
Selenium Documentation
Release 1.0

Selenium Project

February 24, 2010

CONTENTS

1 Note to the Reader 3

2 Introducing Selenium 5
2.1 To Automate or Not to Automate? That is the Question! 5
2.2 Test Automation for Web Applications . 5
2.3 Introducing Selenium . 6
2.4 Selenium Components . 6
2.5 Supported Browsers . 7
2.6 Flexibility and Extensibility . 7
2.7 About this Book . 8
2.8 The Documentation Team . 9

3 Selenium Basics 11
3.1 Getting Started – Choosing Your Selenium Tool . 11
3.2 Introducing Selenium Commands . 11
3.3 Test Suites . 13
3.4 Commonly Used Selenium Commands . 14
3.5 Summary . 14

4 Selenium-IDE 15
4.1 Introduction . 15
4.2 Installing the IDE . 15
4.3 Opening the IDE . 18
4.4 IDE Features . 18
4.5 Building Test Cases . 21
4.6 Running Test Cases . 24
4.7 Using Base URL to Run Test Cases in Different Domains 24
4.8 Debugging . 25
4.9 Writing a Test Suite . 27
4.10 User Extensions . 28
4.11 Format . 29
4.12 Executing Selenium-IDE Tests on Different Browsers 29
4.13 Troubleshooting . 29

5 Selenium Commands 35
5.1 Verifying Page Elements . 35
5.2 Locating Elements . 37
5.3 Matching Text Patterns . 42

i

5.4 The “AndWait” Commands . 44
5.5 The waitFor Commands in AJAX applications . 44
5.6 Sequence of Evaluation and Flow Control . 45
5.7 Store Commands and Selenium Variables . 45
5.8 JavaScript and Selenese Parameters . 46
5.9 echo - The Selenese Print Command . 47
5.10 Alerts, Popups, and Multiple Windows . 47

6 Selenium-RC 49
6.1 Introduction . 49
6.2 How Selenium-RC Works . 49
6.3 Installation . 51
6.4 From Selenese to a Program . 54
6.5 Programming Your Test . 57
6.6 Learning the API . 63
6.7 Reporting Results . 65
6.8 Adding Some Spice to Your Tests . 66
6.9 Server Options . 69
6.10 Specifying the Path to a Specific Browser . 73
6.11 Selenium-RC Architecture . 73
6.12 Handling HTTPS and Security Popups . 77
6.13 Supporting Additional Browsers and Browser Configurations 78
6.14 Troubleshooting Common Problems . 78

7 Test Design Considerations 85
7.1 Introducing Test Design . 85
7.2 What to Test? . 85
7.3 Verifying Results . 87
7.4 Choosing a Location Strategy . 88
7.5 Testing Ajax Applications . 91
7.6 UI Mapping . 91
7.7 Bitmap Comparison . 93
7.8 Handling Errors . 94

8 Selenium-Grid 97

9 User-Extensions 99
9.1 Introduction . 99
9.2 Actions . 99
9.3 Accessors/Assertions . 99
9.4 Locator Strategies . 100
9.5 Using User-Extensions With Selenium-IDE . 101
9.6 Using User-Extensions With Selenium RC . 101

10 Selenium 2.0 and WebDriver 105
10.1 What is WebDriver? . 105
10.2 When to Use WebDriver? . 106
10.3 The 5 Minute Getting Started Guide . 106
10.4 Next Steps For Using WebDriver . 108
10.5 WebDriver Implementations . 112
10.6 Emulating Selenium RC . 116
10.7 Tips and Tricks . 117

ii

10.8 How XPATH Works in WebDriver . 118
10.9 Getting and Using WebDriver . 118
10.10 Roadmap . 119
10.11 Further Resources . 120

11 .NET client driver configuration 121

12 Java Client Driver Configuration 125
12.1 Configuring Selenium-RC With Eclipse . 125
12.2 Configuring Selenium-RC With Intellij . 141

13 Python Client Driver Configuration 153

14 Locating Techniques 157
14.1 Useful XPATH patterns . 157
14.2 Starting to use CSS instead of XPATH . 157

iii

iv

Selenium Documentation, Release 1.0

Contents:

CONTENTS 1

Selenium Documentation, Release 1.0

2 CONTENTS

CHAPTER

ONE

NOTE TO THE READER

Hello, and welcome to Selenium! The Documentation Team would like to welcome you, and to thank
you for being interested in Selenium.

We have worked very, very hard on this document. Why? We absolutely believe this is the best tool
for web-application testing. We feel its extensibility and flexibility, along with its tight integration with
the browser, is unmatched by available proprietary tools. We are very excited to promote Selenium and,
hopefully, to expand its user community. In short, we really want to “get the word out” about Selenium.

We truly believe you will be similarly excited once you learn how Selenium approaches test automation.
It’s quite different from other tools. Whether you are brand-new to Selenium, or have been using it for
awhile, we believe this documentation will truly help to spread the knowledge around. Also, we have
aimed to write so that those completely new to test automation will be able to use this document as
a stepping stone. No doubt, experienced users and “newbies” will benefit from our Selenium User’s
Guide.

Please realize that this document is a work in progress. There are planned areas we haven’t written yet.
However, we have written the beginning chapters first so newcomers can get started more smoothly. We
have also already added some valuable information that more experienced users will appreciate. This
document will be a ‘live’ document on the SeleniumHQ website where frequent updates will occur as
we complete the additional planned documentation.

Thanks very much for reading.

– the Selenium Documentation Team

3

Selenium Documentation, Release 1.0

4 Chapter 1. Note to the Reader

CHAPTER

TWO

INTRODUCING SELENIUM

2.1 To Automate or Not to Automate? That is the Question!

Is automation always advantageous? When should one decide to automate test cases?

It is not always advantageous to automate test cases. There are times when manual testing may be more
appropriate. For instance, if the application’s user interface will change considerably in the near future,
then any automation would need to be rewritten. Also, sometimes there simply is not enough time to
build test automation. For the short term, manual testing may be more effective. If an application has
a very tight deadline, there is currently no test automation available, and it’s imperative that the testing
get done within that time frame, then manual testing is the best solution.

However, automation has specific advantages for improving the long-term efficiency of a software team’s
testing processes. Test automation supports:

• Frequent regression testing

• Rapid feedback to developers during the development process

• Virtually unlimited iterations of test case execution

• Customized reporting of application defects

• Support for Agile and eXtreme development methodologies

• Disciplined documentation of test cases

• Finding defects missed by manual testing

2.2 Test Automation for Web Applications

Many, perhaps most, software applications today are written as web-based applications to be run in an
Internet browser. The effectiveness of testing these applications varies widely among companies and
organizations. In an era of continuously improving software processes, such as eXtreme programming
(XP) and Agile, it can be argued that disciplined testing and quality assurance practices are still underde-
veloped in many organizations. Software testing is often conducted manually. At times, this is effective;
however there are alternatives to manual testing that many organizations are unaware of, or lack the
skills to perform. Utilizing these alternatives would in most cases greatly improve the efficiency of their
software development by adding efficiencies to their testing.

Test automation is often the answer. Test automation means using a tool to run repeatable tests against
the target application whenever necessary.

5

Selenium Documentation, Release 1.0

There are many advantages to test automation. Most are related to the repeatability of the tests and the
speed at which the tests can be executed. There are a number of commercial and open source tools
available for assisting with the development of test automation. Selenium is possibly the most widely-
used open source solution. This user’s guide will assist both new and experienced Selenium users in
learning effective techniques in building test automation for web applications.

This guide introduces Selenium, teaches its most widely used features, and provides useful advice in best
practices accumulated from the Selenium community. Many examples are provided. Also, technical
information on the internal structure of Selenium and recommended uses of Selenium are provided
as contributed by a consortium of experienced Selenium users. It is our hope that this guide will get
additional new users excited about using Selenium for test automation. We hope this guide will assist
in “getting the word out” that quality assurance and software testing have many options beyond what is
currently practiced. We hope this user’s guide and Selenium itself provide a valuable aid to boosting the
reader’s efficiency in his or her software testing processes.

2.3 Introducing Selenium

Selenium is a robust set of tools that supports rapid development of test automation for web-based ap-
plications. Selenium provides a rich set of testing functions specifically geared to the needs of testing of
a web application. These operations are highly flexible, allowing many options for locating UI elements
and comparing expected test results against actual application behavior.

One of Selenium’s key features is the support for executing one’s tests on multiple browser platforms.

2.4 Selenium Components

Selenium is composed of three major tools. Each one has a specific role in aiding the development of
web application test automation.

2.4.1 Selenium-IDE

Selenium-IDE is the Integrated Development Environment for building Selenium test cases. It operates
as a Firefox add-on and provides an easy-to-use interface for developing and running individual test
cases or entire test suites. Selenium-IDE has a recording feature, which will keep account of user
actions as they are performed and store them as a reusable script to play back. It also has a context menu
(right-click) integrated with the Firefox browser, which allows the user to pick from a list of assertions
and verifications for the selected location. Selenium-IDE also offers full editing of test cases for more
precision and control.

Although Selenium-IDE is a Firefox only add-on, tests created in it can also be run against other
browsers by using Selenium-RC and specifying the name of the test suite on the command line.

2.4.2 Selenium-RC (Remote Control)

Selenium-RC allows the test automation developer to use a programming language for maximum flex-
ibility and extensibility in developing test logic. For instance, if the application under test returns a
result set, and if the automated test program needs to run tests on each element in the result set, the
programming language’s iteration support can be used to iterate through the result set, calling Selenium
commands to run tests on each item.

6 Chapter 2. Introducing Selenium

Selenium Documentation, Release 1.0

Selenium-RC provides an API (Application Programming Interface) and library for each of its supported
languages: HTML, Java, C#, Perl, PHP, Python, and Ruby. This ability to use Selenium-RC with a high-
level programming language to develop test cases also allows the automated testing to be integrated with
a project’s automated build environment.

2.4.3 Selenium-Grid

Selenium-Grid allows the Selenium-RC solution to scale for large test suites or test suites that must
be run in multiple environments. With Selenium-Grid, multiple instances of Selenium-RC are running
on various operating system and browser configurations. Each of these when launching register with a
hub. When tests are sent to the hub they are then redirected to an available Selenium-RC, which will
launch the browser and run the test. This allows for running tests in parallel, with the entire test suite
theoretically taking only as long to run as the longest individual test.

2.5 Supported Browsers

Browser Selenium-IDE Selenium-RC Operating
Systems

Firefox 3 1.0 Beta-1 & 1.0 Beta-2: Record and
playback tests

Start browser, run
tests

Windows, Linux,
Mac

Firefox 2 1.0 Beta-1: Record and playback tests Start browser, run
tests

Windows, Linux,
Mac

IE 8 Under development Windows
IE 7 Test execution only via Selenium-RC* Start browser, run

tests
Windows

Safari 3 Test execution only via Selenium-RC Start browser, run
tests

Mac

Safari 2 Test execution only via Selenium-RC Start browser, run
tests

Mac

Opera 9 Test execution only via Selenium-RC Start browser, run
tests

Windows, Linux,
Mac

Opera 8 Test execution only via Selenium-RC Start browser, run
tests

Windows, Linux,
Mac

Google
Chrome

Test execution only via
Selenium-RC(Windows)

Start browser, run
tests

Windows

Others Test execution only via Selenium-RC Partial support
possible**

As applicable

* Tests developed on Firefox via Selenium-IDE can be executed on any other supported browser via a
simple Selenium-RC command line.

** Selenium-RC server can start any executable, but depending on browser security settings there may
be technical limitations that would limit certain features.

2.6 Flexibility and Extensibility

You’ll find that Selenium is highly flexible. There are multiple ways in which one can add functionality
to Selenium’s framework to customize test automation for one’s specific testing needs. This is, perhaps,
Selenium’s strongest characteristic when compared with proprietary test automation tools and other open
source solutions. Selenium-RC support for multiple programming and scripting languages allows the

2.5. Supported Browsers 7

Selenium Documentation, Release 1.0

test writer to build any logic they need into their automated testing and to use a preferred programming
or scripting language of one’s choice.

Selenium-IDE allows for the addition of user-defined “user-extensions” for creating additional com-
mands customized to the user’s needs. Also, it is possible to re-configure how the Selenium-IDE gener-
ates its Selenium-RC code. This allows users to customize the generated code to fit in with their own test
frameworks. Finally, Selenium is an Open Source project where code can be modified and enhancements
can be submitted for contribution.

2.7 About this Book

This reference documentation targets both new users of Selenium and those who have been using Sele-
nium and are seeking additional knowledge. It introduces the novice to Selenium test automation. We
do not assume the reader has experience in testing beyond the basics.

The experienced Selenium user will also find this reference valuable. It compiles in one place a set of
useful Selenium techniques and best practices by drawing from the knowledge of multiple experienced
Selenium QA professionals.

The remaining chapters of the reference present:

Selenium Basics Introduces Selenium by describing how to select the Selenium component most ap-
propriate for your testing tasks. Also provides a general description of Selenium commands and
syntax. This section allows you to get a general feel for how Selenium approaches test automation
and helps you decide where to begin.

Selenium-IDE Teaches how to build test cases using the Selenium Integrated Development Environ-
ment. This chapter also describes useful techniques for making your scripts more readable when
interpreting defects caught by your Selenium tests. We explain how your test script can be “ex-
ported” to the programming language of your choice. Finally, this section describes some config-
urations available for extending and customizing how the Selenium-IDE supports test case devel-
opment.

Selenium Commands Describes a subset of the most useful Selenium commands in detail. This chapter
shows what types of actions, verifications and assertions can be made against a web application.

Selenium-RC Explains how to develop an automated test program using the Selenium-RC API. Many
examples are presented in both a programming language and a scripting language. Also, the
installation and setup of Selenium-RC is covered here. The various modes, or configurations,
that Selenium-RC supports are described, along with their trade-offs and limitations. Architecture
diagrams are provided to help illustrate these points. A number of solutions to problems which
are often difficult for the new user are described in this chapter. This includes handling Security
Certificates, https requests, pop-ups, and the opening of new windows.

Test Design Considerations Presents many useful techniques for using Selenium efficiently. This in-
cludes scripting techniques and programming techniques for use with Selenium-RC. We cover
examples of source code showing how to report defects in the application under test. We also
cover techniques commonly asked about in the user group such as how to implement data-driven
tests (tests where one can vary the data between different test passes).

Selenium-Grid This chapter is not yet developed.

User extensions Presents all the information required for easily extending Selenium.

8 Chapter 2. Introducing Selenium

Selenium Documentation, Release 1.0

2.8 The Documentation Team

2.8.1 The Original Authors

• Dave Hunt

• Paul Grandjean

• Santiago Suarez Ordonez

• Tarun Kumar

The original authors who kickstarted this document are listed in alphabetical order. Each of us con-
tributed significantly by taking a leadership role in specific areas. Each chapter originally had a primary
author who kicked off the intial writing, but in the end, each of us made significant contributions to each
chapter throughout the project.

2.8.2 Current Authors

• Mary Ann May-Pumphrey

• Peter Newhook

In addition to the original team members who are still involved (May ‘09), Mary Ann, and Peter have
recently made major contributions. Their reviewing and editorial contributions proved invaluable. Mary
Ann is actively writing new subsections and has provided editorial assistance throughout the document.
Peter has provided assistance with restructuring our most difficult chapter and has provided valuable
advice on topics to include. Their enthusiasm and dedication has been incredibly helpful. We hope they
continue to be involved.

2.8.3 Acknowledgements

A huge special thanks goes to Patrick Lightbody. As an administrator of the SeleniumHQ website, his
support has been invaluable. Patrick has helped us understand the Selenium community–our audience.
He also set us up with everything we needed on the SeleniumHQ website for developing and releasing
this user’s guide. His enthusiasm and encouragement definitely helped drive this project. Also thanks
goes to Andras Hatvani for his advice on publishing solutions, and to Amit Kumar for participating in
our discussions and for assisting with reviewing the document.

And of course, we must recognize the Selenium Developers. They have truly designed an amazing tool.
Without the vision of the original designers, and the continued efforts of the current developers, we
would not have such a great tool to pass on to you, the reader.

2.8. The Documentation Team 9

Selenium Documentation, Release 1.0

10 Chapter 2. Introducing Selenium

CHAPTER

THREE

SELENIUM BASICS

3.1 Getting Started – Choosing Your Selenium Tool

Most people get started with Selenium-IDE. This is what we recommend. It’s an easy way to get familiar
with Selenium commands quickly. You can develop your first script in just a few minutes. Selenium-IDE
is also very easy to install. See the chapter on Selenium-IDE for specifics.

You may also run your scripts from the Selenium-IDE. It’s simple to use and is recommended for less-
technical users. The IDE allows developing and running tests without the need for programming skills
as required by Selenium-RC. The Selenium-IDE can serve as an excellent way to train junior-level
employees in test automation. Anyone who understands how to conduct manual testing of a website can
easily transition to using the Selenium-IDE for running and developing tests.

Some testing tasks are too complex though for the Selenium-IDE. When programming logic is required
Selenium-RC must be used. For example, any tests requiring iteration, such as testing each element of
a variable length list requires running the script from a programming language. Selenium-IDE does not
support iteration or condition statements.

Finally, Selenium-Core is another way of running tests. One can run test scripts from a web-browser us-
ing the HTML interface TestRunner.html. This is the original method for running Selenium commands.
It has limitations though; similar to Selenium-IDE, it does not support iteration.

Selenium-Core also cannot switch between http and https protocols. Since the development of Selenium-
IDE and Selenium-RC, more people are using these tools rather than Selenium-Core. At the time of
writing (April 09) it is still available and may be convenient for some. However, the Selenium commu-
nity is encouraging the use Selenium-IDE and RC and discouraging the use of Selenium-Core. Support
for Selenium-Core is becoming less available and it may even be deprecated in a future release.

3.2 Introducing Selenium Commands

3.2.1 Selenium Commands – Selenese

Selenium provides a rich set of commands for fully testing your web-app in virtually any way you
may imagine. The command set is often called selenese. These commands essentially create a testing
language.

In selenese, one can test the existence of UI elements based on their HTML tags, test for specific content,
test for broken links, input fields, selection list options, submitting forms, and table data among other
things. In addition Selenium commands support testing of window size, mouse position, alerts, Ajax
functionality, pop up windows, event handling, and many other web-application features. The Command
Reference (available at SeleniumHQ.org) lists all the available commands.

11

Selenium Documentation, Release 1.0

A command is what tells Selenium what to do. Selenium commands come in three “flavors”: Actions,
Accessors and Assertions.

• Actions are commands that generally manipulate the state of the application. They do things like
“click this link” and “select that option”. If an Action fails, or has an error, the execution of the
current test is stopped.

Many Actions can be called with the “AndWait” suffix, e.g. “clickAndWait”. This suffix tells
Selenium that the action will cause the browser to make a call to the server, and that Selenium
should wait for a new page to load.

• Accessors examine the state of the application and store the results in variables, e.g. “storeTitle”.
They are also used to automatically generate Assertions.

• Assertions are like Accessors, but they verify that the state of the application conforms to what
is expected. Examples include “make sure the page title is X” and “verify that this checkbox is
checked”.

All Selenium Assertions can be used in 3 modes: “assert”, “verify”, and ” waitFor”. For example,
you can “assertText”, “verifyText” and “waitForText”. When an “assert” fails, the test is aborted.
When a “verify” fails, the test will continue execution, logging the failure. This allows a single
“assert” to ensure that the application is on the correct page, followed by a bunch of “verify”
assertions to test form field values, labels, etc.

“waitFor” commands wait for some condition to become true (which can be useful for testing
Ajax applications). They will succeed immediately if the condition is already true. However, they
will fail and halt the test if the condition does not become true within the current timeout setting
(see the setTimeout action below).

3.2.2 Script Syntax

Selenium commands are simple, they consist of the command and two parameters. For example:

verifyText //div//a[2] Login

The parameters are not always required; it depends on the command. In some cases both are required,
in others one parameter is required, and in still others the command may take no parameters at all. Here
are a couple more examples:

goBackAndWait
verifyTextPresent Welcome to My Home Page
type id=phone (555) 666-7066
type id=address1 ${myVariableAddress}

The command reference describes the parameter requirements for each command.

Parameters vary, however they are typically

• a locator for identifying a UI element within a page.

• a text pattern for verifying or asserting expected page content

• a text pattern or a selenium variable for entering text in an input field or for selecting an option
from an option list.

Locators, text patterns, selenium variables, and the commands themselves are described in considerable
detail in the section on Selenium Commands.

12 Chapter 3. Selenium Basics

Selenium Documentation, Release 1.0

Selenium scripts that will be run from Selenium-IDE may be stored in an HTML text file format. This
consists of an HTML table with three columns. The first column identifies the Selenium command,
the second is a target, and the final column contains a value. The second and third columns may not
require values depending on the chosen Selenium command, but they should be present. Each table row
represents a new Selenium command. Here is an example of a test that opens a page, asserts the page
title and then verifies some content on the page:

<table>
<tr><td>open</td><td></td><td>/download/</td></tr>
<tr><td>assertTitle</td><td></td><td>Downloads</td></tr>
<tr><td>verifyText</td><td>//h2</td><td>Downloads</td></tr>

</table>

Rendered as a table in a browser this would look like the following:

open /download/
assertTitle Downloads
verifyText //h2 Downloads

The Selenese HTML syntax can be used to write and run tests without requiring knowledge of a pro-
gramming language. With a basic knowledge of selenese and Selenium-IDE you can quickly produce
and run testcases.

3.3 Test Suites

A test suite is a collection of tests. Often one will run all the tests in a test suite as one continuous
batch-job.

When using Selenium-IDE, test suites also can be defined using a simple HTML file. The syntax again
is simple. An HTML table defines a list of tests where each row defines the filesystem path to each test.
An example tells it all.

<html>
<head>
<title>Test Suite Function Tests - Priority 1</title>
</head>
<body>
<table>

<tr><td>Suite Of Tests</td></tr>
<tr><td>Login</td></tr>

<tr><td>Test Searching for Values</td></tr>

<tr><td>Test Save</td></tr>
</table>
</body>
</html>

A file similar to this would allow running the tests all at once, one after another, from the Selenium-IDE.

Test suites can also be maintained when using Selenium-RC. This is done via programming and can be
done a number of ways. Commonly Junit is used to maintain a test suite if one is using Selenium-RC
with Java. Additionally, if C# is the chosen language, Nunit could be employed. If using an interpreted
language like Python with Selenium-RC than some simple programming would be involved in setting
up a test suite. Since the whole reason for using Sel-RC is to make use of programming logic for your
testing this usually isn’t a problem.

3.3. Test Suites 13

Selenium Documentation, Release 1.0

3.4 Commonly Used Selenium Commands

To conclude our introduction of Selenium, we’ll show you a few typical Selenium commands. These
are probably the most commonly used commands for building test.

open opens a page using a URL.

click/clickAndWait performs a click operation, and optionally waits for a new page to load.

verifyTitle/assertTitle verifies an expected page title.

verifyTextPresent verifies expected text is somewhere on the page.

verifyElementPresent verifies an expected UI element, as defined by its HTML tag, is present on the
page.

verifyText verifies expected text and it’s corresponding HTML tag are present on the page.

verifyTable verifies a table’s expected contents.

waitForPageToLoad pauses execution until an expected new page loads. Called automatically when
clickAndWait is used.

waitForElementPresent pauses execution until an expected UI element, as defined by its HTML tag,
is present on the page.

3.5 Summary

Now that you’ve seen an introduction to Selenium, you’re ready to start writing your first scripts. We
recommend beginning with the Selenium IDE and its context-sensitive, right-click, menu. This will
allow you to get familiar with the most common Selenium commands quickly, and you can have a
simple script done in just a minute or two. Chapter 3 gets you started and then guides you through all
the features of the Selenium-IDE.

14 Chapter 3. Selenium Basics

CHAPTER

FOUR

SELENIUM-IDE

4.1 Introduction

The Selenium-IDE (Integrated Development Environment) is the tool you use to develop your Selenium
test cases. It’s an easy-to-use Firefox plug-in and is generally the most efficient way to develop test
cases. It also contains a context menu that allows you to first select a UI element from the browser’s
currently displayed page and then select from a list of Selenium commands with parameters pre-defined
according to the context of the selected UI element. This is not only a time-saver, but also an excellent
way of learning Selenium script syntax.

This chapter is all about the Selenium IDE and how to use it effectively.

4.2 Installing the IDE

Using Firefox, first, download the IDE from the SeleniumHQ downloads page

When downloading from Firefox, you’ll be presented with the following window.

15

http://seleniumhq.org/download/

Selenium Documentation, Release 1.0

Select Install Now. The Firefox Add-ons window pops up, first showing a progress bar, and when the
download is complete, displays the following.

