SCHEMATIC DIAGRAM

Topic	Concepts	Degree of importance	References NCERT Text Book XII Ed. 2007
 Functions	 Range of a relation	$*$	(Previous Knowledge)
	(ii).Types of relations	$* * *$	Ex 1.1 Q.No- 5,9,12
	(iii).One-one , onto \& inverse of a function	$* * *$	Ex 1.2 Q.No- 7,9
	(iv).Composition of function	$*$	Ex 1.3 QNo- 7,9,13
	(v).Binary Operations	$* * *$	Example 45 Ex 1.4 QNo- 5,11

SOME IMPORTANT RESULTS/CONCEPTS

** A relation R in a set A is called
(i) reflexive, if $(a, a) \in \mathrm{R}$, for every $a \in \mathrm{~A}$,
(ii) symmetric, if $\left(a_{1}, a_{2}\right) \in \mathrm{R}$ implies that $\left(a_{2}, a_{1}\right) \in \mathrm{R}$, for all $a_{1}, a_{2} \in \mathrm{~A}$.
(iii)transitive, if $\left(a_{1}, a_{2}\right) \in \mathrm{R}$ and $\left(a_{2}, a_{3}\right) \in \mathrm{R}$ implies that $\left(a_{1}, a_{3}\right) \in \mathrm{R}$, for all $a_{1}, a_{2}, a_{3} \in \mathrm{~A}$.
** Equivalence Relation : R is equivalence if it is reflexive, symmetric and transitive.
** Function :A relation $\boldsymbol{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a function if every element of A is correlatedto unique element in B .

* A is domain
* B is codomain
* For any x element $\mathrm{x} \in \mathrm{A}$, function f correlates it to an element in B, which is denoted by $\mathrm{f}(\mathrm{x})$ and is called image of x under f. Again if $\mathrm{y}=\mathrm{f}(\mathrm{x})$, then x is called as pre-image of y .
$*$ Range $=\{f(x) \mid x \in A\}$. Range \subseteq Codomain
* The largest possible domain of a function is called domain of definition.

**Composite function :

Let two functions be defined as $\boldsymbol{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\boldsymbol{g}: \mathrm{B} \rightarrow \mathrm{C}$. Then we can define a function $\phi: \mathrm{A} \rightarrow \mathrm{C}$ by setting $\phi(\mathrm{x})=\mathrm{g}\{\mathrm{f}(\mathrm{x})\}$ where $x \in \mathrm{~A}, \mathrm{f}(\mathrm{x}) \in \mathrm{B}, \mathrm{g}\{\mathrm{f}(\mathrm{x})\} \in \mathrm{C}$. This function $\phi: \mathrm{A} \rightarrow \mathrm{C}$ is called the composite function of \boldsymbol{f} and \boldsymbol{g} in that order and we write. $\phi=\boldsymbol{g} \circ \boldsymbol{f}$.

** Different type of functions : Let $\boldsymbol{f}: \mathrm{A} \rightarrow \mathrm{B}$ be a function.

* \boldsymbol{f} is one to one (injective) mapping, if any two different elements in A is always correlated to different elements in B, i.e. $\mathrm{x}_{1} \neq \mathrm{x}_{2} \Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right) \neq \mathrm{f}\left(\mathrm{x}_{2}\right)$ or, $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right) \Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}$
* f is many one mapping, if \exists at least two elements in A such that their images are same.
* f is onto mapping (subjective), if each element in B is having at least one preimage.
* f is into mapping if range \subseteq codomain.
*f is bijective mapping if it is both one to one and onto.
** Binary operation : A binary operation * on a set A is a function * $: \mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$. We denote $*(a, b)$ by $a * b$.
* A binary operation '*' on A is a rule that associates with every ordered pair (a, b) of A x A a unique element a $*$ b.
* An operation '*' on a is said to be commutative iff $\mathrm{a} * \mathrm{~b}=\mathrm{b} * \mathrm{a} \forall \mathrm{a}, \mathrm{b} \in \mathrm{A}$.
* An operation '*' on a is said to be associative iff $\left(a^{*} b\right) * c=a *(b * c) \forall a, b, c \in A$.
* Given a binary operation $*: \mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$, an element $e \in \mathrm{~A}$, if it exists, is called identity for the operation *, if $a^{*} e=a=e^{*} a, \forall a \in \mathrm{~A}$.
* Given a binary operation $*: \mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$ with the identity element e in A , an element $a \in \mathrm{~A}$ is said to be invertible with respect to the operation*, if there exists an element b in A such that $a * b=e=b * a$ and b is called the inverse of a and is denoted by a^{-1}.

