
1Introduction to OOAD Stefan Kluth

1 Introduction to OOAD

1.1 Overview and Schedule
1.2 What is OOAD?
1.3 Why OOAD in Physics?
1.4 What is an Object?
1.5 Objects and Classes
1.6 Object Interface Separation and Class Inheritance
1.7 Summary

2Introduction to OOAD Stefan Kluth

1.1 Schedule

" Day 1: OO Concepts, UML
" Day 2: Principles of OO Class Design
" Day 3: Large Applications (Package Design)
" Day 4: OO Analysis and Project Management
" Day 5: Overflow Topics and Discussion

3Introduction to OOAD Stefan Kluth

1.2 What is OO?

" A method to design and build large programs
with a long lifetime
� e.g. > 50k loc C++ with O(a) lifetime

� Blueprints of systems before coding

� Development process

� Maintainance and modifications

� Control of dependencies

� Separation into components

4Introduction to OOAD Stefan Kluth

1.2 Just another paradigm?

" Object-orientation is closer to the way
problems appear in life (physical and non-
physical

" These problems generelly don't come
formulated in a procedural manner

" We think in terms of "objects" or concepts and
relations between those concepts

" Modelling is simplified with OO because we
have objects and relations

5Introduction to OOAD Stefan Kluth

1.2 SA/SD and OO

Data

Function

Function

Function

Function

Function

Function

Function

Data

Function

Data

Top-down hierarchies of
function calls and dependencies

Bottom-up hierarchy of
dependencies

6Introduction to OOAD Stefan Kluth

1.2 Common Prejudices

" OO was used earlier without OO languages
� Doubtful. A well made procedural program may

deal with some of the OO issues but not with all

� OO without language support is at least awkward
and dangerous if not quite irresponsible

" It is just common sense and good practices
� It is much more than that, it provides formal

methods, techniques and tools to control design,
development and maintainance

7Introduction to OOAD Stefan Kluth

1.3 Why OOAD?

" Software complexity rises exponentially:
� 70's O(10) kloc (e.g. JADE)

� 80's O(100) kloc (e.g. OPAL)

� 90's O(1) Mloc (e.g. BaBar)

" Need for tools to deal with complexity 1
OOAD provides these tools

8Introduction to OOAD Stefan Kluth

1.3 Why OOAD in Physics?

" Physics is about modelling the world:
� Objects interact with each other according to laws

of nature: particles/fields, atoms, molecules and
electrons, liquids, solid states

" OOAD creates models by defining objects and
their rules of interaction
� This way of thinking about software is well

adapted and quite natural to physicists

" OOAD is a software engineering practice
� manage large projects professionally

9Introduction to OOAD Stefan Kluth

1.4 What is an Object?

Function

Data

An object has:
interface
behaviour
identity
state

Interface:
Method signatures

Behaviour:
Algorithms in methods

Identity:
Address or instance ID

State:
Internal variables

10Introduction to OOAD Stefan Kluth

1.4 Object Interface
Create an object (constructors)

from nothing (default)
from another object (copy)
from 3 coordinates

A dot product

A cross product
And possibly many other
member functions

The object interface is given
by its member functions described
by the objects class

Magnitude

11Introduction to OOAD Stefan Kluth

1.4 Object Identity
...

ThreeVector a;
ThreeVector b(1.0,2.0,3.0);

...

ThreeVector c(a);
ThreeVector d= a+b;

...

ThreeVector* e= new ThreeVector();
ThreeVector* f= &a;
ThreeVector& g= a;

...

double md= d.mag();
double mf= f−>mag();
double mg= g.mag();

...

There can be many objects
(instances) of a given class:

Symbolically:
a ≠ b ≠ c ≠ d ≠ e
but f = g = a

Pointer (*): Address of memory
where object is stored; can
be changed to point to
another object

Reference (&): Different name
for identical object

12Introduction to OOAD Stefan Kluth

1.4 Object State

The internal state of an object
is given by its data members

Different objects have

different identity
different state
possibly different behaviour
but always the same interface

Objects of the same class
can share data (explicitly
declared class variables)
e.g. static data members in C++

13Introduction to OOAD Stefan Kluth

1.4 Object Behaviour

class ThreeVector {

public:

ThreeVector() { x=0; y=0; z=0 };
...

double dot(const ThreeVector &) const;
ThreeVector cross(const ThreeVector &) const;
double mag() const;

...

private:

double x,y,z;

}

Default constructor sets to 0

Dot and cross are
unambigious

Magnitude, user probably expects
0 or a positive number

const means state of object does
not change (vector remains the same)
when this function is used

14Introduction to OOAD Stefan Kluth

1.4 Object Interactions

Objects interact through their interfaces only

Objects manipulate their own data
but get access to other objects data
through interfaces

Most basic: get() / set(...) member
functions, but usually better to
provide "value added services", e.g.

- fetch data from storage
- perform an algorithm

A::needXandY(B b) {
...
float myY= b.getY();
...