16 Chapter 4. Selenium-IDE

Selenium Documentation, Release 1.0

Restart Firefox. After Firefox reboots you will find the Selnium-IDE listed under the Firefox Tools
menu.

4.2. Installing the IDE 17

Selenium Documentation, Release 1.0

4.3 Opening the IDE

To run the Selenium-IDE, simply select it from the Firefox Tools menu. It opens as follows with an
empty script-editing window and a menu for loading, or creating new test cases.

4.4 IDE Features

4.4.1 Menu Bar

The File menu allows you to create, open and save test case and test suite files. The Edit menu allows
copy, paste, delete, undo and select all operations for editing the commands in your test case. The

18 Chapter 4. Selenium-IDE

Selenium Documentation, Release 1.0

Options menu allows the changing of settings. You can set the timeout value for certain commands, add
user-defined user extensions to the base set of Selenium commands, and specify the format (language)
used when saving your test cases. The Help menu is the standard Firefox Help menu; only one item on
this menu–UI-Element Documentation–pertains to Selenium-IDE.

4.4.2 Toolbar

The toolbar contains buttons for controlling the execution of your test cases, including a step feature for
debugging your test cases. The right-most button, the one with the red-dot, is the record button.

Speed Control: controls how fast your test case runs.

Run All: Runs the entire test suite when a test suite with multiple test cases is loaded.

Run: Runs the currently selected test. When only a single test is loaded this button and the Run
All button have the same effect.

Pause/Resume: Allows stopping and re-starting of a running test case.

Step: Allows one to “step” through a test case by running it one command at a time. Use for
debugging test cases.

TestRunner Mode: Allows you to run the test case in a browser loaded with the Selenium-Core
TestRunner. The TestRunner is not commonly used now and is likely to be deprecated. This
button is for evaluating test cases for backwards compatibility with the TestRunner. Most users
will probably not need this button.

Apply Rollup Rules: This advanced feature allows repetitive sequences of Selenium commands
to be grouped into a single action. Detailed documentation on rollup rules can be found in the
UI-Element Documentation on the Help menu.

Record: Records the user’s browser actions.

4.4.3 Test Case Pane

Your script is displayed in the test case pane. It has two tabs, one for displaying the command and their
parameters in a readable “table” format.

4.4. IDE Features 19

Selenium Documentation, Release 1.0

The Source tab displays the test case in the native format in which the file will be stored. By default,
this is HTML although it can be changed to a programming language such as Java or C#, or a scripting
language like Python. See the Options menu for details. The Source view also allows one to edit the test
case in its raw form, including copy, cut and paste operations.

The Command, Target, and Value entry fields display the currently selected command along with its
parameters. These are entry fields where you can modify the currently selected command. The first
parameter specified for a command in the Reference tab of the bottom pane always goes in the Target
field. If a second parameter is specified by the Reference tab, it always goes in the Value field.

If you start typing in the Command field, a drop-down list will be populated based on the first characters
you type; you can then select your desired command from the drop-down.

4.4.4 Log/Reference/UI-Element/Rollup Pane

The bottom pane is used for four different functions–Log, Reference, UI-Element, and Rollup–
depending on which tab is selected.

Log

When you run your test case, error messages and information messages showing the progress are dis-
played in this pane automatically, even if you do not first select the Log tab. These messages are often
useful for test case debugging. Notice the Clear button for clearing the Log. Also notice the Info button
is a drop-down allowing selection of different levels of information to display.

20 Chapter 4. Selenium-IDE

Selenium Documentation, Release 1.0

Reference

The Reference tab is the default selection whenever you are entering or modifying Selenese commands
and parameters in Table mode. In Table mode, the Reference pane will display documentation on the
current command. When entering or modifying commands, whether from Table or Source mode, it is
critically important to ensure that the parameters specified in the Target and Value fields match those
specified in the parameter list specified in the Reference pane. The number of parameters provided must
match the number specified, the order of parameters provided must match the order specified, and the
type of parameters provided must match the type specified. If there is a mismatch in any of these three
areas, the command will not run correctly.

While the Reference tab is invaluable as a quick reference, it is still often necessary to consult the
Selenium Reference document.

UI-Element and Rollup

Detailed information on these two panes (which cover advanced features) can be found in the UI-
Element Documentation on the Help menu of Selenium-IDE.

4.5 Building Test Cases

There are three primary methods for developing test cases. Frequently, a test developer will require all
three techniques.

4.5.1 Recording

Many first-time users begin by recording a test case from their interactions with a website. When
Selenium-IDE is first opened, the record button is ON by default.

Note: This can be set to OFF as a default with an available user extension.

4.5. Building Test Cases 21

http://release.openqa.org/selenium-core/1.0/reference.html

Selenium Documentation, Release 1.0

During recording, Selenium-IDE will automatically insert commands into your test case based on your
actions. Typically, this will include:

• clicking a link - click or clickAndWait commands

• entering values - type command

• selecting options from a drop-down listbox - select command

• clicking checkboxes or radio buttons - click command

Here are some “gotchas” to be aware of:

• The type command may require clicking on some other area of the web page for it to record.

• Following a link usually records a click command. You will often need to change this to clickAnd-
Wait to ensure your test case pauses until the new page is completely loaded. Otherwise, your test
case will continue running commands before the page has loaded all its UI elements. This will
cause unexpected test case failures.

4.5.2 Adding Verifications and Asserts With the Context Menu

Your test cases will also need to check the properties of a web-page. This requires assert and verify
commands. We won’t describe the specifics of these commands here; that is in the chapter on “Selenese”
Selenium Commands. Here we’ll simply describe how to add them to your test case.

With Selenium-IDE recording, go to the browser displaying your test application and right click any-
where on the page. You will see a context menu showing verify and/or assert commands.

The first time you use Selenium, there may only be one Selenium command listed. As you use the IDE
however, you will find additional commands will quickly be added to this menu. Selenium-IDE will
attempt to predict what command, along with the parameters, you will need for a selected UI element
on the current web-page.

Let’s see how this works. Open a web-page of your choosing and select a block of text on the page. A
paragraph or a heading will work fine. Now, right-click the selected text. The context menu should give
you a verifyTextPresent command and the suggested parameter should be the text itself.

Also, notice the Show All Available Commands menu option. This shows many, many more commands,
again, along with suggested parameters, for testing your currently selected UI element.

Try a few more UI elements. Try right-clicking an image, or a user control like a button or a checkbox.
You may need to use Show All Available Commands to see options other than verifyTextPresent. Once
you select these other options, the more commonly used ones will show up on the primary context
menu. For example, selecting verifyElementPresent for an image should later cause that command to be
available on the primary context menu the next time you select an image and right-click.

Again, these commands will be explained in detail in the chapter on Selenium commands. For now
though, feel free to use the IDE to record and select commands into a test case and then run it. You can
learn a lot about the Selenium commands simply by experimenting though the IDE.

22 Chapter 4. Selenium-IDE

Selenium Documentation, Release 1.0

4.5.3 Editing

Insert Command

Table View

Select the point in your test case where you want to insert the command. Right-click and select Insert
Command. Now use the command editing text fields to enter your new command and its parameters.

Source View

Select the point in your test case where you want to insert the command, and enter the HTML tags
needed to create a 3-column row containing the Command, first parameter (if one is required by the
Command), and second parameter (again, if one is required). Be sure to save your test before switching
back to Table view.

Insert Comment

Comments may be added to make your test case more readable. These comments are ignored when the
test case is run.

In order to add vertical white space (one or more blank lines) in your tests, you must create empty
comments. An empty command will cause an error during execution.

Table View

Select the point in your test case where you want to insert the comment. Right-click and select Insert
Comment. Now use the Command field to enter the comment. Your comment will appear in purple font.

Source View

Select the point in your test case where you want to insert the comment. Add an HTML-style comment,
i.e., <!– your comment here –>.

Edit a Command or Comment

Table View

Simply select the line to be changed and edit it using the Command, Target, and Value fields.

Source View

Since Source view provides the equivalent of a WYSIWYG editor, simply modify which line you wish–
command, parameter, or comment.

4.5. Building Test Cases 23

Selenium Documentation, Release 1.0

4.5.4 Opening and Saving a Test Case

The File=>Open, Save and Save As menu commands behave similarly to opening and saving files in
most other programs. When you open an existing test case, Selenium-IDE displays its Selenium com-
mands in the test case pane.

Test suite files can also be opened and saved via the File menu. However, such operations have their
own menu entries near the bottom; the Open, Save, and Save As items are only for files.

Note: At the time of this writing, there’s a bug, where at times, when the IDE is first opened and then
you select File=>Open, nothing happens. If you see this, close down the IDE and restart it (you don’t
need to close the browser itself). This will fix the problem.

4.6 Running Test Cases

The IDE allows many options for running your test case. You can run a test case all at once, stop and
start it, run it one line at a time, run a single command you are currently developing, and you can do a
batch run of an entire test suite. Execution of test cases is very flexible in the IDE.

Run a Test Case Click the Run button to run the currently displayed test case.

Run a Test Suite Click the Run All button to run all the test cases in the currently loaded test suite.

Stop and Start The Pause button can be used to stop the test case while it is running. The icon of this
button then changes to indicate the Resume button. To continue click Resume.

Stop in the Middle You can set a breakpoint in the test case to cause it to stop on a particular command.
This is useful for debugging your test case. To set a breakpoint, select a command, right-click,
and from the context menu select Toggle Breakpoint.

Start from the Middle You can tell the IDE to begin running from a specific command in the middle
of the test case. This also is used for debugging. To set a startpoint, select a command, right-click,
and from the context menu select Set/Clear Start Point.

Run Any Single Command Double-click any single command to run it by itself. This is useful when
writing a single command. It lets you immediately test a command you are constructing, when
you are not sure if it is correct. You can double-click it to see if it runs correctly. This is also
available from the context menu.

4.7 Using Base URL to Run Test Cases in Different Domains

The Base URL field at the top of the Selenium-IDE window is very useful for allowing test cases to be
run across different domains. Suppose that a site named http://news.portal.com had an in-house beta
site named http://beta.news.portal.com. Any test cases for these sites that begin with an open statement
should specify a relative URL as the argument to open rather than an absolute URL (one starting with a
protocol such as http: or https:). Selenium-IDE will then create an absolute URL by appending the open
command’s argument onto the end of the value of Base URL. For example, the test case below would be
run against http://news.portal.com/about.html:

24 Chapter 4. Selenium-IDE

Selenium Documentation, Release 1.0

This same test case with a modified Base URL setting would be run against
http://beta.news.portal.com/about.html:

4.8 Debugging

Debugging means finding and fixing errors in your test case. This is a normal part of test case develop-
ment.

We won’t teach debugging here as most new users to Selenium will already have some basic experience
with debugging. If this is new to you, we recommend you ask one of the developers in your organization.

4.8.1 Breakpoints and Startpoints

The Sel-IDE supports the setting of breakpoints and the ability to start and stop the running of a test
case, from any point within the test case. That is, one can run up to a specific command in the middle
of the test case and inspect how the test case behaves at that point. To do this, set a breakpoint on the
command just before the one to be examined.

To set a breakpoint, select a command, right-click, and from the context menu select Toggle Breakpoint.
Then click the Run button to run your test case from the beginning up to the breakpoint.

It is also sometimes useful to run a test case from somewhere in the middle to the end of the test case or
up to a breakpoint that follows the starting point. For example, suppose your test case first logs into the
website and then performs a series of tests and you are trying to debug one of those tests. However, you
only need to login once, but you need to keep rerunning your tests as you are developing them. You can
login once, then run your test case from a startpoint placed after the login portion of your test case. That
will prevent you from having to manually logout each time you rerun your test case.

To set a startpoint, select a command, right-click, and from the context menu select Set/Clear Start Point.

4.8. Debugging 25

Selenium Documentation, Release 1.0

Then click the Run button to execute the test case beginning at that startpoint.

4.8.2 Stepping Through a Testcase

To execute a test case one command at a time (“step through” it), follow these steps:

1. Start the test case running with the Run button from the toolbar.

1. Immediately pause the executing test case with the Pause button.

1. Repeatedly select the Step button.

4.8.3 Find Button

The Find button is used to see which UI element on the currently displayed webpage (in the browser)
is used in the currently selected Selenium command. This is useful when building a locator for a com-
mand’s first parameter (see the section on locators in the Selenium Commands chapter). It can be used
with any command that must identify a UI element on a webpage, i.e. click, clickAndWait, type, and
certain assert and verify commands, among others.

From Table view, select any command that has a locator parameter. Click the Find button. Now look on
the webpage displayed in the Firefox browser. There should be a bright green rectangle enclosing the
element specified by the locator parameter.

4.8.4 Page Source for Debugging

Often, when debugging a test case, you simply must look at the page source (the HTML for the webpage
you’re trying to test) to determine a problem. Firefox makes this easy. Simply, right-click the webpage
and select Page Source. The HTML opens in a separate window. Use its Search feature (Edit=>Find) to
search for a keyword to find the HTML for the UI element you’re trying to test.

Alternatively, select just that portion of the webpage for which you want to see the source. Then right-
click the webpage and select View Selection Source. In this case, the separate HTML window will
contain just a small amount of source, with highlighting on the portion representing your selection.

4.8.5 Locator Assistance

Whenever Selenium-IDE records a locator-type argument, it stores additional information which allows
the user to view other possible locator-type arguments that could be used instead. This feature can be
very useful for learning more about locators, and is often needed to help one build a different type of
locator than the type that was recorded.

26 Chapter 4. Selenium-IDE

Selenium Documentation, Release 1.0

This locator assistance is presented on the Selenium-IDE window as a drop-down list accessible at the
right end of the Target field (only when the Target field contains a recorded locator-type argument).
Below is a snapshot showing the contents of this drop-down for one command. Note that the first
column of the drop-down provides alternative locators, whereas the second column indicates the type of
each alternative.

4.9 Writing a Test Suite

A test suite is a collection of test cases which is displayed in the leftmost pane in the IDE. The test suite
pane can be manually opened or closed via selecting a small dot halfway down the right edge of the pane
(which is the left edge of the entire Selenium-IDE window if the pane is closed).

The test suite pane will be automatically opened when an existing test suite is opened or when the user
selects the New Test Case item from the File menu. In the latter case, the new test case will appear
immediately below the previous test case.

Selenium-IDE does not yet support loading pre-existing test cases into a test suite. Users who want to
create or modify a test suite by adding pre-existing test cases must manually edit a test suite file.

A test suite file is an HTML file containing a one-column table. Each cell of each row in the <tbody>
section contains a link to a test case. The example below is of a test suite containing four test cases:

<html>
<head>

<meta http-equiv= "Content-Type" content= "text/html; charset=UTF-8" >
<title>Sample Selenium Test Suite</title>

</head>
<body>

<table cellpadding= "1" cellspacing= "1" border= "1" >
<thead>

<tr><td>Test Cases for De Anza A-Z Directory Links</td></tr>
</thead>

4.9. Writing a Test Suite 27

Selenium Documentation, Release 1.0

<tbody>
<tr><td>A Links</td></tr>

<tr><td>B Links</td></tr>

<tr><td>C Links</td></tr>

<tr><td>D Links</td></tr>
</tbody>
</table>

</body>
</html>

Note: Test case files should not have to be co-located with the test suite file that invokes them. And on
Mac OS and Linux systems, that is indeed the case. However, at the time of this writing, a bug prevents
Windows users from being able to place the test cases elsewhere than with the test suite that invokes
them.

4.10 User Extensions

User extensions are JavaScript files that allow one to create his or her own customizations and fea-
tures to add additional functionality. Often this is in the form of customized commands although this
extensibility is not limited to additional commands.

There are a number of useful extensions created by users.

Perhaps the most popular of all Selenium-IDE extensions is one which provides flow control in the form
of while loops and primitive conditionals. This extension is the goto_sel_ide.js. For an example of how
to use the functionality provided by this extension, look at the page created by its author.

To install this extension, put the pathname to its location on your computer in the Selenium Core
extensions field of Selenium-IDE’s Options=>Options=>General tab.

After selecting the OK button, you must close and reopen Selenium-IDE in order for the extensions file
to be read. Any change you make to an extension will also require you to close and reopen Selenium-
IDE.

Information on writing your own extensions can be found near the bottom of the Selenium Reference
document.

28 Chapter 4. Selenium-IDE

http://wiki.openqa.org/display/SEL/Contributed+User-Extensions
http://wiki.openqa.org/download/attachments/379/goto_sel_ide.js
http://51elliot.blogspot.com/2008/02/selenium-ide-goto.html
http://release.openqa.org/selenium-core/1.0/reference.html

Selenium Documentation, Release 1.0

4.11 Format

Format, under the Options menu, allows you to select a language for saving and displaying the test case.
The default is HTML.

If you will be using Selenium-RC to run your test cases, this feature is used to translate your test case
into a programming language. Select the language, i.e. Java, PHP, you will be using with Selenium-RC
for developing your test programs. Then simply save the test case using File=>Save. Your test case will
be translated into a series of functions in the language you choose. Essentially, program code supporting
your test is generated for you by Selenium-IDE.

Also, note that if the generated code does not suit your needs, you can alter it by editing a configuration
file which defines the generation process. Each supported language has configuration settings which are
editable. This is under the Options=>Options=>Format tab.

Note: At the time of this writing, this feature is not yet supported by the Selenium developers. However
the author has altered the C# format in a limited manner and it has worked well.

4.12 Executing Selenium-IDE Tests on Different Browsers

While Selenium-IDE can only run tests against Firefox, tests developed with Selenium-IDE can be run
against other browsers, using a simple command-line interface that invokes the Selenium-RC server.
This topic is covered in the Run Selenese tests section on Selenium-RC chapter. The -htmlSuite
command-line option is the particular feature of interest.

4.13 Troubleshooting

Below is a list of image/explanation pairs which describe frequent sources of problems with Selenium-
IDE:

4.11. Format 29

Selenium Documentation, Release 1.0

This problem occurs occasionally when Selenium IDE is first brought up. The solution is to close and
reopen Selenium IDE. The bug has been filed as SIDE-230.

30 Chapter 4. Selenium-IDE

http://jira.openqa.org/browse/SIDE-230

Selenium Documentation, Release 1.0

You’ve used File=>Open to try to open a test suite file. Use File=>Open Test Suite instead.

This type of error may indicate a timing problem, i.e., the element specified by a locator in your com-
mand wasn’t fully loaded when the command was executed. Try putting a pause 5000 before the com-
mand to determine whether the problem is indeed related to timing. If so, investigate using an appropriate
waitFor* or *AndWait command immediately before the failing command.

Whenever your attempt to use variable substitution fails as is the case for the open command above,
it indicates that you haven’t actually created the variable whose value you’re trying to access. This is
sometimes due to putting the variable in the Value field when it should be in the Target field or vice
versa. In the example above, the two parameters for the store command have been erroneously placed
in the reverse order of what is required. For any Selenese command, the first required parameter must
go in the Target field, and the second required parameter (if one exists) must go in the Value field.

4.13. Troubleshooting 31

Selenium Documentation, Release 1.0

One of the test cases in your test suite cannot be found. Make sure that the test case is indeed located
where the test suite indicates it is located. Also, make sure that your actual test case files have the .html
extension both in their filenames, and in the test suite file where they are referenced.

Selenium-IDE is very space-sensitive! An extra space before or after a command will cause it to be
unrecognizable.

Your extension file’s contents have not been read by Selenium-IDE. Be sure you have specified the proper
pathname to the extensions file via Options=>Options=>General in the Selenium Core extensions
field. Also, Selenium-IDE must be restarted after any change to either an extensions file or to the
contents of the Selenium Core extensions field.

32 Chapter 4. Selenium-IDE

Selenium Documentation, Release 1.0

This type of error message makes it appear that Selenium-IDE has generated a failure where there is
none. However, Selenium-IDE is correct that the actual value does not match the value specified in such
test cases. The problem is that the log file error messages collapse a series of two or more spaces into a
single space, which is confusing. In the example above, note that the parameter for verifyTitle has two
spaces between the words “System” and “Division.” The page’s actual title has only one space between
these words. Thus, Selenium-IDE is correct to generate an error.

4.13. Troubleshooting 33

Selenium Documentation, Release 1.0

34 Chapter 4. Selenium-IDE

CHAPTER

FIVE

SELENIUM COMMANDS

Selenium commands, often called selenese, are the set of commands that run your tests. A sequence of
these commands is a test script. Here we explain those commands in detail, and we present the many
choices you have in testing your web application when using Selenium.

5.1 Verifying Page Elements

Verifying UI elements on a web page is probably the most common feature of your automated tests.
Selenese allows multiple ways of checking for UI elements. It is important that you understand these
different methods because these methods define what you are actually testing.

For example, will you test that...

1. an element is present somewhere on the page?

2. specific text is somewhere on the page?

3. specific text is at a specific location on the page?

For example, if you are testing a text heading, the text and its position at the top of the page are probably
relevant for your test. If, however, you are testing for the existence of an image on the home page, and
the web designers frequently change the specific image file along with its position on the page, then you
only want to test that an image (as opposed to the specific image file) exists somewhere on the page.

5.1.1 Assertion or Verification?

Choosing between “assert” and “verify” comes down to convenience and management of failures.
There’s very little point checking that the first paragraph on the page is the correct one if your test
has already failed when checking that the browser is displaying the expected page. If you’re not on the
correct page, you’ll probably want to abort your test case so that you can investigate the cause and fix
the issue(s) promptly. On the other hand, you may want to check many attributes of a page without
aborting the test case on the first failure as this will allow you to review all failures on the page and take
the appropriate action. Effectively an “assert” will fail the test and abort the current test case, whereas a
“verify” will fail the test and continue to run the test case.

The best use of this feature is to logically group your test commands, and start each group with an
“assert” followed by one or more “verify” test commands. An example follows:

35

Selenium Documentation, Release 1.0

Command Target Value
open /download/
assertTitle Downloads
verifyText //h2 Downloads
assertTable 1.2.1 Selenium IDE
verifyTable 1.2.2 June 3, 2008
verifyTable 1.2.3 1.0 beta 2

The above example first opens a page and then “asserts” that the correct page is loaded by comparing
the title with the expected value. Only if this passes will the following command run and “verify” that
the text is present in the expected location. The test case then “asserts” the first column in the second
row of the first table contains the expected value, and only if this passed will the remaining cells in that
row be “verified”.

5.1.2 verifyTextPresent

The command verifyTextPresent is used to verify specific text exists somewhere on the page. It
takes a single argument–the text pattern to be verified. For example:

Command Target Value
verifyTextPresent Marketing Analysis

This would cause Selenium to search for, and verify, that the text string “Marketing Analysis” appears
somewhere on the page currently being tested. Use verifyTextPresent when you are interested
in only the text itself being present on the page. Do not use this when you also need to test where the
text occurs on the page.

5.1.3 verifyElementPresent

Use this command when you must test for the presence of a specific UI element, rather then its content.
This verification does not check the text, only the HTML tag. One common use is to check for the
presence of an image.

Command Target Value
verifyElementPresent //div/p/img

This command verifies that an image, specified by the existence of an HTML tag, is present on
the page, and that it follows a <div> tag and a <p> tag. The first (and only) parameter is a locator for
telling the Selenese command how to find the element. Locators are explained in the next section.

verifyElementPresent can be used to check the existence of any HTML tag within the page. You
can check the existence of links, paragraphs, divisions <div>, etc. Here are a few more examples.

Command Target Value
verifyElementPresent //div/p
verifyElementPresent //div/a
verifyElementPresent id=Login
verifyElementPresent link=Go to Marketing Research
verifyElementPresent //a[2]
verifyElementPresent //head/title

These examples illustrate the variety of ways a UI element may be tested. Again, locators are explained
in the next section.

36 Chapter 5. Selenium Commands

Selenium Documentation, Release 1.0

5.1.4 verifyText

Use verifyText when both the text and its UI element must be tested. verifyText must use a
locator. If you choose an XPath or DOM locator, you can verify that specific text appears at a specific
location on the page relative to other UI components on the page.

Command Target Value
verifyText //table/tr/td/div/p This is my text and it occurs right after the div inside the table.

5.2 Locating Elements

For many Selenium commands, a target is required. This target identifies an element in the content
of the web application, and consists of the location strategy followed by the location in the format
locatorType=location. The locator type can be omitted in many cases. The various locator
types are explained below with examples for each.

5.2.1 Default Locators

You can choose to omit the locator type in the following situations:

• Locators starting with “document” will use the DOM locator strategy. See Locating by DOM

• Locators starting with “//” will use the XPath locator strategy. See Locating by XPath.

• Locators that start with anything other than the above or a valid locator type will default to using
the identifier locator strategy. See Locating by Identifier.