ASSIGNMENTS

(i) Domain , Co domain \& Range of a relation

LEVEL I

1. If $A=\{1,2,3,4,5\}$, write the relation a $R b$ such that $a+b=8, a, b € A$. Write the domain, range \& co-domain.
2. Define a relation R on the set \mathbf{N} of natural numbers by

$$
\mathrm{R}=\{(x, y): y=x+7, x \text { is a natural number lesst han } 4 ; x, y \in \mathbf{N}\} .
$$

Write down the domain and the range.

2. Types of relations

LEVEL II

1. Let R be the relation in the set N given by $R=\{(a, b) \mid a=b-2, b>6\}$ Whether the relation is reflexive or not ? justify your answer.
2. Show that the relation R in the set N given by $R=\{(a, b) \mid a$ is divisible by $b, a, b \in N\}$ is reflexive and transitive but not symmetric.
3. Let R be the relation in the set N given by $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}>\mathrm{b}\}$ Show that the relation is neither reflexive nor symmetric but transitive.
4. Let R be the relation on R defined as $(a, b) \in R$ iff $1+a b>0 \quad \forall a, b \in R$.
(a) Show that R is symmetric.
(b) Show that R is reflexive.
(c) Show that R is not transitive.
5. Check whether the relation R is reflexive, symmetric and transitive.
$R=\{(x, y) \mid x-3 y=0\}$ on $A=\{1,2,3 \ldots \ldots \ldots 13,14\}$.

LEVEL III

1. Show that the relation R on $A, A=\{x \mid x \in Z, 0 \leq x \leq 12\}$, $R=\{(a, b):|a-b|$ is multiple of 3.$\}$ is an equivalence relation.
2.Let N be the set of all natural numbers \& R be the relation on $\mathrm{N} \times \mathrm{N}$ defined by $\{(a, b) R(c, d)$ iff $a+d=b+c\}$. Show that R is an equivalence relation.
2. Show that the relation R in the set A of all polygons as:
$\mathrm{R}=\left\{\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right), \mathrm{P}_{1} \& \mathrm{P}_{2}\right.$ have the same number of sides $\}$ is an equivalence relation. What is the set of all elements in A related to the right triangle T with sides $3,4 \& 5$?
3. Show that the relation R on $A, A=\{x \mid x \in Z, 0 \leq x \leq 12\}$, $R=\{(a, b):|a-b|$ is multiple of 3.$\}$ is an equivalence relation.
4. Let N be the set of all natural numbers \& R be the relation on $\mathrm{N} \times \mathrm{N}$ defined by $\{(a, b) R(c, d)$ iff $a+d=b+c\}$. Show that R is an equivalence relation. [CBSE 2010]
5. Let $A=$ Set of all triangles in a plane and R is defined by $R=\left\{\left(T_{1}, T_{2}\right): T_{1}, T_{2} \in A \& T_{1} \sim T_{2}\right\}$ Show that the R is equivalence relation. Consider the right angled $\Delta \mathrm{s}, \mathrm{T}_{1}$ with size $3,4,5$; T_{2} with size $5,12,13 ; \mathrm{T}_{3}$ with side $6,8,10$; Which of the pairs are related?