}

15Introduction to OOAD Stefan Kluth

1.4 Objects keep data hidden

Stop others from depending on the data model
Provide algorithms which use the data instead
Can give direct and efficient access to data in controlled way

0 pass (const) references or pointers
Can change member data layout without affecting other objects
Can replace member data e.g. by database lookup

16Introduction to OOAD Stefan Kluth

1.4 Object
Construction/Destruction

Construction:
Create object at run-time
Initialise variables
Allocate resources
0 Constructor member functions

Destruction:
Destroy object at run-time
Deallocate (free) resources
0 Destructor member function

17Introduction to OOAD Stefan Kluth

1.4 Objects Summary

" Objects have interface, behaviour, identity,
state

" Objects collaborate
� send messages to each other

� use each other to obtain results

� provide data and "value-added services"

" Objects control access to their data
� data private

� access through interface

18Introduction to OOAD Stefan Kluth

1.5 Objects and Classes

" Objects are described by classes
� blueprint for construction of objects

� OO program code resides in classes

" Objects have type specified by their class
" Classes can inherit from each other

� implies special relation between corresponding
objects

" Object interfaces can be separated from object
behaviour and state

19Introduction to OOAD Stefan Kluth

1.5 Classes describe Objects

" Class code completely specifies an object
� interface (member function signature)

� behaviour (member function code)

� inheritance and friendship relations

" Object creation and state changes at run-time
" In OO programs most code resides in the class

member functions
� objects collaborate to perform a task

20Introduction to OOAD Stefan Kluth

1.5 Classes = Types

" Class is a new programmer-defined data type
" Objects have type

� extension of bool, int, etc

� e.g. type complex doesn't exist in C/C++, but can
construct in C++ data type complex using a class

" ThreeVector is a new data type
� combines 3 floats/doubles with interface and

behaviour

� can define operators +, B, *, / etc.

21Introduction to OOAD Stefan Kluth

1.5 Class Inheritance

" Objects are described by classes, i.e. code
" Classes can build upon other classes

� reuse (include) an already existing class to define a
new class

� the new class can add new member functions and
member data

� the new class can replace (overload) inherited
member functions

� interface of new class must be compatible

22Introduction to OOAD Stefan Kluth

1.5 Classes Summary

" Classes are blueprints for contruction of
objects

" Class = data type of corresponding objects
" Classes can inherit (build upon) other classes

23Introduction to OOAD Stefan Kluth

1.6 Separation of Interfaces

" Interface described by class A with no (or
little) behaviour
� member function signatures

� perhaps not possible to create objects of type A

" Now different (sub-) classes (B, C, D) can
inherit from A and provide different behaviour
� can create objects of type B, C or D with identical

interfaces but different behaviour

� code written using class A can use objects of type
B, C or D

24Introduction to OOAD Stefan Kluth

1.6 Object Polymorphism

Objects of type A are actually of type B, C or D
Objects of type A can take many forms, they are polymorph
Code written in terms of A will not notice the difference
but will produce different results
Can separate generic algorithms from specialisations
Avoids explicit decisions in algorithms (if/then/else or case)

25Introduction to OOAD Stefan Kluth

1.6 Interface Abstraction

" The common interface of a group of objects is
an abstraction (abstract class, interface class)
� find commonality between related objects

� express commonality formally using interfaces

" Clients (other objects) depend on the abstract
interface, not details of individual objects
� Polymorphic objects can be substituted

" Need abstract arguments and return values
� or clients depend on details again

26Introduction to OOAD Stefan Kluth

1.6 Mechanics of separated
interfaces

Virtual function table with function pointers in
statically (strongly) typed languages, e.g. C++, Java

A B C
1 doSomething 0x3BA5 0x8BF1
2 display 0x0BF3 0x2CD5
3 cleanup 0x6437 0x7883

B::doSomething C::doSomething
B::display C::display
B::cleanup C::cleanup

Lookup by name in hash-tables in dynamically typed
languages (Perl, Python, Smalltalk)

Fast and efficient!

27Introduction to OOAD Stefan Kluth

1.6 Separated Interfaces Summary

" Interface can be separated from object
� Abstract (interface) classes

" Express commonality between related objects
� Abstraction is the key

" Clients depend on abstractions (interfaces), not
on specific object details

" Mechanism is simple, fast and efficient
" Polymorphic objects can replace code branches

28Introduction to OOAD Stefan Kluth

1.7 Inheritance SA/SD vs OO

SA/SD:

Inherit for functionality

We need some function, it
exists in class A 0 inherit
from A in B and add some more
functionality

OO:

Inherit for interface

There are some common
properties between several
objects 0 define a common
interface and make the objects
inherit from this interface

29Introduction to OOAD Stefan Kluth

1.7 Tools for OOAD

" A (graphical) modelling language
� allows to describe systems in terms of classes,

objects and their interactions before coding

" A programming language
� Classes (data+functions) and data hiding

� Interface separation (class inheritance and member
function overload)

" Not required for OOAD (but useful)
� templates, lots of convenient operators