5.2.2 Locating by Identifier

This is probably the most common method of locating elements and is the catch-all default when no
recognised locator type is used. With this strategy, the first element with the id attribute value matching
the location will be used. If no element has a matching id attribute, then the first element with a name
attribute matching the location will be used.

For instance, your page source could have id and name attributes as follows:

1 <html>
2 <body>
3 <form id= "loginForm" >

4 <input name= "username" type= "text" />

5 <input name= "password" type= "password" />

6 <input name= "continue" type= "submit" value= "Login" />
7 </form>
8 </body>
9 <html>

The following locator strategies would return the elements from the HTML snippet above indicated by
line number:

• identifier=loginForm (3)

• identifier=username (4)

5.2. Locating Elements 37

Selenium Documentation, Release 1.0

• identifier=continue (5)

• continue (5)

Since the identifier type of locator is the default, the identifier= in the first three examples
above is not necessary.

5.2.3 Locating by Id

This type of locator is more limited than the identifier locator type, but also more explicit. Use this when
you know an element’s id attribute.

1 <html>
2 <body>
3 <form id= "loginForm" >

4 <input name= "username" type= "text" />

5 <input name= "password" type= "password" />

6 <input name= "continue" type= "submit" value= "Login" />

7 <input name= "continue" type= "button" value= "Clear" />
8 </form>
9 </body>

10 <html>

• id=loginForm (3)

5.2.4 Locating by Name

The name locator type will locate the first element with a matching name attribute. If multiple elements
have the same value for a name attribute, then you can use filters to further refine your location strategy.
The default filter type is value (matching the value attribute).

1 <html>
2 <body>
3 <form id= "loginForm" >

4 <input name= "username" type= "text" />

5 <input name= "password" type= "password" />

6 <input name= "continue" type= "submit" value= "Login" />

7 <input name= "continue" type= "button" value= "Clear" />
8 </form>
9 </body>

10 <html>

• name=username (4)

• name=continue value=Clear (7)

• name=continue Clear (7)

• name=continue type=button (7)

38 Chapter 5. Selenium Commands

Selenium Documentation, Release 1.0

Note: Unlike some types of XPath and DOM locators, the three types of locators above allow Selenium
to test a UI element independent of its location on the page. So if the page structure and organization is
altered, the test will still pass. You may or may not want to also test whether the page structure changes.
In the case where web designers frequently alter the page, but its functionality must be regression tested,
testing via id and name attributes, or really via any HTML property, becomes very important.

5.2.5 Locating by XPath

XPath is the language used for locating nodes in an XML document. As HTML can be an implementa-
tion of XML (XHTML), Selenium users can leverage this powerful language to target elements in their
web applications. XPath extends beyond (as well as supporting) the simple methods of locating by id
or name attributes, and opens up all sorts of new possibilities such as locating the third checkbox on the
page.

One of the main reasons for using XPath is when you don’t have a suitable id or name attribute for
the element you wish to locate. You can use XPath to either locate the element in absolute terms (not
advised), or relative to an element that does have an id or name attribute. XPath locators can also be
used to specify elements via attributes other than id and name.

Absolute XPaths contain the location of all elements from the root (html) and as a result are likely to fail
with only the slightest adjustment to the application. By finding a nearby element with an id or name
attribute (ideally a parent element) you can locate your target element based on the relationship. This is
much less likely to change and can make your tests more robust.

Since only xpath locators start with “//”, it is not necessary to include the xpath= label when speci-
fying an XPath locator.

1 <html>
2 <body>
3 <form id= "loginForm" >

4 <input name= "username" type= "text" />

5 <input name= "password" type= "password" />

6 <input name= "continue" type= "submit" value= "Login" />

7 <input name= "continue" type= "button" value= "Clear" />
8 </form>
9 </body>

10 <html>

• xpath=/html/body/form[1] (3) - Absolute path (would break if the HTML was changed
only slightly)

• //form[1] (3) - First form element in the HTML

• xpath=//form[@id=’loginForm’] (3) - The form element with attribute named ‘id’ and
the value ‘loginForm’

• xpath=//form[input/\@name=’username’] (4) - First form element with an input
child element with attribute named ‘name’ and the value ‘username’

• //input[@name=’username’] (4) - First input element with attribute named ‘name’ and
the value ‘username’

• //form[@id=’loginForm’]/input[1] (4) - First input child element of the form element
with attribute named ‘id’ and the value ‘loginForm’

5.2. Locating Elements 39

Selenium Documentation, Release 1.0

• //input[@name=’continue’][@type=’button’] (7) - Input with attribute named
‘name’ and the value ‘continue’ and attribute named ‘type’ and the value ‘button’

• //form[@id=’loginForm’]/input[4] (7) - Fourth input child element of the form ele-
ment with attribute named ‘id’ and value ‘loginForm’

These examples cover some basics, but in order to learn more, the following references are recom-
mended:

• W3Schools XPath Tutorial

• W3C XPath Recommendation

• XPath Tutorial - with interactive examples.

There are also a couple of very useful Firefox Add-ons that can assist in discovering the XPath of an
element:

• XPath Checker - suggests XPath and can be used to test XPath results.

• Firebug - XPath suggestions are just one of the many powerful features of this very useful add-on.

5.2.6 Locating Hyperlinks by Link Text

This is a simple method of locating a hyperlink in your web page by using the text of the link. If two
links with the same text are present, then the first match will be used.

1 <html>
2 <body>
3 <p>Are you sure you want to do this?</p>
4 Continue

5 Cancel
6 </body>
7 <html>

• link=Continue (4)

• link=Cancel (5)

5.2.7 Locating by DOM

The Document Object Model represents an HTML document and can be accessed using JavaScript.
This location strategy takes JavaScript that evaluates to an element on the page, which can be simply the
element’s location using the hierarchical dotted notation.

Since only dom locators start with “document”, it is not necessary to include the dom= label when
specifying a DOM locator.

1 <html>
2 <body>
3 <form id= "loginForm" >

4 <input name= "username" type= "text" />

40 Chapter 5. Selenium Commands

http://www.w3schools.com/Xpath/
http://www.w3.org/TR/xpath
http://www.zvon.org/xxl/XPathTutorial/General/examples.html
https://addons.mozilla.org/en-US/firefox/addon/1095?id=1095
https://addons.mozilla.org/en-US/firefox/addon/1843

Selenium Documentation, Release 1.0

5 <input name= "password" type= "password" />

6 <input name= "continue" type= "submit" value= "Login" />

7 <input name= "continue" type= "button" value= "Clear" />
8 </form>
9 </body>

10 <html>

• dom=document.getElementById(’loginForm’) (3)

• dom=document.forms[’loginForm’] (3)

• dom=document.forms[0] (3)

• document.forms[0].username (4)

• document.forms[0].elements[’username’] (4)

• document.forms[0].elements[0] (4)

• document.forms[0].elements[3] (7)

You can use Selenium itself as well as other sites and extensions to explore the DOM of your web
application. A good reference exists on W3Schools.

5.2.8 Locating by CSS

CSS (Cascading Style Sheets) is a language for describing the rendering of HTML and XML documents.
CSS uses Selectors for binding style properties to elements in the document. These Selectors can be used
by Selenium as another locating strategy.

1 <html>
2 <body>
3 <form id= "loginForm" >

4 <input class= "required" name= "username" type= "text" />

5 <input class= "required passfield" name= "password" type= "password" />

6 <input name= "continue" type= "submit" value= "Login" />

7 <input name= "continue" type= "button" value= "Clear" />
8 </form>
9 </body>

10 <html>

• css=form#loginForm (3)

• css=input[name="username"] (4)

• css=input.required[type="text"] (4)

• css=input.passfield (5)

• css=#loginForm input[type="button"] (4)

• css=#loginForm input:nth-child(2) (5)

5.2. Locating Elements 41

http://www.w3schools.com/HTMLDOM/dom_reference.asp

Selenium Documentation, Release 1.0

For more information about CSS Selectors, the best place to go is the W3C publication. You’ll find
additional references there.

Note: Most experienced Selenium users recommend CSS as their locating strategy of choice as it’s con-
siderably faster than XPath and can find the most complicated objects in an intrinsic HTML document.

5.3 Matching Text Patterns

Like locators, patterns are a type of parameter frequently required by Selenese commands. Examples
of commands which require patterns are verifyTextPresent, verifyTitle, verifyAlert, assertConfir-
mation, verifyText, and verifyPrompt. And as has been mentioned above, link locators can utilize a
pattern. Patterns allow you to describe, via the use of special characters, what text is expected rather
than having to specify that text exactly.

There are three types of patterns: globbing, regular expressions, and exact.

5.3.1 Globbing Patterns

Most people are familiar with globbing as it is utilized in filename expansion at a DOS or Unix/Linux
command line such as ls *.c. In this case, globbing is used to display all the files ending with a .c
extension that exist in the current directory. Globbing is fairly limited. Only two special characters are
supported in the Selenium implementation:

* which translates to “match anything,” i.e., nothing, a single character, or many characters.

[] (character class) which translates to “match any single character found inside the square
brackets.” A dash (hyphen) can be used as a shorthand to specify a range of characters
(which are contiguous in the ASCII character set). A few examples will make the function-
ality of a character class clear:

[aeiou] matches any lowercase vowel

[0-9] matches any digit

[a-zA-Z0-9] matches any alphanumeric character

In most other contexts, globbing includes a third special character, the ?. However, Selenium globbing
patterns only support the asterisk and character class.

To specify a globbing pattern parameter for a Selenese command, you can prefix the pattern with a glob:
label. However, because globbing patterns are the default, you can also omit the label and specify just
the pattern itself.

Below is an example of two commands that use globbing patterns. The actual link text on the page
being tested was “Film/Television Department”; by using a pattern rather than the exact text, the click
command will work even if the link text is changed to “Film & Television Department” or “Film and
Television Department”. The glob pattern’s asterisk will match “anything or nothing” between the word
“Film” and the word “Television”.

Command Target Value
click link=glob:Film*Television Department
verifyTitle glob:*Film*Television*

The actual title of the page reached by clicking on the link was “De Anza Film And Television Depart-
ment - Menu”. By using a pattern rather than the exact text, the verifyTitle will pass as long as

42 Chapter 5. Selenium Commands

http://www.w3.org/TR/css3-selectors/

Selenium Documentation, Release 1.0

the two words “Film” and “Television” appear (in that order) anywhere in the page’s title. For example,
if the page’s owner should shorten the title to just “Film & Television Department,” the test would still
pass. Using a pattern for both a link and a simple test that the link worked (such as the verifyTitle
above does) can greatly reduce the maintenance for such test cases.

5.3.2 Regular Expression Patterns

Regular expression patterns are the most powerful of the three types of patterns that Selenese supports.
Regular expressions are also supported by most high-level programming languages, many text editors,
and a host of tools, including the Linux/Unix command-line utilities grep, sed, and awk. In Selenese,
regular expression patterns allow a user to perform many tasks that would be very difficult otherwise.
For example, suppose your test needed to ensure that a particular table cell contained nothing but a
number. regexp: [0-9]+ is a simple pattern that will match a decimal number of any length.

Whereas Selenese globbing patterns support only the * and [] (character class) features, Selenese regular
expression patterns offer the same wide array of special characters that exist in JavaScript. Below are a
subset of those special characters:

PATTERN MATCH
. any single character
[] character class: any single character that appears inside the brackets
* quantifier: 0 or more of the preceding character (or group)
+ quantifier: 1 or more of the preceding character (or group)
? quantifier: 0 or 1 of the preceding character (or group)
{1,5} quantifier: 1 through 5 of the preceding character (or group)
| alternation: the character/group on the left or the character/group on the right
() grouping: often used with alternation and/or quantifier

Regular expression patterns in Selenese need to be prefixed with either regexp: or regexpi:. The
former is case-sensitive; the latter is case-insensitive.

A few examples will help clarify how regular expression patterns can be used with Selenese commands.
The first one uses what is probably the most commonly used regular expression pattern–.* (“dot star”).
This two-character sequence can be translated as “0 or more occurrences of any character” or more
simply, “anything or nothing.” It is the equivalent of the one-character globbing pattern * (a single
asterisk).

Command Target Value
click link=regexp:Film.*Television Department
verifyTitle regexp:.*Film.*Television.*

The example above is functionally equivalent to the earlier example that used globbing patterns for this
same test. The only differences are the prefix (regexp: instead of glob:) and the “anything or nothing”
pattern (.* instead of just *).

The more complex example below tests that the Yahoo! Weather page for Anchorage, Alaska contains
info on the sunrise time:

Command Target Value
open http://weather.yahoo.com/forecast/USAK0012.html
verifyTextPresent regexp:Sunrise: *[0-9]{1,2}:[0-9]{2} [ap]m

Let’s examine the regular expression above one part at a time:

5.3. Matching Text Patterns 43

http://weather.yahoo.com/forecast/USAK0012.html

Selenium Documentation, Release 1.0

Sunrise: * The string Sunrise: followed by 0 or more spaces
[0-9]{1,2} 1 or 2 digits (for the hour of the day)
: The character : (no special characters involved)
[0-9]{2} 2 digits (for the minutes) followed by a space
[ap]m “a” or “p” followed by “m” (am or pm)

5.3.3 Exact Patterns

The exact type of Selenium pattern is of marginal usefulness. It uses no special characters at all. So,
if you needed to look for an actual asterisk character (which is special for both globbing and regular
expression patterns), the exact pattern would be one way to do that. For example, if you wanted to
select an item labeled “Real *” from a dropdown, the following code might work or it might not. The
asterisk in the glob:Real * pattern will match anything or nothing. So, if there was an earlier select
option labeled “Real Numbers,” it would be the option selected rather than the “Real *” option.

select //select glob:Real *

In order to ensure that the “Real *” item would be selected, the exact: prefix could be used to create
an exact pattern as shown below:

select //select exact:Real *

But the same effect could be achieved via escaping the asterisk in a regular expression pattern:

select //select regexp:Real *

It’s rather unlikely that most testers will ever need to look for an asterisk or a set of square brackets with
characters inside them (the character class for globbing patterns). Thus, globbing patterns and regular
expression patterns are sufficient for the vast majority of us.

5.4 The “AndWait” Commands

The difference between a command and its AndWait alternative is that the regular command (e.g. click)
will do the action and continue with the following command as fast as it can, while the AndWait alterna-
tive (e.g. clickAndWait) tells Selenium to wait for the page to load after the action has been done.

The AndWait alternative is always used when the action causes the browser to navigate to another page
or reload the present one.

Be aware, if you use an AndWait command for an action that does not trigger a navigation/refresh,
your test will fail. This happens because Selenium will reach the AndWait‘s timeout without seeing any
navigation or refresh being made, causing Selenium to raise a timeout exception.

5.5 The waitFor Commands in AJAX applications

In AJAX driven web applications, data is retrieved from server without refreshing the page. Using
andWait commands will not work as the page is not actually refreshed. Pausing the test execution for
a certain period of time is also not a good approach as web element might appear later or earlier than
the stipulated period depending on the system’s responsiveness, load or other uncontrolled factors of
the moment, leading to test failures. The best approach would be to wait for the needed element in a
dynamic period and then continue the execution as soon as the element is found.

This is done using waitFor commands, as waitForElementPresent or waitForVisible, which wait dynam-
ically, checking for the desired condition every second and continuing to the next command in the script

44 Chapter 5. Selenium Commands

Selenium Documentation, Release 1.0

as soon as the condition is met.

5.6 Sequence of Evaluation and Flow Control

When a script runs, it simply runs in sequence, one command after another.

Selenese, by itself, does not support condition statements (if-else, etc.) or iteration (for, while, etc.).
Many useful tests can be conducted without flow control. However, for a functional test of dynamic
content, possibly involving multiple pages, programming logic is often needed.

When flow control is needed, there are three options:

1. Run the script using Selenium-RC and a client library such as Java or PHP to utilize the program-
ming language’s flow control features.

2. Run a small JavaScript snippet from within the script using the storeEval command.

3. Install the goto_sel_ide.js extension.

Most testers will export the test script into a programming language file that uses the Selenium-RC
API (see the Selenium-IDE chapter). However, some organizations prefer to run their scripts from
Selenium-IDE whenever possible (such as when they have many junior-level people running tests for
them, or when programming skills are lacking). If this is your case, consider a JavaScript snippet or the
goto_sel_ide.js extension.

5.7 Store Commands and Selenium Variables

You can use Selenium variables to store constants at the beginning of a script. Also, when combined
with a data-driven test design (discussed in a later section), Selenium variables can be used to store
values passed to your test program from the command-line, from another program, or from a file.

The plain store command is the most basic of the many store commands and can be used to simply
store a constant value in a selenium variable. It takes two parameters, the text value to be stored and a
selenium variable. Use the standard variable naming conventions of only alphanumeric characters when
choosing a name for your variable.

Command Target Value
store paul@mysite.org userName

Later in your script, you’ll want to use the stored value of your variable. To access the value of a variable,
enclose the variable in curly brackets ({}) and precede it with a dollar sign like this.

Command Target Value
verifyText //div/p ${userName}

A common use of variables is for storing input for an input field.

Command Target Value
type id=login ${userName}

Selenium variables can be used in either the first or second parameter and are interpreted by Selenium
prior to any other operations performed by the command. A Selenium variable may also be used within
a locator expression.

An equivalent store command exists for each verify and assert command. Here are a couple more
commonly used store commands.

5.6. Sequence of Evaluation and Flow Control 45

http://51elliot.blogspot.com/2008/02/selenium-ide-goto.html
mailto:paul@mysite.org

Selenium Documentation, Release 1.0

5.7.1 storeElementPresent

This corresponds to verifyElementPresent. It simply stores a boolean value–“true” or “false”–depending
on whether the UI element is found.

5.7.2 storeText

StoreText corresponds to verifyText. It uses a locater to identify specific page text. The text, if found, is
stored in the variable. StoreText can be used to extract text from the page being tested.

5.7.3 storeEval

This command takes a script as its first parameter. Embedding JavaScript within Selenese is covered in
the next section. StoreEval allows the test to store the result of running the script in a variable.

5.8 JavaScript and Selenese Parameters

JavaScript can be used with two types of Selenese parameters–script and non-script (usually ex-
pressions). In most cases, you’ll want to access and/or manipulate a test case variable inside the
JavaScript snippet used as a Selenese parameter. All variables created in your test case are stored in
a JavaScript associative array. An associative array has string indexes rather than sequential numeric
indexes. The associative array containing your test case’s variables is named storedVars. Whenever
you wish to access or manipulate a variable within a JavaScript snippet, you must refer to it as stored-
Vars[’yourVariableName’].

5.8.1 JavaScript Usage with Script Parameters

Several Selenese commands specify a script parameter including assertEval, verifyEval, storeEval,
and waitForEval. These parameters require no special syntax. A Selenium-IDE user would simply
place a snippet of JavaScript code into the appropriate field, normally the Target field (because a script
parameter is normally the first or only parameter).

The example below illustrates how a JavaScript snippet can be used to perform a simple numerical
calculation:

Command Target Value
store 10 hits
storeXpathCount //blockquote blockquotes
storeEval storedVars[’hits’]-storedVars[’blockquotes’] paragraphs

This next example illustrates how a JavaScript snippet can include calls to methods, in this case the
JavaScript String object’s toUpperCase method and toLowerCase method.

Command Target Value
store Edith Wharton name
storeEval storedVars[’name’].toUpperCase() uc
storeEval storedVars[’name’].toLowerCase() lc

46 Chapter 5. Selenium Commands

Selenium Documentation, Release 1.0

5.8.2 JavaScript Usage with Non-Script Parameters

JavaScript can also be used to help generate values for parameters, even when the parameter is not
specified to be of type script. However, in this case, special syntax is required–the JavaScript snippet
must be enclosed inside curly braces and preceded by the label javascript, as in javascript
{*yourCodeHere*}. Below is an example in which the type command’s second parameter value
is generated via JavaScript code using this special syntax:

Command Target Value
store league of nations searchString
type q javascript{storedVars[’searchString’].toUpperCase()}

5.9 echo - The Selenese Print Command

Selenese has a simple command that allows you to print text to your test’s output. This is useful for
providing informational progress notes in your test which display on the console as your test is running.
These notes also can be used to provide context within your test result reports, which can be useful for
finding where a defect exists on a page in the event your test finds a problem. Finally, echo statements
can be used to print the contents of Selenium variables.

Command Target Value
echo Testing page footer now.
echo Username is ${userName}

5.10 Alerts, Popups, and Multiple Windows

This section is not yet developed.

5.9. echo - The Selenese Print Command 47

Selenium Documentation, Release 1.0

48 Chapter 5. Selenium Commands

CHAPTER

SIX

SELENIUM-RC

6.1 Introduction

Selenium-RC is the solution for tests that need more than simple browser actions and linear execution.
Selenium-RC uses the full power of programming languages to create more complex tests like reading
and writing files, querying a database, emailing test results.

You’ll want to use Selenium-RC whenever your test requires logic not supported by Selenium-IDE.
What logic could this be? For example, Selenium-IDE does not directly support:

• condition statements

• iteration

• logging and reporting of test results

• error handling, particularly unexpected errors

• database testing

• test case grouping

• re-execution of failed tests

• test case dependency

• screenshot capture of test failures

Although these tasks are not supported by Selenium directly, all of them can be achieved by using
programming techniques with a language-specific Selenium-RC client library.

In the Adding Some Spice to Your Tests section, you’ll find examples that demonstrate the advantages
of using a programming language for your tests.

6.2 How Selenium-RC Works

First, we will describe how the components of Selenium-RC operate and the role each plays in running
your test scripts.

49

Selenium Documentation, Release 1.0

6.2.1 RC Components

Selenium-RC components are:

• The Selenium Server which launches and kills browsers, interprets and runs the Selenese com-
mands passed from the test program, and acts as an HTTP proxy, intercepting and verifying HTTP
messages passed between the browser and the AUT.

• Client libraries which provide the interface between each programming language and the
Selenium-RC Server.

Here is a simplified architecture diagram....

The diagram shows the client libraries communicate with the Server passing each Selenium command
for execution. Then the server passes the Selenium command to the browser using Selenium-Core
JavaScript commands. The browser, using its JavaScript interpreter, executes the Selenium command.
This runs the Selenese action or verification you specified in your test script.

50 Chapter 6. Selenium-RC

Selenium Documentation, Release 1.0

6.2.2 Selenium Server

Selenium Server receives Selenium commands from your test program, interprets them, and reports back
to your program the results of running those tests.

The RC server bundles Selenium Core and automatically injects it into the browser. This occurs when
your test program opens the browser (using a client library API function). Selenium-Core is a JavaScript
program, actually a set of JavaScript functions which interprets and executes Selenese commands using
the browser’s built-in JavaScript interpreter.

The Server receives the Selenese commands from your test program using simple HTTP GET/POST
requests. This means you can use any programming language that can send HTTP requests to automate
Selenium tests on the browser.

6.2.3 Client Libraries

The client libraries provide the programming support that allows you to run Selenium commands from a
program of your own design. There is a different client library for each supported language. A Selenium
client library provides a programming interface (API), i.e., a set of functions, which run Selenium com-
mands from your own program. Within each interface, there is a programming function that supports
each Selenese command.

The client library takes a Selenese command and passes it to the Selenium Server for processing a
specific action or test against the application under test (AUT). The client library also receives the result
of that command and passes it back to your program. Your program can receive the result and store it
into a program variable and reporting it as a success or failure, or possibly taking corrective action if it
was an unexpected error.

So to create a test program, you simply write a program that runs a set of Selenium commands using a
client library API. And, optionally, if you already have a Selenese test script created in the Selenium-
IDE, you can generate the Selenium-RC code. The Selenium-IDE can translate (using its Export menu
item) its Selenium commands into a client-driver’s API function calls. See the Selenium-IDE chapter
for specifics on exporting RC code from Selenium-IDE.

6.3 Installation

After downloading the Selenium-RC zip file from the downloads page, you’ll notice it has several sub-
folders. These folders have all the components you need for using Selenium-RC with the programming
language of your choice.

Once you’ve chosen a language to work with, you simply need to:

• Install the Selenium-RC Server.

• Set up a programming project using a language specific client driver.

6.3.1 Installing Selenium Server

The Selenium-RC server is simply a Java jar file (selenium-server.jar), which doesn’t require any special
installation. Just downloading the zip file and extracting the server in the desired directory is sufficient.

6.3. Installation 51

http://seleniumhq.org/download/

Selenium Documentation, Release 1.0

6.3.2 Running Selenium Server

Before starting any tests you must start the server. Go to the directory where Selenium-RC’s server is
located and run the following from a command-line console.

java -jar selenium-server.jar

This can be simplified by creating a batch or shell executable file (.bat on Windows and .sh on Linux)
containing the command above. Then make a shortcut to that executable on your desktop and simply
double-click the icon to start the server.