(iii)One-one, onto \& inverse of a function

LEVELI

1. If $f(x)=x^{2}-x^{-2}$, then find $f(1 / x)$.

2 Show that the function $f: R \rightarrow R$ defined by $f(x)=x^{2}$ is neither one-one nor onto.

3 Show that the function $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ given by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}$ is one-one but not onto.
4 Show that the signum function $f: R \rightarrow R$ given by: $f(x)=\left\{\begin{aligned} 1, & \text { if } x>0 \\ 0, & \text { if } x=0 \\ -1, & \text { if } x<0\end{aligned}\right.$ is neither one-one nor onto.
5 Let $A=\{-1,0,1\}$ and $B=\{0,1\}$. State whether the function $f: A \rightarrow B$ defined by $f(x)=x^{2}$ isbijective
6. Let $f(x)=\frac{x-1}{x+1}, x \neq-1$, then find $f^{-1}(x)$

LEVEL II

1. Let $A=\{1,2,3\}, B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. State whether f is one-one or not.
[CBSE2011]
2. If $f: R \rightarrow R$ defined as $f(x)=\frac{2 x-7}{4}$ is an invertible function. Find $f^{-1}(x)$.
3. Write the number of all one-one functions on the set $A=\{a, b, c\}$ to itself.
4. Show that function $f: R \rightarrow R$ defined by $f(x)=7-2 x^{3}$ for all $x \in R$ is bijective.
5. If $f: R \rightarrow R$ is defined by $f(x)=\frac{3 x+5}{2}$. Find f^{-1}.

LEVEL III

1. Show that the function $f: R \rightarrow R$ defined by $f(x)=\frac{2 x-1}{3} \cdot x \in R$ is one- one $\&$ onto function. Also find the f^{-1}.
2. Consider a function $\mathrm{f}: \mathrm{R}_{+} \rightarrow[-5, \infty)$ defined $\mathrm{f}(\mathrm{x})=9 \mathrm{x}^{2}+6 \mathrm{x}-5$. Show that f is invertible \& $f^{-1}(y)=\frac{\sqrt{y+6}-1}{3}$, where $R_{+}=(0, \infty)$.
3. Consider a function $f: R \rightarrow R$ given by $f(x)=4 x+3$. Show that f is invertible $\& f^{-1}: R \rightarrow R$ with $\mathrm{f}^{-1}(\mathrm{y})=\frac{\mathrm{y}-3}{4}$
4. Show that $f: R \rightarrow R$ defined by $f(x)=x^{3}+4$ is one-one, onto. Show that $f^{-1}(x)=(x-4)^{1 / 3}$. 5. Let $A=R-\{3\}$ and $B=R-\{1\}$. Consider the function $f: A \rightarrow B$ defined by

$$
f(x)=\left(\frac{x-2}{x-3}\right) \text {. Show that } f \text { is one one onto and hence find } f^{-1}
$$

[CBSE2012]
6. Show that $f: N \rightarrow N$ defined by $f(x)=\left\{\begin{array}{l}x+1, \text { if } x \text { is odd } \\ x-1, \text { if } x \text { is even is both one one onto. }\end{array}\right.$
[CBSE2012]

(iv) Composition of functions

LEVEL I

1. If $f(x)=e^{2 x}$ and $g(x)=\log \sqrt{ } x, x>0$, find
(a) $(\mathrm{f}+\mathrm{g})(\mathrm{x})$
(b) (f.g)(x)
(c) $f \circ g(x)$
(d) $\mathrm{gof}(\mathrm{x})$.
2. If $f(x)=\frac{x-1}{x+1}$, then show that (a) $f\left(\frac{1}{x}\right)=-f(x)$
(b) $f\left(-\frac{1}{x}\right)=\frac{-1}{f(x)}$

