all 'Interlake' boats:

$$
\ldots . . . \quad / \pi_{\text {bid }}\left(\sigma_{\text {bname }}=\text { Interlake }^{\prime} \text { Boats }\right)
$$