For the server to run you’ll need Java installed and the PATH environment variable correctly configured
to run it from the console. You can check that you have Java correctly installed by running the following
on a console:

java -version

If you get a version number (which needs to be 1.5 or later), you’re ready to start using Selenium-RC.

6.3.3 Using the Java Client Driver

• Download Selenium-RC from the SeleniumHQ downloads page.

• Extract the file selenium-java-client-driver.jar.

• Open your desired Java IDE (Eclipse, NetBeans, IntelliJ, Netweaver, etc.)

• Create a new project.

• Add the selenium-java-client-driver.jar files to your project as references.

• Add to your project classpath the file selenium-java-client-driver.jar.

• From Selenium-IDE, export a script to a Java file and include it in your Java. project, or write
your Selenium test in Java using the selenium-java-client API. The API is presented later in this
chapter. You can either use JUnit, or TestNg to run your test, or you can write your own simple
main() program. These concepts are explained later in this section.

• Run Selenium server from the console.

• Execute your test from the Java IDE or from the command-line.

For details on Java test project configuration, see the Appendix sections Configuring Selenium-RC With
Eclipse and Configuring Selenium-RC With Intellij.

6.3.4 Using the Python Client Driver

• Download Selenium-RC from the SeleniumHQ downloads page

• Extract the file selenium.py

• Either write your Selenium test in Python or export a script from Selenium-IDE to a python file.

• Add to your test’s path the file selenium.py

52 Chapter 6. Selenium-RC

http://seleniumhq.org/download/
http://seleniumhq.org/download/

Selenium Documentation, Release 1.0

• Run Selenium server from the console

• Execute your test from a console or your Python IDE

For details on Python client driver configuration, see the appendix Python Client Driver Configuration.

6.3.5 Using the .NET Client Driver

• Download Selenium-RC from the SeleniumHQ downloads page

• Extract the folder

• Download and install NUnit (Note: You can use NUnit as your test engine. If you’re not familiar
yet with NUnit, you can also write a simple main() function to run your tests; however NUnit is
very useful as a test engine.)

• Open your desired .Net IDE (Visual Studio, SharpDevelop, MonoDevelop)

• Create a class library (.dll)

• Add references to the following DLLs: nmock.dll, nunit.core.dll, nunit. framework.dll,
ThoughtWorks.Selenium.Core.dll, ThoughtWorks.Selenium. IntegrationTests.dll and Thought-
Works.Selenium.UnitTests.dll

• Write your Selenium test in a .Net language (C#, VB.Net), or export a script from Selenium-IDE
to a C# file and copy this code into the class file you just created.

• Write your own simple main() program or you can include NUnit in your project for running your
test. These concepts are explained later in this chapter.

• Run Selenium server from console

• Run your test either from the IDE, from the NUnit GUI or from the command line

For specific details on .NET client driver configuration with Visual Studio, see the appendix .NET client
driver configuration.

6.3.6 Using the Ruby Client Driver

• If you do not already have RubyGems, install it from RubyForge

• Run gem install selenium-client

• At the top of your test script, add require "selenium/client"

• Write your test script using any Ruby test harness (eg Test::Unit, Mini::Test or RSpec).

• Run Selenium-RC server from the console.

• Execute your test in the same way you would run any other Ruby script.

For details on Ruby client driver configuration, see the Selenium-Client documentation

6.3. Installation 53

http://seleniumhq.org/download/
http://www.nunit.org/index.php?p=download
http://docs.rubygems.org/read/chapter/3
http://selenium-client.rubyforge.org/

Selenium Documentation, Release 1.0

6.4 From Selenese to a Program

The primary task for using Selenium-RC is to convert your Selenese into a programming language. In
this section, we provide several different language-specific examples.

6.4.1 Sample Test Script

Let’s start with an example Selenese test script. Imagine recording the following test with Selenium-

IDE.

open /
type q selenium rc
clickAndWait btnG
assertTextPresent Results * for selenium rc

Note: This example would work with the Google search page http://www.google.com

6.4.2 Selenese as Programming Code

Here is the test script exported (via Selenium-IDE) to each of the supported programming languages. If
you have at least basic knowledge of an object- oriented programming language, you will understand
how Selenium runs Selenese commands by reading one of these examples. To see an example in a
specific language, select one of these buttons.

In C#:

using System;
using System.Text;
using System.Text.RegularExpressions;
using System.Threading;
using NUnit.Framework;
using Selenium;

namespace SeleniumTests
{

[TestFixture]
public class NewTest
{

private ISelenium selenium;
private StringBuilder verificationErrors;

[SetUp]
public void SetupTest()
{

selenium = new DefaultSelenium("localhost" , 4444, "*firefox" , "http://www.google.com/");
selenium.Start();
verificationErrors = new StringBuilder();

}

[TearDown]
public void TeardownTest()
{

try
{

selenium.Stop();
}
catch (Exception)

54 Chapter 6. Selenium-RC

http://www.google.com

Selenium Documentation, Release 1.0

{
// Ignore errors if unable to close the browser

}
Assert.AreEqual("" , verificationErrors.ToString());

}

[Test]
public void TheNewTest()
{

selenium.Open("/");

selenium.Type("q" , "selenium rc");

selenium.Click("btnG");

selenium.WaitForPageToLoad("30000");

Assert.IsTrue(selenium.IsTextPresent("Results * for selenium rc"));
}

}
}

In Java:

package com.example.tests;

import com.thoughtworks.selenium.*;
import java.util.regex.Pattern;

public class NewTest extends SeleneseTestCase {
public void setUp() throws Exception {

setUp("http://www.google.com/" , "*firefox");
}

public void testNew() throws Exception {
selenium.open("/");

selenium.type("q" , "selenium rc");

selenium.click("btnG");

selenium.waitForPageToLoad("30000");

assertTrue(selenium.isTextPresent("Results * for selenium rc"));
}

}

In Perl:

use strict;
use warnings;
use Time::HiRes qw(sleep) ;
use Test::WWW::Selenium;
use Test::More "no_plan" ;
use Test::Exception;

my $sel = Test::WWW::Selenium->new(host => "localhost" ,
port => 4444,
browser => "*firefox" ,

browser_url => "http://www.google.com/");

$sel->open_ok("/");

$sel->type_ok("q" , "selenium rc");

6.4. From Selenese to a Program 55

Selenium Documentation, Release 1.0

$sel->click_ok("btnG");

$sel->wait_for_page_to_load_ok("30000");

$sel->is_text_present_ok("Results * for selenium rc");

In PHP:

<?php

require_once ’PHPUnit/Extensions/SeleniumTestCase.php’ ;

class Example extends PHPUnit_Extensions_SeleniumTestCase
{

function setUp()
{

$this->setBrowser(" *firefox ");

$this->setBrowserUrl(" http://www.google.com/ ");
}

function testMyTestCase()
{

$this->open(" / ");

$this->type(" q " , " selenium rc ");

$this->click(" btnG ");

$this->waitForPageToLoad(" 30000 ");

$this->assertTrue($this->isTextPresent(" Results * for selenium rc "));
}

}
?>

in Python:

from selenium import selenium
import unittest, time, re

class NewTest(unittest.TestCase):
def setUp(self):

self.verificationErrors = []
self.selenium = selenium(" localhost " , 4444, " *firefox " ,

" http://www.google.com/ ")
self.selenium.start()

def test_new(self):
sel = self.selenium
sel.open(" / ")

sel.type(" q " , " selenium rc ")

sel.click(" btnG ")

sel.wait_for_page_to_load(" 30000 ")

self.failUnless(sel.is_text_present(" Results * for selenium rc "))

def tearDown(self):
self.selenium.stop()
self.assertEqual([], self.verificationErrors)

in Ruby:

56 Chapter 6. Selenium-RC

Selenium Documentation, Release 1.0

require " selenium "

require " test/unit "

class NewTest < Test::Unit::TestCase
def setup

@verification_errors = []
if $selenium

@selenium = $selenium
else

@selenium = Selenium::SeleniumDriver.new(" localhost " , 4444, " *firefox " , " http://www.google.com/ " , 10000);
@selenium.start

end
@selenium.set_context(" test_new ")

end

def teardown
@selenium.stop unless $selenium
assert_equal [], @verification_errors

end

def test_new
@selenium.open " / "

@selenium.type " q " , " selenium rc "

@selenium.click " btnG "

@selenium.wait_for_page_to_load " 30000 "

assert @selenium.is_text_present(" Results * for selenium rc ")
end

end

In the next section we’ll explain how to build a test program using the generated code.

6.5 Programming Your Test

Now we’ll illustrate how to program your own tests using examples in each of the supported program-
ming languages. There are essentially two tasks:

• Generate your script into a programming language from Selenium-IDE, optionally modifying the
result.

• Write a very simple main program that executes the generated code.

Optionally, you can adopt a test engine platform like JUnit or TestNG for Java, or NUnit for .NET if you
are using one of those languages.

Here, we show language-specific examples. The language-specific APIs tend to differ from one to
another, so you’ll find a separate explanation for each.

• Java

• C#

• Python

• Ruby

6.5. Programming Your Test 57

Selenium Documentation, Release 1.0

• Perl, PHP

6.5.1 Java

For Java, people use either JUnit or TestNG as the test engine. Some development environments like
Eclipse have direct support for these via plug-ins. This makes it even easier. Teaching JUnit or TestNG
is beyond the scope of this document however materials may be found online and there are publica-
tions available. If you are already a “java-shop” chances are your developers will already have some
experience with one of these test frameworks.

You will probably want to rename the test class from “NewTest” to something of your own choosing.
Also, you will need to change the browser-open parameters in the statement:

selenium = new DefaultSelenium("localhost", 4444, "*iehta", "http://www.google.com/");

The Selenium-IDE generated code will look like this. This example has comments added manually for
additional clarity.

package com.example.tests;
// We specify the package of our tests

import com.thoughtworks.selenium.*;
// This is the driver’s import. You’ll use this for instantiating a
// browser and making it do what you need.

import java.util.regex.Pattern;
// Selenium-IDE add the Pattern module because it’s sometimes used for
// regex validations. You can remove the module if it’s not used in your
// script.

public class NewTest extends SeleneseTestCase {
// We create our Selenium test case

public void setUp() throws Exception {
setUp("http://www.google.com/" , "*firefox");

// We instantiate and start the browser
}

public void testNew() throws Exception {
selenium.open("/");

selenium.type("q" , "selenium rc");

selenium.click("btnG");

selenium.waitForPageToLoad("30000");

assertTrue(selenium.isTextPresent("Results * for selenium rc"));
// These are the real test steps

}
}

6.5.2 C#

The .NET Client Driver works with Microsoft.NET. It can be used with any .NET testing framework
like NUnit or the Visual Studio 2005 Team System.

58 Chapter 6. Selenium-RC

Selenium Documentation, Release 1.0

Selenium-IDE assumes you will use NUnit as your testing framework. You can see this in the gener-
ated code below. It includes the using statement for NUnit along with corresponding NUnit attributes
identifying the role for each member function of the test class.

You will probably have to rename the test class from “NewTest” to something of your own choosing.
Also, you will need to change the browser-open parameters in the statement:

selenium = new DefaultSelenium("localhost", 4444, "*iehta", "http://www.google.com/");

The generated code will look similar to this.

using System;
using System.Text;
using System.Text.RegularExpressions;
using System.Threading;
using NUnit.Framework;
using Selenium;

namespace SeleniumTests

{
[TestFixture]

public class NewTest

{
private ISelenium selenium;

private StringBuilder verificationErrors;

[SetUp]

public void SetupTest()

{
selenium = new DefaultSelenium("localhost" , 4444, "*iehta" ,

"http://www.google.com/");

selenium.Start();

verificationErrors = new StringBuilder();
}

[TearDown]

public void TeardownTest()
{

try
{
selenium.Stop();
}

catch (Exception)
{
// Ignore errors if unable to close the browser
}

6.5. Programming Your Test 59

Selenium Documentation, Release 1.0

Assert.AreEqual("" , verificationErrors.ToString());
}
[Test]

public void TheNewTest()
{

// Open Google search engine.
selenium.Open("http://www.google.com/");

// Assert Title of page.
Assert.AreEqual("Google" , selenium.GetTitle());

// Provide search term as "Selenium OpenQA"
selenium.Type("q" , "Selenium OpenQA");

// Read the keyed search term and assert it.
Assert.AreEqual("Selenium OpenQA" , selenium.GetValue("q"));

// Click on Search button.
selenium.Click("btnG");

// Wait for page to load.
selenium.WaitForPageToLoad("5000");

// Assert that "www.openqa.org" is available in search results.
Assert.IsTrue(selenium.IsTextPresent("www.openqa.org"));

// Assert that page title is - "Selenium OpenQA - Google Search"
Assert.AreEqual("Selenium OpenQA - Google Search" ,

selenium.GetTitle());
}
}

}

You can allow NUnit to manage the execution of your tests. Or alternatively, you can write a simple
main() program that instantiates the test object and runs each of the three methods, SetupTest(), The-
NewTest(), and TeardownTest() in turn.

6.5.3 Python

Pyunit is the test framework to use for Python. To learn Pyunit refer to its official documentation
<http://docs.python.org/library/unittest.html>_.

The basic test structure is:

from selenium import selenium
This is the driver’s import. You’ll use this class for instantiating a
browser and making it do what you need.

import unittest, time, re
This are the basic imports added by Selenium-IDE by default.
You can remove the modules if they are not used in your script.

class NewTest(unittest.TestCase):
We create our unittest test case

60 Chapter 6. Selenium-RC

http://docs.python.org/library/unittest.html

Selenium Documentation, Release 1.0

def setUp(self):
self.verificationErrors = []
This is an empty array where we will store any verification errors
we find in our tests

self.selenium = selenium(" localhost " , 4444, " *firefox " ,

" http://www.google.com/ ")
self.selenium.start()
We instantiate and start the browser

def test_new(self):
This is the test code. Here you should put the actions you need
the browser to do during your test.

sel = self.selenium
We assign the browser to the variable "sel" (just to save us from
typing "self.selenium" each time we want to call the browser).

sel.open(" / ")

sel.type(" q " , " selenium rc ")

sel.click(" btnG ")

sel.wait_for_page_to_load(" 30000 ")

self.failUnless(sel.is_text_present(" Results * for selenium rc "))
These are the real test steps

def tearDown(self):
self.selenium.stop()
we close the browser (I’d recommend you to comment this line while
you are creating and debugging your tests)

self.assertEqual([], self.verificationErrors)
And make the test fail if we found that any verification errors
were found

6.5.4 Ruby

Selenium-IDE generates reasonable Ruby, but requires the old Selenium gem. This is a problem because
the official Ruby driver for Selenium is the Selenium-Client gem, not the old Selenium gem. In fact, the
Selenium gem is no longer even under active development.

Therefore, it is advisable to update any Ruby scripts generated by the IDE as follows:

1. On line 1, change require "selenium" to require "selenium/client"

2. On line 11, change Selenium::SeleniumDriver.new to
Selenium::Client::Driver.new

You probably also want to change the class name to something more informative than “Untitled,” and
change the test method’s name to something other than “test_untitled.”

Here is a simple example created by modifying the Ruby code generated by Selenium IDE, as described
above.

load the Selenium-Client gem
require " selenium/client "

6.5. Programming Your Test 61

Selenium Documentation, Release 1.0

Load Test::Unit, Ruby 1.8’s default test framework.
If you prefer RSpec, see the examples in the Selenium-Client
documentation.
require " test/unit "

class Untitled < Test::Unit::TestCase

The setup method is called before each test.
def setup

This array is used to capture errors and display them at the
end of the test run.
@verification_errors = []

Create a new instance of the Selenium-Client driver.
@selenium = Selenium::Client::Driver.new \

:host => " localhost " ,
:port => 4444,
:browser => " *chrome " ,

:url => " http://www.google.com/ " ,
:timeout_in_second => 60

Start the browser session
@selenium.start

Print a message in the browser-side log and status bar
(optional).
@selenium.set_context(" test_untitled ")

end

The teardown method is called after each test.
def teardown

Stop the browser session.
@selenium.stop

Print the array of error messages, if any.
assert_equal [], @verification_errors

end

This is the main body of your test.
def test_untitled

Open the root of the site we specified when we created the
new driver instance, above.
@selenium.open " / "

Type ’selenium rc’ into the field named ’q’
@selenium.type " q " , " selenium rc "

Click the button named "btnG"
@selenium.click " btnG "

Wait for the search results page to load.
Note that we don’t need to set a timeout here, because that
was specified when we created the new driver instance, above.

62 Chapter 6. Selenium-RC

Selenium Documentation, Release 1.0

@selenium.wait_for_page_to_load

begin

Test whether the search results contain the expected text.
Notice that the star (*) is a wildcard that matches any
number of characters.
assert @selenium.is_text_present(" Results * for selenium rc ")

rescue Test::Unit::AssertionFailedError

If the assertion fails, push it onto the array of errors.
@verification_errors << $!

end
end

end

6.5.5 Perl, PHP

The members of the documentation team have not used Selenium-RC with Perl or PHP. If you are using
Selenium-RC with either of these two languages please contact the Documentation Team (see the chapter
on contributing). We would love to include some examples from you and your experiences, to support
Perl and PHP users.

6.6 Learning the API

The Selenium-RC API uses naming conventions that, assuming you understand Selenese, much of the
interface will be self-explanatory. Here, however, we explain the most critical and possibly less obvious,
aspects of the API.

6.6.1 Starting the Browser

In C#:

selenium = new DefaultSelenium("localhost" , 4444, "*firefox" , "http://www.google.com/");
selenium.Start();

In Java:

setUp("http://www.google.com/" , "*firefox");

In Perl:

my $sel = Test::WWW::Selenium->new(host => "localhost" ,
port => 4444,
browser => "*firefox" ,

browser_url => "http://www.google.com/");

6.6. Learning the API 63

Selenium Documentation, Release 1.0

In PHP:

$this->setBrowser("*firefox");
$this->setBrowserUrl("http://www.google.com/");

In Python:

self.selenium = selenium(" localhost " , 4444, " *firefox " ,

" http://www.google.com/ ")
self.selenium.start()

In Ruby:

@selenium = Selenium::ClientDriver.new(" localhost " , 4444, " *firefox " , " http://www.google.com/ " , 10000);
@selenium.start

Each of these examples opens the browser and represents that browser by assigning a “browser instance”
to a program variable. This browser variable is then used to call methods from the browser. These
methods execute the Selenium commands, i.e. like open or type or the verify commands.

The parameters required when creating the browser instance are:

host Specifies the IP address of the computer where the server is located. Usually, this is the same
machine as where the client is running, so in this case localhost is passed. In some clients this is
an optional parameter.

port Specifies the TCP/IP socket where the server is listening waiting for the client to establish a con-
nection. This also is optional in some client drivers.

browser The browser in which you want to run the tests. This is a required parameter.

url The base url of the application under test. This is required by all the client libs and is integral
information for starting up the browser-proxy-AUT communication.

Note that some of the client libraries require the browser to be started explicitly by calling its start()
method.

6.6.2 Running Commands

Once you have the browser initialized and assigned to a variable (generally named “selenium”) you
can make it run Selenese commands by calling the respective methods from the browser variable. For
example, to call the type method of the selenium object:

selenium.type(" field-id " , " string to type ")

In the background the browser will actually perform a type operation, essentially identical to a user
typing input into the browser, by using the locator and the string you specified during the method call.

64 Chapter 6. Selenium-RC

Selenium Documentation, Release 1.0

6.7 Reporting Results

Selenium-RC does not have its own mechanism for reporting results. Rather, it allows you to build your
reporting customized to your needs using features of your chosen programming language. That’s great,
but what if you simply want something quick that’s already done for you? Often an existing library or
test framework will exist that can meet your needs faster than developing your own test reporting code.

6.7.1 Test Framework Reporting Tools

Test frameworks are available for many programming languages. These, along with their primary func-
tion of providing a flexible test engine for executing your tests, include library code for reporting results.
For example, Java has two commonly used test frameworks, JUnit and TestNG. .NET also has its own,
NUnit.

We won’t teach the frameworks themselves here; that’s beyond the scope of this user guide. We will
simply introduce the framework features that relate to Selenium along with some techniques you can
apply. Their are good books available on these test frameworks however along with information on the
internet.

6.7.2 Test Report Libraries

Also available are third-party libraries specifically created for reporting test results in your chosen pro-
gramming language. These often support a variety of formats such as HTML or PDF.

6.7.3 What’s The Best Approach?

Most people new to the testing frameworks will being with the framework’s built-in reporting features.
From there most will examine any available libraries as that’s less time consuming than developing your
own. As you begin to use Selenium no doubt you will start putting in your own “print statements” for
reporting progress. That may gradually lead to you developing your own reporting, possibly in parallel
to using a library or test framework. Regardless, after the initial, but short, learning curve you will
naturally develop what works best for your own situation.

6.7.4 Test Reporting Examples

To illustrate, we’ll direct you to some specific tools in some of the other languages supported by Sele-
nium. The ones listed here are commonly used and have been used extensively (and therefore recom-
mended) by the authors of this guide.

Test Reports in Java

• If Selenium Test cases are developed using JUnit then JUnit Report can be used to generate test
reports. Refer to JUnit Report for specifics.

• If Selenium Test cases are developed using TestNG then no external task is required to generate
test reports. The TestNG framework generates an HTML report which list details of tests. See
TestNG Report for more.

6.7. Reporting Results 65

http://ant.apache.org/manual/OptionalTasks/junitreport.html
http://testng.org/doc/documentation-main.html#test-results

Selenium Documentation, Release 1.0

• ReportNG is a HTML reporting plug-in for the TestNG framework. It is intended as a replacement
for the default TestNG HTML report. ReportNG provides a simple, colour-coded view of the test
results. See ReportNG for more.

• Also, for a very nice summary report try using TestNG-xslt. A TestNG-xslt Report looks like this.

See TestNG-xslt for more.

Logging the Selenese Commands

• Logging Selenium can be used to generate a report of all the Selenese commands in your test
along with the success of failure of each. Logging Selenium extends the Java client driver to add
this Selenense logging ability. Please refer to Logging Selenium.

Test Reports for Python

• When using Python Client Driver then HTMLTestRunner can be used to generate a Test Report.
See HTMLTestRunner.

Test Reports for Ruby

• If RSpec framework is used for writing Selenium Test Cases in Ruby then its HTML report can
be used to generate test report. Refer to RSpec Report for more.

Note: If you are interested in a language independent log of what’s going on, take a look at Selenium
Server Logging

6.8 Adding Some Spice to Your Tests

Now we’ll get to the whole reason for using Selenium-RC, adding programming logic to your tests. It’s
the same as for any program. Program flow is controlled using condition statements and iteration. In
addition you can report progress information using I/O. In this section we’ll show some examples of how
programming language constructs can be combined with Selenium to solve common testing problems.

You will find as you transition from the simple tests of the existence of page elements to tests of dynamic
functionality involving multiple web-pages and varying data that you will require programming logic
for verifying expected results. Basically, the Selenium-IDE does not support iteration and standard
condition statements. You can do some conditions by embedding javascript in Selenese parameters,

66 Chapter 6. Selenium-RC

https://reportng.dev.java.net/
http://code.google.com/p/testng-xslt/
http://loggingselenium.sourceforge.net/index.html
http://tungwaiyip.info/software/HTMLTestRunner.html
http://rspec.info/documentation/tools/rake.html

Selenium Documentation, Release 1.0

however iteration is impossible, and most conditions will be much easier in a programming language.
In addition, you may need exception-handling for error recovery. For these reasons and others, we
have written this section to illustrate the use of common programming techniques to give you greater
‘verification power’ in your automated testing.

The examples in this section are written in Java, although the code is simple and can be easily adapted
to the other supported languages. If you have some basic knowledge of an object-oriented programming
language you shouldn’t have difficulty understanding this section.

6.8.1 Iteration

Iteration is one of the most common things people need to do in their tests. For example, you may want
to to execute a search multiple times. Or, perhaps for verifying your test results you need to process a
“result set” returned from a database.

Using the same Google search example we used earlier, let’s check the Selenium the search results. This
test could use the Selenese:

open /
type q selenium rc
clickAndWait btnG
assertTextPresent Results * for selenium rc
type q selenium ide
clickAndWait btnG
assertTextPresent Results * for selenium ide
type q selenium grid
clickAndWait btnG
assertTextPresent Results * for selenium grid

The code has been repeated to run the same steps 3 times. But multiple copies of the same code is not
good program practice because it’s more work to maintain. By using a programming language, we can
iterate over the search results for a more flexible and maintainable solution.