LEVEL II

1. Let $\mathrm{f}, \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(\mathrm{x})=|\mathrm{x}| \& \mathrm{~g}(\mathrm{x})=[\mathrm{x}]$ where $[\mathrm{x}]$ denotes the greatest integer function. Find f og $(5 / 2) \& \operatorname{gof}(-\sqrt{ } 2)$.
2. Let $f(x)=\frac{x-1}{x+1}$. Then find $f(f(x))$
3. If $y=f(x)=\frac{3 x+4}{5 x-3}$, then find (fof $)(x)$ i.e. $f(y)$
4. Let $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ be defined as $\mathrm{f}(\mathrm{x})=10 \mathrm{x}+7$. Find the function $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$ such that $\mathrm{g} \circ \mathrm{f}(\mathrm{x})=\mathrm{f} \circ \mathrm{g}(\mathrm{x})=\mathrm{I}_{\mathrm{R}}$
[CBSE2011]
5. If $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ be defined as $\mathrm{f}(\mathrm{x})=\left(3-x^{3}\right)^{\frac{1}{3}}$, then find $\mathrm{f} \circ \mathrm{f}(\mathrm{x})$.
[CBSE2010]
6. Let $f: R \rightarrow R \& g: R \rightarrow R$ be defined as $f(x)=x^{2}, g(x)=2 x-3$. Find fog (x).

(v)Binary Operations

LEVEL I

1. Let * be the binary operation on N given by $\mathrm{a} * \mathrm{~b}=\mathrm{LCM}$ of a \&b . Find $3 * 5$.
2. Let $*$ be the binary on N given by $\mathrm{a} * \mathrm{~b}=\mathrm{HCF}$ of $\{\mathrm{a}, \mathrm{b}\}, \mathrm{a}, \mathrm{b} \in \mathrm{N}$. Find $20 * 16$.
3. Let * be a binary operation on the set Q of rational numbers defined as $\mathrm{a} * \mathrm{~b}=\frac{\mathrm{ab}}{5}$.

Write the identity of *, if any.
4. If a binary operation ' $*$ ' on the set of integer Z, is defined by $a * b=a+3 b^{2}$ Then find the value of $2 * 4$.

LEVEL 2

1. Let $\mathrm{A}=\mathrm{N} \times \mathrm{N} \& *$ be the binary operation on A defined by $(\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})=(\mathrm{a}+\mathrm{c}, \mathrm{b}+\mathrm{d})$
Show that * is
(a) Commutative
(b) Associative
(c) Find identity for * on A, if any.
2. Let $\mathrm{A}=\mathrm{Q} \times \mathrm{Q}$. Let * be a binary operation on A defined $\mathrm{by}(\mathrm{a}, \mathrm{b})^{*}(\mathrm{c}, \mathrm{d})=(\mathrm{ac}, \mathrm{ad}+\mathrm{b})$.

Find: (i) the identity element of A (ii) the invertible element of A.
3. Examine which of the following is a binary operation
(i) $a * b=\frac{a+b}{2}$;
$a, b \in N$
(ii) $a^{*} b=\frac{a+b}{2} a, b \in Q$

For binary operation check commutative \& associative law.

LEVEL 3

1. Let $A=N \times N \quad \& *$ be a binary operation on A defined by $(a, b) \times(c, d)=(a c, b d)$
$\forall(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d}) \in \mathrm{N} \times \mathrm{N}$
(i) Find $(2,3) *(4,1)$
(ii) Find $\left[(2,3)^{*}(4,1)\right]^{*}(3,5)$ and $(2,3) *\left[(4,1)^{*}(3,5)\right] \&$ show they are equal
(iii) Show that * is commutative \& associative on A.
2. Define a binary operation $*$ on the set $\{0,1,2,3,4,5\}$ as $a * b=\left\{\begin{array}{lll}a+b, & \text { if } & a+b<6 \\ a+b-6, & a+b \geq 6\end{array}\right.$

Show that zero in the identity for this operation \& each element of the set is invertible with 6 - a being the inverse of a.
[CBSE2011]
3. Consider the binary operations $*: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R a n d} \mathrm{o}: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ defined as $\mathrm{a} * \mathrm{~b}=|\mathrm{a}-\mathrm{b}|$ and $\mathrm{a} o \mathrm{~b}=\mathrm{a}, \forall \mathrm{a}, \mathrm{b} \in \mathbf{R}$. Show that $*$ is commutative but not associative, o is associative but not commutative.
[CBSE2012]