In C#:

// Collection of String values.
String[] arr = { "ide" , "rc" , "grid" };

// Execute loop for each String in array ’arr’.
foreach (String s in arr) {

sel.open("/");

sel.type("q" , "selenium " +s);

sel.click("btnG");

sel.waitForPageToLoad("30000");

assertTrue("Expected text: " +s+ " is missing on page."

, sel.isTextPresent("Results * for selenium " + s));
}

6.8.2 Condition Statements

To illustrate using conditions in tests we’ll start with an example. A common problem encountered while
running Selenium tests occurs when an expected element is not available on page. For example, when
running the following line:

6.8. Adding Some Spice to Your Tests 67

Selenium Documentation, Release 1.0

selenium.type("q" , "selenium " +s);

If element ‘q’ is not on the page then an exception is thrown:

com.thoughtworks.selenium.SeleniumException: ERROR: Element q not found

This can cause your test to abort. For some tests that’s what you want. But often that is not desirable as
your test script has many other subsequent tests to perform.

A better approach is to first validate if the element is really present and then take alternatives when it it
is not. Let’s look at this using Java.

// If element is available on page then perform type operation.
if(selenium.isElementPresent("q")) {

selenium.type("q" , "Selenium rc");
} else {

System.out.printf("Element: " +q+ " is not available on page.")
}

The advantage of this approach is to continue with test execution even if some UI elements are not
available on page.

6.8.3 Executing JavaScript from Your Test

JavaScript comes very handy in exercising application which is not directly supported by selenium.
getEval method of selenium API can be used to execute java script from selenium RC.

Consider an application having check boxes with no static identifiers. In this case one could evaluate
JavaScript from selenium RC to get ids of all check boxes and then exercise them.

public static String[] getAllCheckboxIds () {
String script = "var inputId = new Array();" ;// Create array in java script.

script += "var cnt = 0;" ; // Counter for check box ids.

script += "var inputFields = new Array();" ; // Create array in java script.

script += "inputFields = window.document.getElementsByTagName(’input’);" ; // Collect input elements.

script += "for(var i=0; i<inputFields.length; i++) {" ; // Loop through the collected elements.

script += "if(inputFields[i].id !=null " +

"&& inputFields[i].id !=’undefined’ " +

"&& inputFields[i].getAttribute(’type’) == ’checkbox’) {" ; // If input field is of type check box and input id is not null.

script += "inputId[cnt]=inputFields[i].id ;" + // Save check box id to inputId array.

"cnt++;" + // increment the counter.

"}" + // end of if.

"}" ; // end of for.

script += "inputId.toString();" ;// Convert array in to string.

String[] checkboxIds = selenium.getEval(script).split(","); // Split the string.
return checkboxIds;

}

To count number of images on a page:

68 Chapter 6. Selenium-RC

Selenium Documentation, Release 1.0

selenium.getEval("window.document.images.length;");

Remember to use window object in case of DOM expressions as by default selenium window is referred
and not the test window.

6.9 Server Options

When the server is launched, command line options can be used to change the default server behaviour.

Recall, the server is started by running the following.

$ java -jar selenium-server.jar

To see the list of options, run the server with the -h option.

$ java -jar selenium-server.jar -h

You’ll see a list of all the options you can use with the server and a brief description of each. The
provided descriptions will not always be enough, so we’ve provided explanations for some of the more
important options.

6.9.1 Proxy Configuration

If your AUT is behind an HTTP proxy which requires authentication then you should you can configure
http.proxyHost, http.proxyPort, http.proxyUser and http.proxyPassword using the following command.

$ java -jar selenium-server.jar -Dhttp.proxyHost=proxy.com -Dhttp.proxyPort=8080 -Dhttp.proxyUser=username -Dhttp.proxyPassword=password

6.9.2 Multi-Window Mode

If you are using Selenium 1.0 you can probably skip this section, since multiwindow mode is the default
behavior. However, prior to version 1.0, Selenium by default ran the application under test in a sub
frame as shown here.

6.9. Server Options 69

Selenium Documentation, Release 1.0

Some applications didn’t run correctly in a sub frame, and needed to be loaded into the top frame of the
window. The multi-window mode option allowed the AUT to run in a separate window rather than in
the default frame where it could then have the top frame it required.

70 Chapter 6. Selenium-RC

Selenium Documentation, Release 1.0

For older versions of Selenium you must specify multiwindow mode explicitly with the following option:

-multiwindow

In Selenium-RC 1.0, if you want to run your test within a single frame (i.e. using the standard for earlier
Selenium versions) you can state this to the Selenium Server using the option

-singlewindow

6.9.3 Specifying the Firefox Profile

Firefox will not run two instances simultaneously unless you specify a separate profile for each instance.
Selenium-RC 1.0 and later runs in a separate profile automatically, so if you are using Selenium 1.0, you
can probably skip this section. However, if you’re using an older version of Selenium or if you need to
use a specific profile for your tests (such as adding an https certificate or having some addons installed),
you will need to explicitly specify the profile.

First, to create a separate Firefox profile, follow this procedure. Open the Windows Start menu, select
“Run”, then type and enter one of the following:

firefox.exe -profilemanager

6.9. Server Options 71

Selenium Documentation, Release 1.0

firefox.exe -P

Create the new profile using the dialog. The when you run Selenium Server, tell it to use this new Firefox
profile with the server command-line option -firefoxProfileTemplate and specify the path to the profile
using it’s filename and directory path.

-firefoxProfileTemplate "path to the profile"

Warning: Be sure to put your profile in a new folder separate from the default!!! The Firefox
profile manager tool will delete all files in a folder if you delete a profile, regardless of whether they
are profile files or not.

More information about Firefox profiles can be found in Mozilla’s Knowledge Base

6.9.4 Run Selenese Directly Within the Server Using -htmlSuite

You can run Selenese html files directly within the Selenium Server by passing the html file to the
server’s command line. For instance:

java -jar selenium-server.jar -htmlSuite "*firefox" "http://www.google.com" "c:\absolute\path\to\my\HTMLSuite.html" "c:\absolute\path\to\my\results.html"

This will automatically launch your HTML suite, run all the tests and save a nice HTML report with the
results.

Note: When using this option, the server will start the tests and wait for a specified number of seconds
for the test to complete; if the test doesn’t complete within that amount of time, the command will exit
with a non-zero exit code and no results file will be generated.

This command line is very long so be careful when you type it. Note this requires you to pass in
an HTML Selenese suite, not a single test. Also be aware the -htmlSuite option is incompatible with
-interactive You cannot run both at the same time.

6.9.5 Selenium Server Logging

Server-Side Logs

When launching selenium server the -log option can be used to record valuable debugging information
reported by the Selenium Server to a text file.

java -jar selenium-server.jar -log selenium.log

This log file is more verbose than the standard console logs (it includes DEBUG level logging messages).
The log file also includes the logger name, and the ID number of the thread that logged the message. For
example:

20:44:25 DEBUG [12] org.openqa.selenium.server.SeleniumDriverResourceHandler -
Browser 465828/:top frame1 posted START NEW

The message format is

72 Chapter 6. Selenium-RC

http://support.mozilla.com/zh-CN/kb/Managing+profiles

Selenium Documentation, Release 1.0

TIMESTAMP(HH:mm:ss) LEVEL [THREAD] LOGGER - MESSAGE

This message may be multiline.

Browser-Side Logs

JavaScript on the browser side (Selenium Core) also logs important messages; in many cases, these can
be more useful to the end-user than the regular Selenium Server logs. To access browser-side logs, pass
the -browserSideLog argument to the Selenium Server.

java -jar selenium-server.jar -browserSideLog

-browserSideLog must be combined with the -log argument, to log browserSideLogs (as well as all
other DEBUG level logging messages) to a file.

6.10 Specifying the Path to a Specific Browser

You can specify to Selenium-RC a path to a specific browser. This is useful if you have different
versions of the same browser, and you wish to use a specific one. Also, this is used to allow your tests
to run against a browser not directly supported by Selenium-RC. When specifying the run mode, use the
*custom specifier followed by the full path to the browser’s executable:

*custom <path to browser>

6.11 Selenium-RC Architecture

Note: This topic tries to explain the technical implementation behind Selenium-RC. It’s not fundamen-
tal for a Selenium user to know this, but could be useful for understanding some of the problems you
can find in the future.

To understand in detail how Selenium-RC Server works and why it uses proxy injection and heightened
privilege modes you must first understand the same origin policy.

6.11.1 The Same Origin Policy

The main restriction that Selenium’s has faced is the Same Origin Policy. This security restriction is
applied by every browser in the market and its objective is to ensure that a site’s content will never be
accessible by a script from other site. The Same Origin Policy dictates that any code loaded within the
browser can only operate within that website’s domain. It cannot perform functions on another website.
So for example, if the browser loads JavaScript code when it loads www.mysite.com, it cannot run that
loaded code against www.mysite2.com–even if that’s another of your sites. If this were possible, a script
placed on any website you open, would be able to read information on your bank account if you had the
account page opened on other tab. This is called XSS (Cross-site Scripting).

To work within this policy, Selenium-Core (and its JavaScript commands that make all the magic hap-
pen) must be placed in the same origin as the Application Under Test (same URL).

6.10. Specifying the Path to a Specific Browser 73

Selenium Documentation, Release 1.0

Historically, Selenium-Core was limited by this problem since it was implemented in JavaScript.
Selenium-RC is not, however, restricted by the Same Origin Policy. Its use of the Selenium Server
as a proxy avoids this problem. It, essentially, tells the browser that the browser is working on a single
“spoofed” website that the Server provides.

Note: You can find additional information about this topic on Wikipedia pages about Same Origin
Policy and XSS.

6.11.2 Proxy Injection

The first method Selenium used to avoid the The Same Origin Policy was Proxy Injection. In Proxy
Injection Mode, the Selenium Server acts as a client-configured 1 HTTP proxy 2, that sits between the
browser and the Application Under Test. It then masks the AUT under a fictional URL (embedding
Selenium-Core and the set of tests and delivering them as if they were coming from the same origin).

Here is an architectural diagram.
1 The proxy is a third person in the middle that passes the ball between the two parts. It acts as a “web server” that delivers

the AUT to the browser. Being a proxy, gives the capability of “lying” about the AUT’s real URL.
2 The browser is launched with a configuration profile that has set localhost:4444 as the HTTP proxy, this is why any HTTP

request that the browser does will pass through Selenium server and the response will pass through it and not from the real
server.

74 Chapter 6. Selenium-RC

http://en.wikipedia.org/wiki/Same_origin_policy
http://en.wikipedia.org/wiki/Same_origin_policy
http://en.wikipedia.org/wiki/Cross-site_scripting

Selenium Documentation, Release 1.0

As a test suite starts in your favorite language, the following happens:

1. The client/driver establishes a connection with the selenium-RC server.

2. Selenium-RC server launches a browser (or reuses an old one) with an URL that injects Selenium-
Core’s JavaScript into the browser-loaded web page.

3. The client-driver passes a Selenese command to the server.

4. The Server interprets the command and then triggers the corresponding JavaScript execution to
execute that command within the browser.

5. Selenium-Core instructs the browser to act on that first instruction, typically opening a page of the
AUT.

6. The browser receives the open request and asks for the website’s content to the Selenium-RC
server (set as the HTTP proxy for the browser to use).

7. Selenium-RC server communicates with the Web server asking for the page and once it receives
it, it sends the page to the browser masking the origin to look like the page comes from the same
server as Selenium-Core (this allows Selenium-Core to comply with the Same Origin Policy).

6.11. Selenium-RC Architecture 75

Selenium Documentation, Release 1.0

8. The browser receives the web page and renders it in the frame/window reserved for it.

6.11.3 Heightened Privileges Browsers

This workflow on this method is very similar to Proxy Injection but the main difference is that the
browsers are launched in a special mode called Heightened Privileges, which allows websites to do
things that are not commonly permitted (as doing XSS, or filling file upload inputs and pretty useful
stuff for Selenium). By using these browser modes, Selenium Core is able to directly open the AUT and
read/interact with its content without having to pass the whole AUT through the Selenium-RC server.

Here is the architectural diagram.

As a test suite starts in your favorite language, the following happens:

1. The client/driver establishes a connection with the selenium-RC server.

2. Selenium-RC server launches a browser (or reuses an old one) with an URL that will load
Selenium-Core in the web page.

3. Selenium-Core gets the first instruction from the client/driver (via another HTTP request made to
the Selenium-RC Server).

76 Chapter 6. Selenium-RC

http://en.wikipedia.org/wiki/Cross-site_scripting

Selenium Documentation, Release 1.0

4. Selenium-Core acts on that first instruction, typically opening a page of the AUT.

5. The browser receives the open request and asks the Web Server for the page. Once the browser
receives the web page, renders it in the frame/window reserved for it.

6.12 Handling HTTPS and Security Popups

Many applications switch from using HTTP to HTTPS when they need to send encrypted information
such as passwords or credit card information. This is common with many of today’s web applications.
Selenium-RC supports this.

To ensure the HTTPS site is genuine, the browser will need a security certificate. Otherwise, when the
browser accesses the AUT using HTTPS, it will assume that application is not ‘trusted’. When this
occurs the browser displays security popups, and these popups cannot be closed using Selenium-RC.

When dealing with HTTPS in a Selenium-RC test, you must use a run mode that supports this and
handles the security certificate for you. You specify the run mode when your test program initializes
Selenium.

In Selenium-RC 1.0 beta 2 and later use *firefox or *iexplore for the run mode. In earlier versions,
including Selenium-RC 1.0 beta 1, use *chrome or *iehta, for the run mode. Using these run modes,
you will not need to install any special security certificates; Selenium-RC will handle it for you.

In version 1.0 the run modes *firefox or *iexplore are recommended. However, there are additional
run modes of *iexploreproxy and *firefoxproxy. These are provided only for backwards compatibility
only, and should not be used unless required by legacy test programs. Their use will present limitations
with security certificate handling and with the running of multiple windows if your application opens
additional browser windows.

In earlier versions of Selenium-RC, *chrome or *iehta were the run modes that supported HTTPS and
the handling of security popups. These were considered ‘experimental modes although they became
quite stable and many used them. If you are using Selenium 1.0 you do not need, and should not use,
these older run modes.

6.12.1 Security Certificates Explained

Normally, your browser will trust the application you are testing by installing a security certificate which
you already own. You can check this in your browser’s options or internet properties (if you don’t know
your AUT’s security certificate ask you system administrator). When Selenium loads your browser it
injects code to intercept messages between the browser and the server. The browser now thinks untrusted
software is trying to look like your application. It responds by alerting you with popup messages.

To get around this, Selenium-RC, (again when using a run mode that support this) will install its own
security certificate, temporarily, to your client machine in a place where the browser can access it. This
tricks the browser into thinking it’s accessing a site different from your AUT and effectively suppresses
the popups.

Another method used with earlier versions of Selenium was to install the Cybervillians security certifi-
cate provided with your Selenium installation. Most users should no longer need to do this however, if
you are running Selenium-RC in proxy injection mode, you may need to explicitly install this security
certificate.

6.12. Handling HTTPS and Security Popups 77

Selenium Documentation, Release 1.0

6.13 Supporting Additional Browsers and Browser Configurations

The Selenium API supports running against multiple browsers in addition to Internet Explorer and
Mozilla Firefox. See the SeleniumHQ.org website for supported browsers. In addition, when a browser
is not directly supported, you may still run your Selenium tests against a browser of your choosing by
using the “*custom” run-mode (i.e. in place of *firefox or *iexplore) when your test application starts
the browser. With this, you pass in the path to the browsers executable within the API call as follows.

This can also be done from the Server in interactive mode.

cmd=getNewBrowserSession&1=*custom c: \P rogram Files \M ozilla Firefox \M yBrowser.exe&2=http://www.google.com

6.13.1 Running Tests with Different Browser Configurations

Normally Selenium-RC automatically configures the browser, but if you launch the browser using the
“*custom” run mode, you can force Selenium RC to launch the browser as-is, without using an automatic
configuration.

For example, you can launch Firefox with a custom configuration like this:

cmd=getNewBrowserSession&1=*custom c: \P rogram Files \M ozilla Firefox \f irefox.exe&2=http://www.google.com

Note that when launching the browser this way, you must manually configure the browser to use the
Selenium Server as a proxy. Normally this just means opening your browser preferences and specifying
“localhost:4444” as an HTTP proxy, but instructions for this can differ radically from browser to browser.
Consult your browser’s documentation for details.

Be aware that Mozilla browsers can vary in how they start and stop. One may need to set the
MOZ_NO_REMOTE environment variable to make Mozilla browsers behave a little more predictably.
Unix users should avoid launching the browser using a shell script; it’s generally better to use the binary
executable (e.g. firefox-bin) directly.

6.14 Troubleshooting Common Problems

When getting started with Selenium-RC there’s a few potential problems that are commonly encoun-
tered. We present them along with their solutions here.

6.14.1 Unable to Connect to Server

When your test program cannot connect to the Selenium Server, an exception will be thrown in your test
program. It should display this message or a similar one:

"Unable to connect to remote server....Inner Exception Message:
No connection could be made because the target machine actively
refused it...."

(using .NET and XP Service Pack 2)

If you see a message like this, be sure you started the Selenium Server. If so, then there is a problem
with the connectivity between the Selenium Client Library and the Selenium Server.

78 Chapter 6. Selenium-RC

Selenium Documentation, Release 1.0

When starting with Selenium-RC, most people begin by running thier test program (with a Selenium
Client Library) and the Selenium Server on the same machine. To do this use “localhost” as your
connection parameter. We recommend beginning this way since it reduces the influence of potential net-
working problems which you’re getting started. Assuming your operating system has typical networking
and TCP/IP settings you should have little difficulty. In truth, many people choose to run the tests this
way.

If, however, you do want to run Selenium Server on a remote machine, the connectivity should be fine
assuming you have valid TCP/IP connectivity between the two machines.

If you have difficulty connecting, you can use common networking tools like ping, telnet, ipcon-
fig(Unix)/ifconfig (Windows), etc to ensure you have a valid network connection. If unfamilar with
these, your system administrator can assist you.

6.14.2 Unable to Load the Browser

Ok, not a friendly error message, sorry, but if the Selenium Server cannot load the browser you will
likley see this error.

(500) Internal Server Error

This could be caused by

• Firefox (prior to Selenium 1.0) cannot start because the browser is already open and you did not
specify a separate profile. See the section on Firefox profiles under Server Options.

• The run mode you’re using doesn’t match any browser on your machine. Check the parameters
you passed to Selenium when you program opens the browser.

• You specified the path to the browser explicitly (using “*custom”–see above) but the path is in-
correct. Check to be sure the path is correct. Also check the user group to be sure there are no
known issues with your browser and the “*custom” parameters.

6.14.3 Selenium Cannot Find the AUT

If your test program starts the browser successfully, but the browser doesn’t display the website you’re
testing, the most likely cause is your test program is not using the correct URL.

This can easily happen. When you use Selenium-IDE to export you script, it inserts a dummy URL. You
must manually change the URL to the correct one for your application to be tested.

6.14.4 Firefox Refused Shutdown While Preparing a Profile

This most often occurs when your run your Selenium-RC test program against Firefox, but you already
have a Firefox browser session running and, you didn’t specify a separate profile when you started the
Selenium Server. The error from the test program looks like this:

Error: java.lang.RuntimeException: Firefox refused shutdown while
preparing a profile

Here’s the complete error message from the server:

6.14. Troubleshooting Common Problems 79

Selenium Documentation, Release 1.0

16:20:03.919 INFO - Preparing Firefox profile...
16:20:27.822 WARN - GET /selenium-server/driver/?cmd=getNewBrowserSession&1=*fir
efox&2=http%3a%2f%2fsage-webapp1.qa.idc.com HTTP/1.1
java.lang.RuntimeException: Firefox refused shutdown while preparing a profile

at org.openqa.selenium.server.browserlaunchers.FirefoxCustomProfileLaunc
her.waitForFullProfileToBeCreated(FirefoxCustomProfileLauncher.java:277)
.........................
Caused by: org.openqa.selenium.server.browserlaunchers.FirefoxCustomProfileLaunc
her$FileLockRemainedException: Lock file still present! C:\DOCUME~1\jsvec\LOCALS
~1\Temp\customProfileDir203138\parent.lock

To resolve this, see the section on Specifying a Separate Firefox Profile

6.14.5 Versioning Problems

Make sure your version of Selenium supports the version of your browser. For example, Selenium-RC
0.92 does not support Firefox 3. At times you may be lucky (I was). But don’t forget to check which
browser versions are supported by the version of Selenium you are using. When in doubt, use the latest
release version of Selenium with the most widely used version of your browser.

6.14.6 Error message: “(Unsupported major.minor version 49.0)” while starting
server

This error says you’re not using a correct version of Java. The Selenium Server requires Java 1.5 or
higher.

To check double-check your java version, run this from the command line.

java -version

You should see a message showing the Java version.

java version "1.5.0_07"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_07-b03)
Java HotSpot(TM) Client VM (build 1.5.0_07-b03, mixed mode)

If you see a lower version number, you may need to update the JRE, or you may simply need to add it
to your PATH environment variable.

6.14.7 404 error when running the getNewBrowserSession command

If you’re getting a 404 error while attempting to open a page on “http://www.google.com/selenium-
server/“, then it must be because the Selenium Server was not correctly configured as a proxy. The
“selenium-server” directory doesn’t exist on google.com; it only appears to exist when the proxy is
properly configured. Proxy Configuration highly depends on how the browser is launched with *firefox,
*iexplore, *opera, or *custom.

• *iexplore: If the browser is launched using *iexplore, you could be having a problem
with Internet Explorer’s proxy settings. Selenium Server attempts To configure the
global proxy settings in the Internet Options Control Panel. You must make sure
that those are correctly configured when Selenium Server launches the browser. Try

80 Chapter 6. Selenium-RC

http://www.google.com/selenium-server/
http://www.google.com/selenium-server/

Selenium Documentation, Release 1.0

looking at your Internet Options control panel. Click on the “Connections” tab and
click on “LAN Settings”.

– If you need to use a proxy to access the application you want to test, you’ll need
to start Selenium Server with “-Dhttp.proxyHost”; see the Proxy Configuration
for more details.

– You may also try configuring your proxy manually and then launching the
browser with *custom, or with *iehta browser launcher.

• *custom: When using *custom you must configure the proxy correctly(manually),
otherwise you’ll get a 404 error. Double-check that you’ve configured your
proxy settings correctly. To check whether you’ve configured the proxy correctly
is to attempt to intentionally configure the browser incorrectly. Try configuring
the browser to use the wrong proxy server hostname, or the wrong port. If you
had successfully configured the browser’s proxy settings incorrectly, then the
browser will be unable to connect to the Internet, which is one way to make sure
that one is adjusting the relevant settings.

• For other browsers (*firefox, *opera) we automatically hard-code the proxy for you,
and so ther are no known issues with this functionality. If you’re encountering 404
errors and have followed this user guide carefully post your results to user group for
some help from the user community.

6.14.8 Permission Denied Error

The most common reason for this error is that your session is attempting to violate the same-origin
policy by crossing domain boundaries (e.g., accesses a page from http://domain1 and then accesses a
page from http://domain2) or switching protocols (moving from http://domainX to https://domainX).

This error can also occur when JavaScript attempts to find UI objects which are not yet available (before
the page has completely loaded), or are no longer available (after the page has started to be unloaded).
This is most typically encountered with AJAX pages which are working with sections of a page or
subframes that load and/or reload independently of the larger page.

This error can be intermittent. Often it is impossible to reproduce the problem with a debugger because
the trouble stems from race conditions which are not reproducible when the debugger’s overhead is
added to the system. Permission issues are covered in some detail in the tutorial. Read the section about
the The Same Origin Policy, Proxy Injection carefully.

6.14.9 Handling Browser Popup Windows

There are several kinds of “Popups” that you can get during a Selenium test. You may not be able to close
these popups by running selenium commands if they are initiated by the browser and not your AUT. You
may need to know how to manage these. Each type of popup needs to be addressed differently.

• HTTP basic authentication dialogs: These dialogs prompt for a username/password
to login to the site. To login to a site that requires HTTP basic authentication,
use a username and password in the URL, as described in RFC 1738, like this:
open(“http://myusername:myuserpassword@myexample.com/blah/blah/blah“).

• SSL certificate warnings: Selenium RC automatically attempts to spoof SSL certificates when it
is enabled as a proxy; see more on this in the section on HTTPS. If your browser is configured
correctly, you should never see SSL certificate warnings, but you may need to configure your

6.14. Troubleshooting Common Problems 81

http://domain1
http://domain2
http://domainX
https://domainX
http://tools.ietf.org/html/rfc1738#section-3.1
http://myusername:myuserpassword@myexample.com/blah/blah/blah

Selenium Documentation, Release 1.0

browser to trust our dangerous “CyberVillains” SSL certificate authority. Again, refer to the
HTTPS section for how to do this.

• modal JavaScript alert/confirmation/prompt dialogs: Selenium tries to conceal those dialogs from
you (by replacing window.alert, window.confirm and window.prompt) so they won’t stop the ex-
ecution of your page. If you’re seeing an alert pop-up, it’s probably because it fired during the
page load process, which is usually too early for us to protect the page. Selenese contains com-
mands for asserting or verifying alert and confirmation popups. See the sections on these topics
in Chapter 4.

6.14.10 On Linux, why isn’t my Firefox browser session closing?

On Unix/Linux you must invoke “firefox-bin” directly, so make sure that executable is on the path. If
executing Firefox through a shell script, when it comes time to kill the browser Selenium RC will kill
the shell script, leaving the browser running. You can specify the path to firefox-bin directly, like this.

cmd=getNewBrowserSession&1=*firefox /usr/local/firefox/firefox-bin&2=http://www.google.com

6.14.11 Firefox *chrome doesn’t work with custom profile

Check Firefox profile folder -> prefs.js -> user_pref(“browser.startup.page”, 0); Comment this line like
this: “//user_pref(“browser.startup.page”, 0);” and try again.

6.14.12 Is it ok to load a custom pop-up as the parent page is loading (i.e., before
the parent page’s javascript window.onload() function runs)?

No. Selenium relies on interceptors to determine window names as they are being loaded. These inter-
ceptors work best in catching new windows if the windows are loaded AFTER the onload() function.
Selenium may not recognize windows loaded before the onload function.

6.14.13 Problems With Verify Commands

If you export your tests from Selenium-IDE, you may find yourself getting empty verify strings from
your tests (depending on the programming language used).

Note: This section is not yet developed.

6.14.14 Safari and MultiWindow Mode

Note: This section is not yet developed.

6.14.15 Firefox on Linux

On Unix/Linux, versions of Selenium before 1.0 needed to invoke “firefox-bin” directly, so if you are
using a previous version, make sure that the real executable is on the path.

On most Linux distributions, the real firefox-bin is located on:

82 Chapter 6. Selenium-RC

Selenium Documentation, Release 1.0

/usr/lib/firefox-x.x.x/

Where the x.x.x is the version number you currently have. So, to add that path to the user’s path. you
will have to add the following to your .bashrc file:

export PATH= "$PATH:/usr/lib/firefox-x.x.x/"

If necessary, you can specify the path to firefox-bin directly in your test, like this:

" *firefox /usr/lib/firefox-x.x.x/firefox-bin "

6.14.16 IE and Style Attributes

If you are running your tests on Internet Explorer and you cannot locate elements using their style
attribute. For example:

//td[@style="background-color:yellow"]

This would work perfectly in Firefox, Opera or Safari but not with IE. IE interprets the keys in @style
as uppercase. So, even if the source code is in lowercase, you should use:

//td[@style="BACKGROUND-COLOR:yellow"]

This is a problem if your test is intended to work on multiple browsers, but you can easily code your test
to detect the situation and try the alternative locator that only works in IE.

6.14.17 Where can I Ask Questions that Aren’t Answered Here?

Try our user group

6.14. Troubleshooting Common Problems 83

http://seleniumhq.org/support/

Selenium Documentation, Release 1.0

84 Chapter 6. Selenium-RC

CHAPTER

SEVEN

TEST DESIGN CONSIDERATIONS

NOTE: Some sections of this chapter are not yet complete.

7.1 Introducing Test Design

In this subsection we describe a few types of different tests you can do with Selenium. This may not be
new to you, but we provide this as a framework for relating Selenium test automation to the decisions a
quality assurance professional will make when deciding what tests to perform, the priority for each of
those tests, and whether to automate those tests or not.

7.2 What to Test?

What parts of your application should you test? That depends on aspects of your project: user expec-
tations, time allowed for the project, priorities set by the project manager and so on. Once the project
boundaries are defined though, you, the tester, will certainly make many decisions on what to test.

We will define some terms here to help us categorize the types of testing typical for a web-application.
These terms are by no means standard, although the concepts we present here are typical for web-
application testing. We’ve created a few terms here of our own for the purposes of categorizing the types
of test you may perform on your web application.

7.2.1 Testing for Expected Content

The simplest type of test, a content test, is a simple test for the existence of a static, non-changing, UI
element. For instance

• Does each page have it’s expected page title? This can be used to verify your test found an
expected page after following a link.

• Does the application’s home page contain an image expected to be at the top of the page?

• Does each page of the website contain a footer area with links to the company contact page privacy
policy, and trademarks information?

• Does each page begin with heading text using the <h1> tag? And, does each page have the correct
text within that header?

You may or may not need content tests. If your page content is not likely to be affected then it may be
more efficient to test page content manually. If, however, your application will be undergoing platform
changes, or files will likely be moved to different locations, content tests may prove valuable.

85

Selenium Documentation, Release 1.0

7.2.2 Testing Links

A frequent source of errors for web-sites is broken links and missing pages behind those broken links.
Testing for these involves clicking each link and verifying the expected page behind that link loads
correctly.

Need to include a description of how to design this test and a simple example. Should that go in this
section or in a separate section?

7.2.3 Function Tests

These would be tests of a specific function within your application, requiring some type of user input,
and returning some type of results. Often a function test will involve multiple pages with a form-
based input page containing a collection of input fields, Submit and Cancel operations, and one or
more response pages. User input can be via text-input fields, checkboxes, drop-down lists, or any other
browser-supported input.

7.2.4 Testing Dynamic Elements

Dynamic content is a set of page elements whose identifiers, that is, characteristics used to locate the
element, vary with each different instance of the page that contains them. This is usually on a result
page of some given function.

An example would be a result set of data returned to the user. Suppose each data result, in, say for
example a list of documents, had a unique identifier for each specific document. So, for a particular
search, the search results page returns a data set with one set of documents and their correponding
identifiers. Then, in a different search, the search results page returns a different data set where each
document in the result set uses different identifiers.

An example will help. Dynamic content involves UI elements who identifying properties change each
time you open the page displaying them. For example,

Dynamic HTML of an object might look as:

<input type= "checkbox" value= "true" id= "addForm:_id74:_id75:0:_id79:0:

checkBox" name= "addForm:_id74:_id75:0:_id79:0:checkBox" />

This is HTML snippet for a check box. Its id and name (addForm:_id74:_id75:0:_id79:0:checkBox)
both are same and both are dynamic (they will change the next time you open the application). In this
case

7.2.5 Ajax Tests

Ajax is a technology which supports dynamic real-time UI elements such as animation and RSS feeds.
In AJAX-driven web applications, data is retrieved from the application server with out refreshing the
page.

NOTE - INCLUDE A GOOD DEFINITION OF AJAX OFF THE INTERNET.

86 Chapter 7. Test Design Considerations

Selenium Documentation, Release 1.0

7.3 Verifying Results

7.3.1 Assert vs. Verify

When should you use an assert command and when should you use a verify command? This is up to
you. The difference is in what you want to happen when the check fails. Do you want your test to
terminate or continue and record that the check failed?

Here’s the tradeoff. If you use an assert, the test will stop at that point and not run any subsequent
checks. Sometimes, perhaps often, that is what you want. If the test fails you will immediately know the
test did not pass. Test engines such as TestNG and JUnit have plugins for commonly used development
environments (Chap 5) which conveniently flag these tests as failed tests. The advantage: you have an
immediate visual of whether the checks (those using asserts anyway) passed. The disadvantage: when
a check does fail, there are other checks which were never performed, so you have no information on
their status.

In contrast, verify commands will not terminate the test. If your test uses only verify commands you are
guaranteed (assuming no unexpected exceptions) the test will run to completion whether the checks find
defects in the AUT or not. The disavantage: you have to do more work to examine your test results. That
is, you won’t get feedback from TestNG or JUnit. Rather, you will need to look at the results of a console
printout or a log output by your test application. And you will need to take the time to look through this
output everytime you run your test. For Java, Logging Selenium (Chap 5) is a convenient logging utility
for recording the results of verify commands, however you still need to open the logs and examine the
results. If you are running hundreds of tests, each with it’s own log, this will be time-consuming.

7.3.2 Tradeoofs: assertTextPresent, assertElementPresent, assertText

You should now be familiar with these commands, and the mechanics of using them. If not, please refer
to Chapter 4 first. When constructing your tests, you will need to decide

• Do I only check that the text exists on the page? (verify/assertTextPresent)

• Do I only check that the HTML element exists on the page? That is, the text, image, or other
content is not to be checked, only the HTML tag is what is relevant. (verify/assertElementPresent)

• Must I test both, the element and it’s text content? (verify/assertText)

There is no right answer. It depends on the requirements for your test. Which, of course, depend on the
requirements for the application you’re testing. If in doubt, and if the requirements are not clear, you
can go with your best guess and can always change the test later. Most of these are easily changed in
either Sel-IDE or Sel-RC.

Realize that verify/assertText is the most specific test. This can fail if either the HTML element (tag) OR
the text is not what your test is expecting. Sometimes, for instance if HTML changes frequently by your
programmers, verifyTextPresent makes more sense. It can check for the content, but will pass the test
when the programmers change the HTML used to present that text. Alternatively, perhaps your web-
designers are frequently changing the page and you don’t want your test to fail everytime they do this
because the changes themeselves are expected periodically. However, assume you still need to check
that something is on the page, say a paragraph, or heading text, or an image. In this case you can use
verify/assertElementPresent. It will ensure that a particular type of element exists (and if using Xpath
can ensure it exists relative to other objects within the page). But you don’t care what the content is, that
is, a specific image file, or specific text. You only care that some type of image exists.

7.3. Verifying Results 87

Selenium Documentation, Release 1.0

Getting a feel for these types of decisions will come with time and a little experience. They are easy
concepts, and easy to change in your test, but they depend do depend on the requirements of your AUT.
For some projects the requirements are clear and therefore your tests will be clear. For others, not
so much, and you will have to give it your best guess. The purpose of this subsection is to help you
anticipate your needs so you can make these decisions more efficiently.

7.4 Choosing a Location Strategy

You know from the Selenese section there are multiple ways of selecting an object on a page. But what
are the tradeoffs of each of these locator types? Recall we can locate an object using

• the element id

• the element name attribute

• an Xpath statement

• document object model (DOM)

Generally, using an Id locator is more efficient. It also makes your test code more readable, assuming
the Id used by the AUT’s page source is a meaningful one. Using the name attribute also has similar
advantages. Finally, these also give the best performance. Xpath statements have been known to be slow
in Internet Explorer due to limations of IE’s Xpath processor.

Sometimes though, you must use an Xpath locator. If the page source does not have an ID or name
attribute you have no choice but to use a Xpath or DOM locator. It appears at the time of writing that
DOM locators are not commonly used now, and Xpath appears to the preferred choice, possibly because
Xpath provide a rich set of possibilities for identifying an object–it is quite flexible.

There is an advantage to using Xpath or DOM that locating via ID or name attributes do not have. With
Xpath and DOM you can locate an object with respect to another object on the page. For example, if
there is a link that must occur within the second paragragh within a <div> section, you can use Xpath
or DOM to specify this. With ID and name locators, you can only specify that they occur on the page–
somewhere on the page. If you must test that an image displaying the company logo appears at the top
of the page within a header section Xpath may be the better locator.

7.4.1 Locating Dynamic Objects

First, you must understand what a dynamic object is, and to do so, we will contrast that with a static
object. Until now, all the AUT page elements we have been considering have been static objects. These
are objects who’s html page source is the same each time the page is loaded in the browser.

For example,

<a class= "button" id= "adminHomeForm" onclick= "return oamSubmitForm(’adminHomeForm’,

’adminHomeForm:_id38’);" href= "#" >View Archived Allocation Events

This is HTML anchor tag defining a button with and Id attribute of “adminHomeForm”. It’s a fairly
complex anchor tag when compared to most HTML tags, but it is still a static tag. The HTML will be
the same each time this page is loaded in the browser. Its Id remains constant within all instances of this
page. That is, when this page is displayed, this UI element will always have this identifier. So, for your
test script to click this button you simply need to use the following selenium command.

88 Chapter 7. Test Design Considerations

Selenium Documentation, Release 1.0

click adminHomeForm

Or, in Selenium-RC

selenium.click("adminHomeForm");

Your application, however, may generate HTML with Ids that are generated dynamically and therefore
the Id itself varies upon different instances of the webpage under test. For instance, HTML for a dynamic
page element might look like this.

<input type= "checkbox" value= "true" id= "addForm:_id74:_id75:0:_id79:0:checkBox"

name= "addForm:_id74:_id75:0:_id79:0:checkBox" />

This defines a checkbox. Its Id and name attributes (both addForm:_id74:_id75:0:_id79:0:checkBox)
are dynamically generated values. In this case, using a standard locator would look something like the
following.

click addForm:_id74:_id75:0:_id79:0:checkBox

Or, again in Selelenium-RC

selenium.click("addForm:_id74:_id75:0:_id79:0:checkBox);

Given the dynamically generated identifier, this approach would not work. the next time this page is
loaded the identifier will be a different value from the one used in the Selenium command and therefore,
will not be found. The click operation will fail with an “element not found” error.

To begin, a simple solution would be to just use an XPath locator rather than trying to use an Id locator.
So, for the checkbox you can simply use

click //input

Or, if it is not the first input element on the page (which it likely is not) try a more detailed Xpath
statement.

click //input[3]

Or

click //div/p[2]/input[3]

If however, you do need to use the Id to locate the element, a programmed solution is required. Another
solution is to capture this Id from the website itself, before you need to use it in a Selenium command.
It can be done like this.

String[] checkboxIds = selenium.getAllFields(); // Collect all input ids on page.
if(!GenericValidator.IsBlankOrNull(checkboxIds[i])) // If collected id is not null.

{
// If the id starts with addForm
if(checkboxIds[i].indexOf("addForm") > -1) {

selenium.check(checkboxIds[i]);

7.4. Choosing a Location Strategy 89

Selenium Documentation, Release 1.0

}
}

This approach will work only if there is one field whose id has got the text ‘addForm’ appended to it.

Consider one more example of a Dynamic object. A page with two links having the same name (one
which appears on page) and same html name. Now if href is used to click the link, it would always be
clicking on first element. Clicking on the second link can be achieved as follows.

// Flag for second appearance of link.
boolean isSecondInstanceLink = false;

// Desired link.
String editInfo = null;

// Collect all links.
String[] links = selenium.getAllLinks();

// Loop through collected links.
for(String linkID: links) {

// If retrieved link is not null
if(!GenericValidator.isBlankOrNull(linkID)) {

// Find the inner HTML of link.
String editTermSectionInfo = selenium.getEval

("window.document.getElementById(’" +linkID+ "’).innerHTML");

// If retrieved link is expected link.
if(editTermSectionInfo.equalsIgnoreCase("expectedlink")) {

// If it is second appearance of link then save the link id
and break the loop.

if(isSecondInstanceLink) {
editInfo = linkID;
break;

}

// Set the second appearance of Autumn term link to true as
isSecondInstanceLink = true;
}

}
}

// Click on link.
selenium.click(editInfo);

7.4.2 How can I avoid using complex xpath expressions to my test?

If the elements in HTML (button, table, label, etc) have element IDs, then one can reliably retrieve
all elements without ever resorting to xpath. These element IDs should be explicitly created by the
application. But non-descriptive element ID (i.e. id_147) tends to cause two problems: first, each time
the application is deployed, different element ids could be generated. Second, a non-specific element id
makes it hard for automation testers to keep track of and determine which element ids are required for
testing.

90 Chapter 7. Test Design Considerations

Selenium Documentation, Release 1.0

You might consider trying the UI-Element extension in this situation.

http://wiki.openqa.org/display/SIDE/Contributed+Extensions+and+Formats#ContributedExtensionsandFormats-
UIElementLocator

7.4.3 Performance Considerations for Locators

7.4.4 Custom Locators

This section is not yet developed.

7.5 Testing Ajax Applications

We introduced the special characteristics of AJAX technology earlier in this chapter. Basically, a page
element implemented with Ajax is an element that can be dynamically refreshed without having to
refresh the entire page.

7.5.1 Waiting for an AJAX Element

For an AJAX elementm using Selenium’s waitForPageToLoad wouldn’t work since the page is not
actually loaded to refresh the AJAX element. Pausing the test execution for a specified period of time is
also not good because the web element might appear later than expected leading to invalid test failures
(reported failures that aren’t actually failures). A better approach is to wait for a predefined period and
then continue execution as soon as the element is found.

Consider a page which brings a link (link=ajaxLink) on click of a button on page (without refreshing the
page) This could be handled by Selenium using a for loop.

// Loop initialization.
for (int second = 0;; second++) {

// If loop is reached 60 seconds then break the loop.
if (second >= 60) break;

// Search for element "link=ajaxLink" and if available then break loop.

try { if (selenium.isElementPresent("link=ajaxLink")) break; } catch (Exception e) {}

// Pause for 1 second.
Thread.sleep(1000);

}

This certainly isn’t the only solution. AJAX is a common topic in the user group and we suggest
searching previous discussions to see what others have done along with the questions they have posted.

7.6 UI Mapping

A UI map is a mechanism that stores identifiers, or in our case, locators, for an application’s UI elements.
The test script then uses the UI Map for locating the elements to be tested. Basically, a UI map is a
repository of test script objects that correspond to UI elements of the application being tested.

7.5. Testing Ajax Applications 91

http://wiki.openqa.org/display/SIDE/Contributed+Extensions+and+Formats#ContributedExtensionsandFormats-UIElementLocator
http://wiki.openqa.org/display/SIDE/Contributed+Extensions+and+Formats#ContributedExtensionsandFormats-UIElementLocator

Selenium Documentation, Release 1.0

What makes a UI map heplful? It’s primary purpose for making test script management much easier.
When a locator needs to be edited, there is a central location for easily finding that object, rather than
having to search through test script code. Also, it allows changing the identifer in a single place, rather
than having to make the change in multiple places within a test script, or for that matter, in multiple test
scripts.

To summarize, a UI map has two significant advantages.

• Using a centralized location for UI objects instead of having them scattered through out the script.
This makes script maintanence more efficient.

• Cryptic HTML identifiers and names can be given more human-readable names improving the
readability of test scripts.

Consider the following example (in java) of selenium tests for a website:

public void testNew() throws Exception {
selenium.open("http://www.test.com");

selenium.type("loginForm:tbUsername" , "xxxxxxxx");

selenium.click("loginForm:btnLogin");

selenium.click("adminHomeForm:_activitynew");

selenium.waitForPageToLoad("30000");

selenium.click("addEditEventForm:_idcancel");

selenium.waitForPageToLoad("30000");

selenium.click("adminHomeForm:_activityold");

selenium.waitForPageToLoad("30000");
}

This script is incomprehisible to anyone other than those high familier with the AUT’s page source.
Even regular users of application would have difficulty understanding what script does. A better script
would be

public void testNew() throws Exception {
selenium.open("http://www.test.com");

selenium.type(admin.username, "xxxxxxxx");
selenium.click(admin.loginbutton);
selenium.click(admin.events.createnewevent);
selenium.waitForPageToLoad("30000");
selenium.click(admin.events.cancel);
selenium.waitForPageToLoad("30000");
selenium.click(admin.events.viewoldevents);
selenium.waitForPageToLoad("30000");

}

There are no comments provided but it is more comprehensible because of the keywords used in scripts.
(please be aware that UI Map is NOT a replacement for comments! Comments are still important for
documenting automated test.) An even better test script could look like this.

public void testNew() throws Exception {

// Open app url.
selenium.open("http://www.test.com");

92 Chapter 7. Test Design Considerations

Selenium Documentation, Release 1.0

// Provide admin username.
selenium.type(admin.username, "xxxxxxxx");

// Click on Login button.
selenium.click(admin.loginbutton);

// Click on Create New Event button.
selenium.click(admin.events.createnewevent);
selenium.waitForPageToLoad("30000");

// Click on Cancel button.
selenium.click(admin.events.cancel);
selenium.waitForPageToLoad("30000");

// Click on View Old Events button.
selenium.click(admin.events.viewoldevents);
selenium.waitForPageToLoad("30000");

}

The idea is to have a centralized location for objects and using comprehensible names for those objects.
To achieve this, properties files can be used in java. A properties file contains key/value pairs, where
each key and value are strings.

Consider a property file prop.properties which assigns as ‘aliases’ easily understood identifiers for the
HTML objects used earlier.

admin.username = loginForm:tbUsername
admin.loginbutton = loginForm:btnLogin
admin.events.createnewevent = adminHomeForm:_activitynew
admin.events.cancel = addEditEventForm:_idcancel
admin.events.viewoldevents = adminHomeForm:_activityold

The locators will still refer to html objects, but we have introduced a layer of abstraction between the test
script and the UI elements. Values are read from the properties file and used in Test Class to implement
UI Map. For more on Properties files refer to the following link.

7.7 Bitmap Comparison

This section has not been developed yet.

7.7.1 Data Driven Testing

This section needs an introduction and it has not been completed yet.

In Python:

Collection of String values
source = open(" input_file.txt " , " r ")
values = source.readlines()
source.close()
Execute For loop for each String in the values array
for search in values:

sel.open(" / ")

7.7. Bitmap Comparison 93

Selenium Documentation, Release 1.0

sel.type(" q " , search)

sel.click(" btnG ")

sel.waitForPageToLoad(" 30000 ")

self.failUnless(sel.is_text_present(" Results * for " + search))

Why would we want a separate file with data in it for our tests? One important method of testing
concerns running the same test repetetively with differnt data values. This is called Data Driven Testing
and is a very common testing task. Test automation tools, Selenium included, generally handle this as
it’s often a common reason for building test automation to support manual testing methods.

The Python script above opens a text file. This file contains a different search string on each line. The
code then saves this in an array of strings, and at last, it’s iterating over the strings array and doing the
search and assert on each.

This is a very basic example of what you can do, but the idea is to show you things that can easily be
done with either a programming or scripting language when they’re difficult or even impossible to do
using Selenium-IDE.

Refer to Selnium RC wiki for examples on reading data from spread sheet or using data provider capa-
bilities of TestNG with java client driver.

7.8 Handling Errors

Note: This section is not yet developed.

7.8.1 Error Reporting

7.8.2 Recovering From Failure

A quick note though–recognize that your programming language’s exception- handling support can be
used for error handling and recovery.

This section has not been developed yet.

7.8.3 Database Validations

Since you can also do database queries from your favorite programming language, assuming you have
database support functions, why not using them for some data validations/retrieval on the Application
Under Test?

Consider example of Registration process where in registered email address is to be retrieved from
database. Specific cases of establishing DB connection and retrieving data from DB would be:

In Java:

// Load Microsoft SQL Server JDBC driver.
Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");

// Prepare connection url.
String url = "jdbc:sqlserver://192.168.1.180:1433;DatabaseName=TEST_DB" ;

// Get connection to DB.

94 Chapter 7. Test Design Considerations

http://wiki.openqa.org/pages/viewpage.action?pageId=21430298

Selenium Documentation, Release 1.0

public static Connection con =
DriverManager.getConnection(url, "username" , "password");

// Create statement object which would be used in writing DDL and DML
// SQL statement.
public static Statement stmt = con.createStatement();

// Send SQL SELECT statements to the database via the Statement.executeQuery
// method which returns the requested information as rows of data in a
// ResultSet object.

ResultSet result = stmt.executeQuery
("select top 1 email_address from user_register_table");

// Fetch value of "email_address" from "result" object.
String emailaddress = result.getString("email_address");

// Use the fetched value to login to application.
selenium.type("userid" , emailaddress);

This is very simple example of data retrieval from DB in Java. A more complex test could be to validate
that inactive users are not able to login to application. This wouldn’t take too much work from what
you’ve already seen.

7.8. Handling Errors 95

Selenium Documentation, Release 1.0

96 Chapter 7. Test Design Considerations

CHAPTER

EIGHT

SELENIUM-GRID

Please refer to the Selenium Grid website

http://selenium-grid.seleniumhq.org/how_it_works.html

This section is not yet developed. If there is a member of the community who is experienced in Selenium-
Grid, and would like to contribute, please contact the Documentation Team. We would love to have you
contribute.

97

http://selenium-grid.seleniumhq.org/how_it_works.html

Selenium Documentation, Release 1.0

98 Chapter 8. Selenium-Grid

CHAPTER

NINE

USER-EXTENSIONS

NOTE: This section is close to completion, but it has not been reviewed and edited.