Questions for self evaluation

1. Show that the relation R in the set $A=\{1,2,3,4,5\}$ given by $R=\{(a, b):|a-b|$ is even $\}$, is an equivalence relation. Show that all the elements of $\{1,3,5\}$ are related to each other and all the elements of $\{2,4\}$ are related to each other. But no element of $\{1,3,5\}$ is related to any element of $\{2,4\}$.
2. Show that each of the relation R in the set $A=\{x \in \mathbf{Z}: 0 \leq x \leq 12\}$, given by $R=\{(a, b):|a-b|$ is a multiple of 4$\}$ is an equivalence relation. Find the set of all elements related to 1 .
3. Show that the relation R defined in the set A of all triangles as $R=\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is similar to $\left.T_{2}\right\}$, is equivalence relation. Consider three right angle triangles T_{1} with sides $3,4,5, \mathrm{~T}_{2}$ with sides 5,12 , 13 and T_{3} with sides $6,8,10$. Which triangles among T_{1}, T_{2} and T_{3} are related?
4. If R_{1} and R_{2} are equivalence relations in a set A, show that $R_{1} \cap R_{2}$ is also an equivalence relation.
5. Let $A=\mathbf{R}-\{3\}$ and $B=\mathbf{R}-\{1\}$. Consider the function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ defined by $\mathrm{f}(\mathrm{x})=\left(\frac{\mathrm{x}-2}{\mathrm{x}-3}\right)$. Is f one-one and onto? Justify your answer.
6. Consider $\mathrm{f}: \mathbf{R}+\rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5$. Show that f is invertible and findf ${ }^{-1}$.
7. On $\mathrm{R}-\{1\}$ a binary operation ' $*$ ' is defined as $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}-\mathrm{ab}$. Prove that '*' is commutative and associative. Find the identity element for '*'.Also prove that every element of $R-\{1\}$ is invertible.
8. If $\mathrm{A}=\mathrm{Q} \times \mathrm{Q}$ and '*' be a binary operation defined by $(\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})=(\mathrm{ac}, \mathrm{b}+\mathrm{ad})$, for $(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d}) \in \mathrm{A}$. Then with respect to '*' on A
(i) examine whether ' $*$ ' is commutative \& associative
(i) find the identity element in A ,
(ii) find the invertible elements of A .

ANSWERS

TOPIC 1 RELATIONS\& FUNCTIONS

(i) Domain , Co domain \& Range of a relation

LEVEL I

1. $R=\{(3,5),(4,4),(5,3)\}$, Domain $=\{3,4,5\}$, Range $=\{3,4,5\}$
2. Domain $=\{1,2,3\},$, Range $=\{8,9,10\}$
(iii).One-one, onto \& inverse of a function

LEVEL I

1. $-\mathrm{f}(\mathrm{x}) \quad$ 6. $\frac{1+\mathrm{x}}{1-\mathrm{x}}$

LEVEL II

2. $\mathrm{f}^{-1}(\mathrm{x})=\frac{(4 \mathrm{x}+7)}{2}$
3.6
(iv). Composition of function

LEVEL II

5. $f \circ f(x)=x$
$6.4 \mathrm{x}^{2}-12 \mathrm{x}+9$
(v)Binary Operations

LEVEL I

5. 15
6. 4
7. $e=5$

Questions for self evaluation
2. $\{1,5,9\}$
3. T_{1} is related to T_{3}
6. $\mathrm{f}^{-1}(\mathrm{x})=\frac{\sqrt{\mathrm{x}+6}-1}{3}$
7. $e=0, a^{-1}=\frac{a}{a-1}$
8. Identity element $(1,0)$, Inverse of (a, b) is $\left(\frac{1}{a}, \frac{-b}{a}\right)$