9.1 Introduction

It can be quite simple to extend Selenium, adding your own actions, assertions and locator-strategies.
This is done with JavaScript by adding methods to the Selenium object prototype, and the PageBot object
prototype. On startup, Selenium will automatically look through methods on these prototypes, using
name patterns to recognize which ones are actions, assertions and locators. The following examples try
to give an indication of how Selenium can be extended with JavaScript.

9.2 Actions

All methods on the Selenium prototype beginning with “do” are added as actions. For each action foo
there is also an action fooAndWait registered. An action method can take up to two parameters, which
will be passed the second and third column values in the test. Example: Add a “typeRepeated” action to
Selenium, which types the text twice into a text box.

Selenium.prototype.doTypeRepeated = function(locator, text) {
// All locator-strategies are automatically handled by "findElement"
var element = this.page().findElement(locator);

// Create the text to type
var valueToType = text + text;

// Replace the element text with the new text
this.page().replaceText(element, valueToType);

};

9.3 Accessors/Assertions

All getFoo and isFoo methods on the Selenium prototype are added as accessors (storeFoo). For each
accessor there is an assertFoo, verifyFooa nd waitForFoo registered. An assert method can take up
to 2 parameters, which will be passed the second and third column values in the test. You can also
define your own assertions literally as simple “assert” methods, which will also auto-generate “verify”
and “waitFor” commands. Example: Add a valueRepeated assertion, that makes sure that the element

99

Selenium Documentation, Release 1.0

value consists of the supplied text repeated. The 2 commands that would be available in tests would be
assertValueRepeated and verifyValueRepeated.

Selenium.prototype.assertValueRepeated = function(locator, text) {
// All locator-strategies are automatically handled by "findElement"
var element = this.page().findElement(locator);

// Create the text to verify
var expectedValue = text + text;

// Get the actual element value
var actualValue = element.value;

// Make sure the actual value matches the expected
Assert.matches(expectedValue, actualValue);

};

9.3.1 Automatic availability of storeFoo, assertFoo, assertNotFoo, waitForFoo
and waitForNotFoo for every getFoo

All getFoo and isFoo methods on the Selenium prototype automatically result in the availability of store-
Foo, assertFoo, assertNotFoo, verifyFoo, verifyNotFoo, waitForFoo, and waitForNotFoo commands.
Example, if you add a getTextLength() method, the following commands will automati-
cally be available: storeTextLength, assertTextLength, assertNotTextLength,
verifyTextLength, verifyNotTextLength, waitForTextLength, and
waitForNotTextLength commands.

Selenium.prototype.getTextLength = function(locator, text) {
return this.getText(locator).length;

};

Also note that the assertValueRepeated method described above could have been implemented
using isValueRepeated, with the added benefit of also automatically getting assertNotValueRe-
peated, storeValueRepeated, waitForValueRepeated and waitForNotValueRepeated.

9.4 Locator Strategies

All locateElementByFoo methods on the PageBot prototype are added as locator-strategies. A locator
strategy takes 2 parameters, the first being the locator string (minus the prefix), and the second being the
document in which to search. Example: Add a “valuerepeated=” locator, that finds the first element a
value attribute equal to the the supplied value repeated.

// The "inDocument" is a the document you are searching.
PageBot.prototype.locateElementByValueRepeated = function(text, inDocument) {

// Create the text to search for
var expectedValue = text + text;

// Loop through all elements, looking for ones that have
// a value === our expected value
var allElements = inDocument.getElementsByTagName("*");
for (var i = 0; i < allElements.length; i++) {

var testElement = allElements[i];

100 Chapter 9. User-Extensions

Selenium Documentation, Release 1.0

if (testElement.value && testElement.value === expectedValue) {
return testElement;

}
}
return null;

};

9.5 Using User-Extensions With Selenium-IDE

User-extensions are very easy to use with the selenium IDE.

1. Create your user extension and save it as user-extensions.js. While this name isn’t technically
necessary, it’s good practice to keep things consistent.

2. Open Firefox and open Selenium-IDE.

3. Click on Tools, Options

4. In Selenium Core Extensions click on Browse and find the user-extensions. js file. Click on OK.

5. Your user-extension will not yet be loaded, you must close and restart Selenium-IDE.

6. In your empty test, create a new command, your user-extension should now be an options in the
Commands dropdown.

9.6 Using User-Extensions With Selenium RC

If you Google “Selenium RC user-extension” ten times you will find ten different approaches to using
this feature. Below, is the official Selenium suggested approach.

9.6.1 Example

C#

1. Place your user extension in the same directory as your Selenium Server.

2. If you are using client code generated by the Selenium-IDE you will need to make a
couple small edits. First, you will need to create an HttpCommandProcessor object
with class scope (outside the SetupTest method, just below private StringBuilder
verificationErrors;)

HttpCommandProcessor proc;

1. Next, instantiate that HttpCommandProcessor object as you would the
DefaultSelenium object. This can be done in the test setup.

proc = new HttpCommandProcessor("localhost" , 4444, "*iexplore" , "http://google.ca/");

9.5. Using User-Extensions With Selenium-IDE 101

Selenium Documentation, Release 1.0

1. Instantiate the DefaultSelenium object using the HttpCommandProcessor object you created.

selenium = new DefaultSelenium(proc);

1. Within your test code, execute your user-extension by calling it with the DoCommand() method
of HttpCommandProcessor. This method takes two arguments: a string to identify the user-
extension method you want to use and string array to pass arguments. Notice that the first letter
of your function is lower case, regardless of the capitalization in your user-extension. Selenium
automatically does this to keep common JavaScript naming conventions. Because JavaScript is
case sensitive, your test will fail if you begin this command with a capital. inputParams is the
array of arguments you want to pass to the JavaScript user-extension. In this case there is only
one string in the array because there is only one parameter for our user extension, but a longer
array will map each index to the corresponding user-extension parameter. Remember that user
extensions designed for Selenium-IDE will only take two arguments.

string[] inputParams = { "Hello World" };
proc.DoCommand("alertWrapper" , inputParams);

1. Start the test server using the -userExtensions argument and pass in your
user-extensinos.js file.

java -jar selenium-server.jar -userExtensions user-extensions.js

using System;
using System.Text;
using System.Text.RegularExpressions;
using System.Threading;
using NUnit.Framework;
using Selenium;

namespace SeleniumTests
{

[TestFixture]
public class NewTest
{

private ISelenium selenium;
private StringBuilder verificationErrors;
private HttpCommandProcessor proc;

[SetUp]
public void SetupTest()
{

proc = new HttpCommandProcessor("localhost" , 4444, "*iexplore" , "http://google.ca/");
selenium = new DefaultSelenium(proc);
//selenium = new DefaultSelenium("localhost", 4444, "*iexplore", "http://google.ca/");
selenium.Start();
verificationErrors = new StringBuilder();

}

102 Chapter 9. User-Extensions

Selenium Documentation, Release 1.0

[TearDown]
public void TeardownTest()
{

try
{

selenium.Stop();
}
catch (Exception)
{

// Ignore errors if unable to close the browser
}
Assert.AreEqual("" , verificationErrors.ToString());

}

[Test]
public void TheNewTest()
{

selenium.Open("/");

string[] inputParams = { "Hello World" ,};
proc.DoCommand("alertWrapper" , inputParams);

}
}

}

End

9.6. Using User-Extensions With Selenium RC 103

Selenium Documentation, Release 1.0

104 Chapter 9. User-Extensions

CHAPTER

TEN

SELENIUM 2.0 AND WEBDRIVER

The Selenium developers are working towards a Selenium 2.0 release. The primary new feature will
be the integration of the WebDriver API into Selenium-RC. This will address a number of Selenium
1.0 limitations along with providing an alternative programming interface. The goal is to develop a
standardized Selenium API that provides additional support for a larger number of browsers along with
improved support for advanced web-app testing problems.

The best explanation for why WebDriver and Selenium are merging was detailed by Simon Stewart, the
creator of WebDriver, in a joint email to the WebDriver and Selenium community on August 6, 2009.

“Why are the projects merging? Partly because webdriver addresses some shortcomings in
selenium (by being able to bypass the JS sandbox, for example. And we’ve got a gorgeous
API), partly because selenium addresses some shortcomings in webdriver (such as support-
ing a broader range of browsers) and partly because the main selenium contributors and I
felt that it was the best way to offer users the best possible framework.”

PLEASE NOTE: Selenium 2.0 is currently under development. The WebDriver integration is currently
undergoing testing. We encourage advanced Selenium users to try it out. Users new to Selenium, should
wait until Selenium 2.0 is officially released.

10.1 What is WebDriver?

WebDriver uses a different underlying framework from Selenium’s javascript Selenium-Core. It also
provides an alternative API with functionality not supported in Selenium-RC. WebDriver does not de-
pend on a javascript core embedded within the browser, therefore it is able to avoid some long-running
Selenium limitations.

WebDriver’s goal is to provide an API that establishes

• A well-designed standard programming interface for web-app testing.

• Improved consistency between browsers.

• Additional functionality addressing testing problems not well-supported in Selenium 1.0.

The Selenium developers strive to continuously improve Selenium. Integrating WebDriver is another
step in that process. The developers of Selenium and of WebDriver felt they could make significant
gains for the Open Source test automation community be combining forces and merging their ideas and
technologies. Integrating WebDriver into Selenium is the current result of those efforts.

105

Selenium Documentation, Release 1.0

10.2 When to Use WebDriver?

One should use WebDriver when requiring improved support for

• Mult-browser testing including improved functionality for browsers not well-supported by
Selenium-1.0.

• Handling multiple frames, multiple browser windows, popups, and alerts.

• Page navigation.

• Drag-and-drop.

• AJAX-based UI elements.

10.3 The 5 Minute Getting Started Guide

WebDriver is a tool for automating testing web applications, and in particular to verify that they work
as expected. It aims to provide a friendly API that’s easy to explore and understand, which will help
make your tests easier to read and maintain. It’s not tied to any particular test framework, so it can be
used equally well with JUnit, TestNG or from a plain old “main” method. This “Getting Started” guide
introduces you to WebDriver’s Java API and helps get you started becoming familiar with it.

Start by Downloading the latest binaries and unpack them into a directory. From now on, we’ll refer to
that as $WEBDRIVER_HOME. Now, open your favourite IDE and:

• Start a new Java project in your favourite IDE

• Add all the JAR files under $WEBDRIVER_HOME to the CLASSPATH

You can see that WebDriver acts just as a normal Java library does: it’s entirely self-contained, and you
don’t need to remember to start any additional processes or run any installers before using it.

You’re now ready to write some code. An easy way to get started is this example, which searches for
the term “Cheese” on Google and then outputs the result page’s title to the console. You’ll start by using
the HtmlUnit Driver. This is a pure Java driver that runs entirely in-memory. Because of this, you won’t
see a new browser window open.

package org.openqa.selenium.example;

import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.htmlunit.HtmlUnitDriver;

public class Example {
public static void main(String[] args) {

// Create a new instance of the html unit driver
// Notice that the remainder of the code relies on the interface,
// not the implementation.
WebDriver driver = new HtmlUnitDriver();

// And now use this to visit Google
driver.get("http://www.google.com");

106 Chapter 10. Selenium 2.0 and WebDriver

http://code.google.com/p/selenium/downloads/list

Selenium Documentation, Release 1.0

// Find the text input element by its name
WebElement element = driver.findElement(By.name("q"));

// Enter something to search for
element.sendKeys("Cheese!");

// Now submit the form. WebDriver will find the form for us from the element
element.submit();

// Check the title of the page
System.out.println("Page title is: " + driver.getTitle());

}
}

Compile and run this. You should see a line with the title of the Google search results as output on the
console. Congratulations, you’ve managed to get started with WebDriver!

In this next example, you shall use a page that requires Javascript to work properly, such as Google
Suggest. You will also be using the Firefox Driver. Make sure that Firefox is installed on your machine
and is in the normal location for your OS.

Once that’s done, create a new class called GoogleSuggest, which looks like:

package org.openqa.selenium.example;

import java.util.List;

import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.RenderedWebElement;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.firefox.FirefoxDriver;

public class GoogleSuggest {
public static void main(String[] args) throws Exception {

// The Firefox driver supports javascript
WebDriver driver = new FirefoxDriver();

// Go to the Google Suggest home page
driver.get("http://www.google.com/webhp?complete=1&hl=en");

// Enter the query string "Cheese"
WebElement query = driver.findElement(By.name("q"));

query.sendKeys("Cheese");

// Sleep until the div we want is visible or 5 seconds is over
long end = System.currentTimeMillis() + 5000;
while (System.currentTimeMillis() < end) {

// Browsers which render content (such as Firefox and IE)
// return "RenderedWebElements"
RenderedWebElement resultsDiv = (RenderedWebElement) driver.findElement(By.className("gac_m"));

// If results have been returned,
// the results are displayed in a drop down.
if (resultsDiv.isDisplayed()) {

break;

10.3. The 5 Minute Getting Started Guide 107

Selenium Documentation, Release 1.0

}
}

// And now list the suggestions
List<WebElement> allSuggestions = driver.findElements(By.xpath("//td[@class=’gac_c’]"));

for (WebElement suggestion : allSuggestions) {
System.out.println(suggestion.getText());

}
}

}

When you run this program, you’ll see the list of suggestions being printed to the console. That’s all
there is to using WebDriver!

Hopefully, this will have whet your appetite for more. In the Next Steps section you will learn more about
how to use WebDriver for things such as navigating forward and backward in your browser’s history,
and how to use frames and windows. It also provides a more complete discussion of the examples than
The 5 Minute Getting Started Guide. If you’re ready, let’s take the Next Steps!

10.4 Next Steps For Using WebDriver

10.4.1 Which Implementation of WebDriver Should I Use?

WebDriver is the name of the key interface against which tests should be written, but there are several
implementations. These are:

Name of driver Available on which OS? Class to instantiate
HtmlUnit Driver All org.openqa.selenium.htmlunit.HtmlUnitDriver
Firefox Driver All org.openqa.selenium.firefox.FirefoxDriver
Internet Explorer Driver Windows org.openqa.selenium.ie.InternetExplorerDriver
Chrome Driver All org.openqa.selenium.chrome.ChromeDriver

You can find out more information about each of these by following the links in the table. Which you use
depends on what you want to do. For sheer speed, the HtmlUnit Driver is great, but it’s not graphical,
which means that you can’t watch what’s happening. As a developer you may be comfortable with this,
but sometimes it’s good to be able to test using a real browser, especially when you’re showing a demo
of your application (or running the tests) for an audience. Often, this idea is referred to as “safety”, and
it falls into two parts. Firstly, there’s “actual safety”, which refers to whether or not the tests works as
they should. This can be measured and quantified. Secondly, there’s “perceived safety”, which refers to
whether or not an observer believes the tests work as they should. This varies from person to person, and
will depend on their familiarity with the application under test, WebDriver, and your testing framework.

To support higher “perceived safety”, you may wish to choose a driver such as the Firefox Driver. This
has the added advantage that this driver actually renders content to a screen, and so can be used to
detect information such as the position of an element on a page, or the CSS properties that apply to
it. However, this additional flexibility comes at the cost of slower overall speed. By writing your tests
against the WebDriver interface, it is possible to pick the most appropriate driver for a given test.

To keep things simple, let’s start with the HtmlUnit Driver:

WebDriver driver = new HtmlUnitDriver();

108 Chapter 10. Selenium 2.0 and WebDriver

Selenium Documentation, Release 1.0

10.4.2 Navigating

The first thing you’ll want to do with WebDriver is navigate to a page. The normal way to do this is by
calling “get”:

driver.get("http://www.google.com");

WebDriver will wait until the page has fully loaded (that is, the “onload” event has fired) before returning
control to your test or script. It’s worth noting that if your page uses a lot of AJAX on load then
WebDriver may not know when it has completely loaded. If you need to ensure such pages are fully
loaded then you can use “waits”.

10.4.3 Interacting With the Page

Just being able to go to places isn’t terribly useful. What we’d really like to do is to interact with
the pages, or, more specifically, the HTML elements within a page. First of all, we need to find one.
WebDriver offers a number of ways of finding elements. For example, given an element defined as:

<input type= "text" name= "passwd" id= "passwd-id" />

you could find it using any of:

WebElement element;
element = driver.findElement(By.id("passwd-id"));

element = driver.findElement(By.name("passwd"));

element = driver.findElement(By.xpath("//input[@id=’passwd-id’]"));

You can also look for a link by its text, but be careful! The text must be an exact match! You should
also be careful when using XPATH in WebDriver. If there’s more than one element that matches the
query, then only the first will be returned. If nothing can be found, a NoSuchElementException
will be thrown. WebDriver has an “Object-based” API; we represent all types of elements using the
same interface: Web Element. This means that although you may see a lot of possible methods you
could invoke when you hit your IDE’s auto-complete key combination, not all of them will make sense
or be valid. Don’t worry! WebDriver will attempt to do the Right Thing, and if you call a method that
makes no sense (“setSelected()” on a “meta” tag, for example) an exception will be thrown.

So, you’ve got an element. What can you do with it? First of all, you may want to enter some text into a
text field:

element.sendKeys("some text");

You can simulate pressing the arrow keys by using the “Keys” class:

element.sendKeys(" and some" , Keys.ARROW_DOWN);

It is possible to call sendKeys on any element, which makes it possible to test keyboard shortcuts such as
those used on GMail. A side-effect of this is that typing something into a text field won’t automatically
clear it. Instead, what you type will be appended to what’s already there. You can easily clear the
contents of a text field or textarea:

10.4. Next Steps For Using WebDriver 109

http://selenium.googlecode.com/svn/webdriver/javadoc/org/openqa/selenium/WebElement.html

Selenium Documentation, Release 1.0

element.clear();

Filling In Forms -~~~~~~~~~~~~~~~

We’ve already seen how to enter text into a textarea or text field, but what about the other elements? You
can “toggle” the state of checkboxes, and you can use “setSelected” to set something like an OPTION
tag selected. Dealing with SELECT tags isn’t too bad:

WebElement select = driver.findElement(By.xpath("//select"));

List<WebElement> allOptions = select.findElements(By.tagName("option"));
for (WebElement option : allOptions) {

System.out.println(String.format("Value is: %s" , option.getValue()));
option.setSelected();

}

This will find the first “SELECT” element on the page, and cycle through each of it’s OPTIONs in
turn, printing out their values, and selecting each in turn. As you can see, this isn’t the most efficient
way of dealing with SELECT elements. WebDriver’s support classes include one called “Select”, which
provides useful methods for interacting with these.

Select select = new Select(driver.findElement(By.xpath("//select")));
select.deselectAll();
select.selectByVisibleText("Edam");

This will deselect all OPTIONs from the first SELECT on the page, and then select the OPTION with
the displayed text of “Edam”.

Once you’ve finished filling out the form, you probably want to submit it. One way to do this would be
to find the “submit” button and click it:

driver.findElement(By.id("submit")).click();
// Assume the button has the ID "submit" :)

Alternatively, WebDriver has the convenience method “submit” on every element. If you call this on an
element within a form, WebDriver will walk up the DOM until it finds the enclosing form and then calls
submit on that. If the element isn’t in a form, then the NoSuchElementException will be thrown:

element.submit();

10.4.4 Getting Visual Information And Drag And Drop

Sometimes you want to extract some visual information out of an element, perhaps to see if it’s
visible or where it is on screen. You can find out this information by casting the element to a
RenderedWebElement:

WebElement plain = driver.findElement(By.name("q"));
RenderedWebElement element = (RenderedWebElement) element;

Not all drivers render their content to the screen (such as the HtmlUnit Driver), so it’s not safe to assume
that the cast will work, but if it does you can gather additional information such as the size and location

110 Chapter 10. Selenium 2.0 and WebDriver

Selenium Documentation, Release 1.0

of the element. In addition, you can use drag and drop, either moving an element by a certain amount,
or on to another element:

RenderedWebElement element = (RenderedWebElement) driver.findElement(By.name("source"));
RenderedWebElement target = (RenderedWebElement) driver.findElement(By.name("target"));

element.dragAndDropOn(target);

10.4.5 Moving Between Windows and Frames

It’s rare for a modern web application not to have any frames or to be constrained to a single window.
WebDriver supports moving between named windows using the “switchTo” method:

driver.switchTo().window("windowName");

All calls to driver will now be interpreted as being directed to the particular window. But how do you
know the window’s name? Take a look at the javascript or link that opened it:

Click here to open a new window

Alternatively, you can pass a “window handle” to the “switchTo().window()” method. Knowing this, it’s
possible to iterate over every open window like so:

for (String handle : driver.getWindowHandles()) {
driver.switchTo().window(handle);

}

You can also swing from frame to frame (or into iframes):

driver.switchTo().frame("frameName");

It’s possible to access subframes by separating the path with a dot, and you can specify the frame by its
index too. That is:

driver.switchTo().frame("frameName.0.child");

would go to the frame named “child” of the first subframe of the frame called “frameName”. All frames
are evaluated as if from *top*.

10.4.6 Navigation: History and Location

Earlier, we covered navigating to a page using the “get” command (
driver.get("http://www.example.com")) As you’ve seen, WebDriver has a number
of smaller, task-focused interfaces, and navigation is a useful task. Because loading a page is such a
fundamental requirement, the method to do this lives on the main WebDriver interface, but it’s simply a
synonym to:

driver.navigate().to("http://www.example.com");

10.4. Next Steps For Using WebDriver 111

Selenium Documentation, Release 1.0

To reiterate: “navigate().to()” and “get()” do exactly the same thing. One’s just a lot easier to
type than the other!

The “navigate” interface also exposes the ability to move backwards and forwards in your browser’s
history:

driver.navigate().forward();
driver.navigate().back();

Please be aware that this functionality depends entirely on the underlying browser. It’s just possible that
something unexpected may happen when you call these methods if you’re used to the behaviour of one
browser over another.

10.4.7 Cookies

Before we leave these next steps, you may be interested in understanding how to use cookies. First of
all, you need to be on the domain that the cookie will be valid for:

// Go to the correct domain
driver.get("http://www.example.com");

// Now set the cookie. This one’s valid for the entire domain
Cookie cookie = new Cookie("key" , "value");
driver.manage().addCookie(cookie);

// And now output all the available cookies for the current URL
Set<Cookie> allCookies = driver.manage().getCookies();
for (Cookie loadedCookie : allCookies) {

System.out.println(String.format("%s -> %s" , loadedCookie.getName(), loadedCookie.getValue()));
}

10.4.8 Next, Next Steps!

This has been a high level walkthrough of WebDriver and some of its key capabilities. You may want to
look at the Test Design Considerations chapter to get some ideas about how you can reduce the pain of
maintaining your tests and how to make your code more modular.

10.5 WebDriver Implementations

10.5.1 HtmlUnit Driver

This is currently the fastest and most lightweight implementation of WebDriver. As the name suggests,
this is based on HtmlUnit.

Pros

• Fastest implementation of WebDriver

• A pure Java solution and so it is platform independent.

• Supports JavaScript

112 Chapter 10. Selenium 2.0 and WebDriver

Selenium Documentation, Release 1.0

Cons

• Emulates other browser’s JavaScript behaviour (see below)

JavaScript in the HtmlUnit Driver

None of the popular browsers uses the JavaScript engine used by HtmlUnit (Rhino). If you test
JavaScript using HtmlUnit the results may differ significantly from those browsers.

When we say “JavaScript” we actually mean “JavaScript and the DOM”. Although the DOM is defined
by the W3C each browser out there has its own quirks and differences in their implementation of the
DOM and in how JavaScript interacts with it. HtmlUnit has an impressively complete implementation
of the DOM and has good support for using JavaScript, but it is no different from any other browser: it
has its own quirks and differences from both the W3C standard and the DOM implementations of the
major browsers, despite its ability to mimic other browsers.

With WebDriver, we had to make a choice; do we enable HtmlUnit’s JavaScript capabilities and run
the risk of teams running into problems that only manifest themselves there, or do we leave JavaScript
disabled, knowing that there are more and more sites that rely on JavaScript? We took the conservative
approach, and by default have disabled support when we use HtmlUnit. With each release of both
WebDriver and HtmlUnit, we reassess this decision: we hope to enable JavaScript by default on the
HtmlUnit at some point.

Enabling JavaScript

If you can’t wait, enabling JavaScript support is very easy:

HtmlUnitDriver driver = new HtmlUnitDriver();
driver.setJavascriptEnabled(true);

This will cause the HtmlUnit Driver to emulate Internet Explorer’s JavaScript handling by default.

10.5.2 Firefox Driver

Pros

• Runs in a real browser and supports JavaScript

• Faster than the Internet Explorer Driver

Cons

• Slower than the HtmlUnit Driver

Before Going Any Further

The Firefox Driver contains everything it needs in the JAR file. If you’re just interested in using this
driver, then all you need to do is put the webdriver-firefox.jar or webdriver-all.jar on
your CLASSPATH, and WebDriver will do everything else for you.

If you want to dig deeper, though, carry on reading!

10.5. WebDriver Implementations 113

Selenium Documentation, Release 1.0

Important System Properties

The following system properties (read using System.getProperty() and set using
System.setProperty() in Java code or the -DpropertyName=value command line
flag) are used by the Firefox Driver:

Property What it means
web-
driver.firefox.bin

The location of the binary used to control Firefox.

web-
driver.firefox.profile

The name of the profile to use when starting Firefox. This defaults to
WebDriver creating an anonymous profile

web-
driver.reap_profile

Should be “true” if temporary files and profiles should not be deleted

Normally the Firefox binary is assumed to be in the default location for your particular operating system:
OS Expected Location of Firefox
Linux firefox (found using “which”)
Mac /Applications/Firefox.app/Contents/MacOS/firefox
Windows XP %PROGRAMFILES%\Mozilla Firefox\firefox.exe
Windows Vista \Program Files (x86)\Mozilla Firefox\firefox.exe

By default, the Firefox driver creates an anonymous profile

Installing a Downloaded Binary

The “wedriver-all.zip” which may be downloaded from the website, contains all the dependencies (in-
cluding the common library) required to run the Firefox Driver. In order to use it:

• Copy all the “jar” files on to your CLASSPATH.

10.5.3 Internet Explorer Driver

This driver has been tested with Internet Explorer 6, 7 and 8 on XP. It has also been successfully tested
on Vista.

Pros

• Runs in a real browser and supports JavaScript

Cons

• Obviously the Internet Explorer Driver will only work on Windows!

• Comparatively slow (though still pretty snappy :)

Installing

Simply add webdriver-all.jar to your CLASSPATH. You do not need to run an installer before
using the Internet Explorer Driver, though some configuration is required.

114 Chapter 10. Selenium 2.0 and WebDriver

Selenium Documentation, Release 1.0

Required Configuration

Add every site you intend to visit to your “Trusted Sites” If you do not do this, then you will not be able
to interact with the page.

10.5.4 Chrome Driver

See below for instructions on how to install the Chrome Driver.

Note that Chrome Driver is one of the newest drivers. Please report any problems through the issue
tracker.

Pros

• Runs in a real browser and supports JavaScript

• Because Chrome is a Webkit-based browser, the Chrome Driver may allow you to verify that your
site works in Safari. Note that since Chrome uses its own V8 JavaScript engine rather than Safari’s
Nitro engine, JavaScript execution may differ.

Cons

• Slower than the HtmlUnit Driver

Before Going Any Further

The Chrome Driver contains everything it needs in the JAR file. If you’re just interested in using this
driver, then all you need to do is put webdriver-all.jar on your CLASSPATH, and WebDriver
will do everything else for you.

The Chrome Driver_ works with Google Chrome version 4.0 and above.

Important System Properties

The following system properties (read using System.getProperty() and set using
System.setProperty() in Java code or the -DpropertyName=value command line
flag) are used by the Chrome Driver:

Property What it means
webdriver.chrome.bin The location of the binary used to control Chrome.
webdriver.reap_profile Should be “true” if temporary files and profiles should not be deleted

Normally the Chrome binary is assumed to be in the default location for your particular operating system:

OS Expected Location of Chrome
Linux /usr/bin/google-chrome
Mac /Applications/Google Chrome.app/Contents/MacOS/GoogleChrome or

/User/:username/:as_to_the_left
Windows
XP

%HOMEPATH%\Local Settings\Application
Data\Google\Chrome\Application\chrome.exe

Windows
Vista

C:\Users%USERNAME%\AppData\Local\Google\Chrome\Application\chrome.exe

10.5. WebDriver Implementations 115

http://code.google.com/p/selenium/issues/list
http://code.google.com/p/selenium/issues/list

Selenium Documentation, Release 1.0

Installing a Downloaded Binary

The “wedriver-all.zip” which may be downloaded from the website, contains all the dependencies re-
quired to run the Chrome Driver. In order to use it, copy all the “jar” files on to your CLASSPATH.

10.6 Emulating Selenium RC

The Java version of WebDriver provides an implementation of the Selenium RC API. It is used like so:

// You may use any WebDriver implementation. Firefox is used here as an example
WebDriver driver = new FirefoxDriver();

// A "base url", used by selenium to resolve relative URLs
String baseUrl = "http://www.google.com" ;

// Create the Selenium implementation
Selenium selenium = new WebDriverBackedSelenium(driver, baseUrl);

// Perform actions with selenium
selenium.open("http://www.google.com");

selenium.type("name=q" , "cheese");

selenium.click("name=btnG");

// And get the underlying WebDriver implementation back. This will refer to the
// same WebDriver instance as the "driver" variable above.
WebDriver driverInstance = ((WebDriverBackedSelenium) selenium).getUnderlyingWebDriver();

10.6.1 Pros

• Allows for the WebDriver and Selenium APIs to live side-by-side

• Provides a simple mechanism for a managed migration from the Selenium RC API to WebDriver’s

• Does not require the standalone Selenium RC server to be run

10.6.2 Cons

• Does not implement every method

• More advanced Selenium usage (using “browserbot” or other built-in JavaScript methods from
Selenium Core) may not work

• Some methods may be slower due to underlying implementation differences

10.6.3 Backing WebDriver with Selenium

WebDriver doesn’t support as many browsers as Selenium RC does, so in order to provide that support
while still using the WebDriver API, you can make use of the SeleneseCommandExecutor It is
done like this:

116 Chapter 10. Selenium 2.0 and WebDriver

Selenium Documentation, Release 1.0

Capabilities capabilities = new DesiredCapabilities()
capabilities.setBrowserName("safari");

CommandExecutor executor = new SeleneseCommandExecutor("http:localhost:4444/" , "http://www.google.com/" , capabilities);
WebDriver driver = new RemoteWebDriver(executor, capabilities);

There are currently some major limitations with this approach, notably that findElements doesn’t work
as expected. Also, because we’re using Selenium Core for the heavy lifting of driving the browser, you
are limited by the JavaScript sandbox.

10.7 Tips and Tricks

10.7.1 Using Drag and Drop

It may not be immediately obvious, but if you’re using a browser that supports it you can cast a
WebElement to RenderedWebElement and then it’s easy to do drag and drop:

// Note the casts
RenderedWebElement from = (RenderedWebElement) driver.findElement(By.id("one"));
RenderedWebElement to = (RenderedWebElement) driver.findElement(By.id("two"));

from.dragAndDropOn(to);

Currently, only the Firefox Driver supports this, but you should also expect support for the Internet
Explorer Driver too.

10.7.2 Changing the user agent

This is easy with the Firefox Driver:

FirefoxProfile profile = new FirefoxProfile();
profile.addAdditionalPreference("general.useragent.override" , "some UA string");
WebDriver driver = new FirefoxDriver(profile);

10.7.3 Tweaking an existing Firefox profile

Suppose that you wanted to modify the user agent string (as above), but you’ve got a tricked out Firefox
profile that contains dozens of useful extensions. There are two ways to obtain this profile. Assuming
that the profile has been created using Firefox’s profile manager (firefox -ProfileManager):

ProfileIni allProfiles = new ProfilesIni();
FirefoxProfile profile = allProfiles.getProfile("WebDriver");

profile.setPreferences("foo.bar" , 23);
WebDriver driver = new FirefoxDriver(profile);

Alternatively, if the profile isn’t already registered with Firefox:

File profileDir = new File("path/to/top/level/of/profile");
FirefoxProfile profile = new FirefoxProfile(profileDir);
profile.addAdditionalPreferences(extraPrefs);

10.7. Tips and Tricks 117

Selenium Documentation, Release 1.0

WebDriver driver = new FirefoxDriver(profile);
Enabling features that might not be wise to use in Firefox

As we develop features in the Firefox Driver, we expose the ability to use them. For example, until we
feel native events are stable on Firefox for Linux, they are disabled by default. To enable them:

FirefoxProfile profile = new FirefoxProfile();
profile.setEnableNativeEvents(true);
WebDriver driver = new FirefoxDriver(profile);

10.8 How XPATH Works in WebDriver

At a high level, WebDriver uses a browser’s native XPath capabilities wherever possible. On those
browsers that don’t have native XPath support, we have provided our own implementation. This can
lead to some unexpected behaviour unless you are aware of the differences in the various xpath engines.

Driver Tag and Attribute
Name

Attribute Values Native XPath
Support

HtmlUnit Driver Lower-cased As they appear in the
HTML

Yes

Internet Explorer
Driver

Lower-cased As they appear in the
HTML

No

Firefox Driver Case insensitive As they appear in the
HTML

Yes

This is a little abstract, so for the following piece of HTML:

<input type= "text" name= "example" />

<INPUT type= "text" name= "other" />

The following number of matches will be found

XPath expression HtmlUnit Driver Firefox Driver Internet Explorer Driver
//input 1 (“example”) 2 2
//INPUT 0 2 0

10.8.1 Matching Implicit Attributes

Sometimes HTML elements do not need attributes to be explicitly declared because they will default to
known values. For example, the “input” tag does not require the “type” attribute because it defaults to
“text”. The rule of thumb when using xpath in WebDriver is that you should not expect to be able to
match against these implicit attributes.

10.9 Getting and Using WebDriver

10.9.1 From a New Download

Unpack the “webdriver-all.zip” you can download from the site, and add all the JARs to your
CLASSPATH. This will give you the Chrome Driver, Firefox Driver, HtmlUnit Driver, Internet Ex-

118 Chapter 10. Selenium 2.0 and WebDriver

Selenium Documentation, Release 1.0

plorer Driver, Remote Web Driver client and the support packages. The support packages give you
useful helper classes, such as the LiftStyleApi and the PageFactory.

10.9.2 With Maven

If you want to use the HtmlUnit Driver, add the following dependency to your pom.xml:

<dependency>
<groupId>org.seleniumhq.webdriver</groupId>
<artifactId>webdriver-htmlunit</artifactId>
<version>0.9.7376</version>

</dependency>

If you want to use the Firefox Driver, you need to add the following dependency to your pom.xml:

<dependency>
<groupId>org.seleniumhq.webdriver</groupId>
<artifactId>webdriver-firefox</artifactId>
<version>0.9.7376</version>

</dependency>

If you want to use the Internet Explorer Driver, you need to add the following dependency to your
pom.xml:

<dependency>
<groupId>org.seleniumhq.webdriver</groupId>
<artifactId>webdriver-ie</artifactId>
<version>0.9.7376</version>

</dependency>

If you want to use the Chrome Driver, you need to add the following dependency to your pom.xml:

<dependency>
<groupId>org.seleniumhq.webdriver</groupId>
<artifactId>webdriver-chrome</artifactId>
<version>0.9.7376</version>

</dependency>

Finally, if you like to use any of our support classes, you should add the following dependency to your
pom.xml:

<dependency>
<groupId>org.seleniumhq.webdriver</groupId>
<artifactId>webdriver-support</artifactId>
<version>0.9.7376</version>

</dependency>

10.10 Roadmap

The roadmap for WebDriver is available here

10.10. Roadmap 119

http://code.google.com/p/selenium/wiki/RoadMap

Selenium Documentation, Release 1.0

10.11 Further Resources

You can find further resources for WebDriver in WebDriver’s wiki

Appendixes:

120 Chapter 10. Selenium 2.0 and WebDriver

http://code.google.com/p/selenium/wiki/FurtherResources

CHAPTER

ELEVEN

.NET CLIENT DRIVER
CONFIGURATION

.NET client Driver can be used with Microsoft Visual Studio. To Configure it with Visual do as Follow-
ing.

• Launch Visual Studio and navigate to File > New > Project.

• Select Visual C# > Class Library > Name your project > Click on OK button.

121

Selenium Documentation, Release 1.0

• A Class (.cs) is created. Rename it as appropriate.

• Under right hand pane of Solution Explorer right click on References > Add References.

122 Chapter 11. .NET client driver configuration

Selenium Documentation, Release 1.0

• Select following dll files - nmock.dll, nunit.core.dll, nunit.framework.dll,ThoughtWorks.
Selenium.Core.dll, ThoughtWorks.Selenium.IntegrationTests.dll, Thought-
Works.Selenium.UnitTests.dll and click on Ok button

123

Selenium Documentation, Release 1.0

With This Visual Studio is ready for Selenium Test Cases.

124 Chapter 11. .NET client driver configuration

CHAPTER

TWELVE

JAVA CLIENT DRIVER
CONFIGURATION

In General configuration of Selenium-RC with any java IDE would have following steps:

• Download Selenium-RC from the SeleniumHQ downloads page

• Start any java IDE

• Create new project

• Add to your project classpath selenium-java-client-driver.jar

• Record your test from Selenium-IDE and translate it to java code (Selenium IDE has automatic
translation feature to generate tests in variety of languages)

• Run selenium server from console

• Run your test in the IDE

These points have been delineated below with reference to Eclipse and IntelliJ:

12.1 Configuring Selenium-RC With Eclipse

Eclipse is a multi-language software development platform comprising an IDE and a plug-in system to
extend it. It is written primarily in Java and is used to develop applications in this language and, by
means of the various plug-ins, in other languages as well as C/C++, Cobol, Python, Perl, PHP and more.

Following lines describes configuration of Selenium-RC with Eclipse - Version: 3.3.0. (Europa Release).
It should not be too different for higher versions of Eclipse

• Launch Eclipse.

• Select File > New > Other.

125

http://seleniumhq.org/download/

Selenium Documentation, Release 1.0

• Java > Java Project > Next

126 Chapter 12. Java Client Driver Configuration

Selenium Documentation, Release 1.0

• Provide Name to your project, Select JDK in ‘Use a project Specific JRE’ option (JDK 1.5 selected
in this example) > click Next

12.1. Configuring Selenium-RC With Eclipse 127

Selenium Documentation, Release 1.0

• Keep ‘JAVA Settings’ intact in next window. Project specific libraries can be added here. (This
described in detail in later part of document.)

128 Chapter 12. Java Client Driver Configuration

Selenium Documentation, Release 1.0

• Click Finish > Click on Yes in Open Associated Perspective pop up window.

12.1. Configuring Selenium-RC With Eclipse 129

Selenium Documentation, Release 1.0

This would create Project Google in Package Explorer/Navigator pane.

130 Chapter 12. Java Client Driver Configuration

Selenium Documentation, Release 1.0

• Right click on src folder and click on New > Folder

12.1. Configuring Selenium-RC With Eclipse 131

Selenium Documentation, Release 1.0

Name this folder as com and click on Finish button.

• This should get com package insider src folder.

132 Chapter 12. Java Client Driver Configuration

Selenium Documentation, Release 1.0

• Following the same steps create core folder inside com

12.1. Configuring Selenium-RC With Eclipse 133

Selenium Documentation, Release 1.0

SelTestCase class can be kept inside core package.

Create one more package inside src folder named testscripts. This is a place holder for test scripts.

Please notice this is about the organization of project and it entirely depends on individual’s choice /
organization’s standards. Test scripts package can further be segregated depending upon the project
requirements.

134 Chapter 12. Java Client Driver Configuration

Selenium Documentation, Release 1.0

• Create a folder called lib inside project Google. Right click on Project name > New > Folder. This
is a place holder for jar files to project (i.e. Selenium client driver, selenium server etc)

12.1. Configuring Selenium-RC With Eclipse 135

Selenium Documentation, Release 1.0

This would create lib folder in Project directory.

136 Chapter 12. Java Client Driver Configuration

Selenium Documentation, Release 1.0

• Right click on lib folder > Build Path > Configure build Path

12.1. Configuring Selenium-RC With Eclipse 137

Selenium Documentation, Release 1.0

• Under Library tab click on Add External Jars to navigate to directory where jar files are saved.
Select the jar files which are to be added and click on Open button.

138 Chapter 12. Java Client Driver Configuration

Selenium Documentation, Release 1.0

After having added jar files click on OK button.

12.1. Configuring Selenium-RC With Eclipse 139

Selenium Documentation, Release 1.0

Added libraries would appear in Package Explorer as following:

140 Chapter 12. Java Client Driver Configuration

Selenium Documentation, Release 1.0

12.2 Configuring Selenium-RC With Intellij

IntelliJ IDEA is a commercial Java IDE by the company JetBrains. Intellij provides a set of integrated
refactoring tools that allow programmers to quickly redesign their code. IntelliJ IDEA provides close
integration with popular open source development tools such as CVS, Subversion, Apache Ant and
JUnit.

Following lines describes configuration of Selenium-RC with IntelliJ 6.0 It should not be very different
for higher version of intelliJ.

• Open a New Project in IntelliJ IDEA.

12.2. Configuring Selenium-RC With Intellij 141

Selenium Documentation, Release 1.0

• Provide name and location to Project.

• Click Next and provide compiler output path.

142 Chapter 12. Java Client Driver Configuration

Selenium Documentation, Release 1.0

• Click Next and select the JDK to be used.

• Click Next and select Single Module Project.

12.2. Configuring Selenium-RC With Intellij 143

Selenium Documentation, Release 1.0

• Click Next and select Java module.

• Click Next and provide Module name and Module content root.

• Click Next and select Source directory.

144 Chapter 12. Java Client Driver Configuration

Selenium Documentation, Release 1.0

• At last click Finish. This will launch the Project Pan.

Adding Libraries to Project:

• Click on Settings button in the Project Tool bar.

• Click on Project Structure in Settings pan.

12.2. Configuring Selenium-RC With Intellij 145

Selenium Documentation, Release 1.0

• Select Module in Project Structure and browse to Dependencies tab.

146 Chapter 12. Java Client Driver Configuration

Selenium Documentation, Release 1.0

• Click on Add button followed by click on Module Library.

• Browse to the Selenium directory and select selenium-java-client-driver.jar and selenium-
server.jar. (Multiple Jars can be selected b holding down the control key.).

12.2. Configuring Selenium-RC With Intellij 147

Selenium Documentation, Release 1.0

• Select both jar files in project pan and click on Apply button.

148 Chapter 12. Java Client Driver Configuration

Selenium Documentation, Release 1.0

• Now click ok on Project Structure followed by click on Close on Project Settings pan. Added jars
would appear in project Library as following.

12.2. Configuring Selenium-RC With Intellij 149

Selenium Documentation, Release 1.0

• Create the directory structure in src folder as following.

150 Chapter 12. Java Client Driver Configuration

Selenium Documentation, Release 1.0

Note: This is not hard and fast convention and might very from project to project.

• Herein core contains the SelTestCase class which is used to create Selenium object and fire up the
browser. testscripts package contains the test classes which extend the SelTestCase class. Hence
extended structure would look as following.

12.2. Configuring Selenium-RC With Intellij 151

Selenium Documentation, Release 1.0

152 Chapter 12. Java Client Driver Configuration

CHAPTER

THIRTEEN

PYTHON CLIENT DRIVER
CONFIGURATION

• Download Selenium-RC from the SeleniumHQ downloads page

• Extract the file selenium.py

• Either write your Selenium test in Python or export a script from Selenium-IDE to a python file.

• Add to your test’s path the file selenium.py

• Run Selenium server from the console

• Execute your test from a console or your Python IDE

The following steps describe the basic installation procedure. After following this, the user can start
using the desired IDE, (even write tests in a text processor and run them from command line!) without
any extra work (at least on the Selenium side).

• Installing Python

Note: This will cover python installation on Windows and Mac only, as in most linux
distributions python is already pre-installed by default.

– Windows
1. Download Active python’s installer from ActiveState’s official site:

http://activestate.com/Products/activepython/index.mhtml
2. Run the installer downloaded (ActivePython-x.x.x.x-win32-x86.msi)

153

http://seleniumhq.org/download/
http://activestate.com/Products/activepython/index.mhtml

Selenium Documentation, Release 1.0

• Mac

The latest Mac OS X version (Leopard at this time) comes with Python pre-installed. To install
an extra Python, get a universal binary at http://www.pythonmac.org/ (packages for Python 2.5.x).

154 Chapter 13. Python Client Driver Configuration

http://www.pythonmac.org/

Selenium Documentation, Release 1.0

You will get a .dmg file that you can mount. It contains a .pkg file that you can launch.

• Installing the Selenium driver client for python

1. Download the last version of Selenium Remote Control from the downloads page
2. Extract the content of the downloaded zip file
3. Copy the module with the Selenium’s driver for Python (selenium.py) in the folder

C:/Python25/Lib (this will allow you to import it directly in any script you write).
You will find the module in the extracted folder, it’s located inside selenium-
python-driver-client.

Congratulations, you’re done! Now any python script that you create can import selenium and start
interacting with the browsers.

155

http://seleniumhq.org/download/

Selenium Documentation, Release 1.0

156 Chapter 13. Python Client Driver Configuration

CHAPTER

FOURTEEN

LOCATING TECHNIQUES

14.1 Useful XPATH patterns

14.1.1 text

Not yet written - locate elements based on the text content of the node.

14.1.2 starts-with

Many sites use dynamic values for element’s id attributes, which can make them difficult to locate.
One simple solution is to use XPath functions and base the location on what you do know about the
element. For example, if your dynamic ids have the format <input id="text-12345" /> where
12345 is a dynamic number you could use the following XPath: //input[starts-with(@id,
’text-’)]

14.1.3 contains

If an element can be located by a value that could be surrounded by other text, the contains function
can be used. To demonstrate, the element can be located
based on the ‘heading’ class without having to couple it with the ‘top’ and ‘bold’ classes using the fol-
lowing XPath: //span[contains(@class, ’heading’)]. Incidentally, this would be much
neater (and probably faster) using the CSS locator strategy css=span.heading

14.1.4 siblings

Not yet written - locate elements based on their siblings. Useful for forms and tables.

14.2 Starting to use CSS instead of XPATH

14.2.1 Locating elements based on class

In order to locate an element based on associated class in XPath you must consider that the element
could have multiple classes and defined in any order, however with CSS locators this is much simpler
(and faster).

• XPath: //div[contains(@class, ’article-heading’)]

157

Selenium Documentation, Release 1.0

• CSS: css=div.article-heading

158 Chapter 14. Locating Techniques

	Note to the Reader
	Introducing Selenium
	To Automate or Not to Automate? That is the Question!
	Test Automation for Web Applications
	Introducing Selenium
	Selenium Components
	Supported Browsers
	Flexibility and Extensibility
	About this Book
	The Documentation Team

	Selenium Basics
	Getting Started – Choosing Your Selenium Tool
	Introducing Selenium Commands
	Test Suites
	Commonly Used Selenium Commands
	Summary

	Selenium-IDE
	Introduction
	Installing the IDE
	Opening the IDE
	IDE Features
	Building Test Cases
	Running Test Cases
	Using Base URL to Run Test Cases in Different Domains
	Debugging
	Writing a Test Suite
	User Extensions
	Format
	Executing Selenium-IDE Tests on Different Browsers
	Troubleshooting

	Selenium Commands
	Verifying Page Elements
	Locating Elements
	Matching Text Patterns
	The ``AndWait'' Commands
	The waitFor Commands in AJAX applications
	Sequence of Evaluation and Flow Control
	Store Commands and Selenium Variables
	JavaScript and Selenese Parameters
	echo - The Selenese Print Command
	Alerts, Popups, and Multiple Windows

	Selenium-RC
	Introduction
	How Selenium-RC Works
	Installation
	From Selenese to a Program
	Programming Your Test
	Learning the API
	Reporting Results
	Adding Some Spice to Your Tests
	Server Options
	Specifying the Path to a Specific Browser
	Selenium-RC Architecture
	Handling HTTPS and Security Popups
	Supporting Additional Browsers and Browser Configurations
	Troubleshooting Common Problems

	Test Design Considerations
	Introducing Test Design
	What to Test?
	Verifying Results
	Choosing a Location Strategy
	Testing Ajax Applications
	UI Mapping
	Bitmap Comparison
	Handling Errors

	Selenium-Grid
	User-Extensions
	Introduction
	Actions
	Accessors/Assertions
	Locator Strategies
	Using User-Extensions With Selenium-IDE
	Using User-Extensions With Selenium RC

	Selenium 2.0 and WebDriver
	What is WebDriver?
	When to Use WebDriver?
	The 5 Minute Getting Started Guide
	Next Steps For Using WebDriver
	WebDriver Implementations
	Emulating Selenium RC
	Tips and Tricks
	How XPATH Works in WebDriver
	Getting and Using WebDriver
	Roadmap
	Further Resources

	.NET client driver configuration
	Java Client Driver Configuration
	Configuring Selenium-RC With Eclipse
	Configuring Selenium-RC With Intellij

	Python Client Driver Configuration
	Locating Techniques
	Useful XPATH patterns
	Starting to use CSS instead of XPATH

