SIGNALS & SYSTEMS Important Questions

- 1. a) Define Signals and Systems. 2 b) Let $x(t) = 2t \sin t \cos^3 t$ and $y(t) = 3t^4 \sin^3 t \cos^3 t$. If z(t) = x(t)y(t) find whether z(t) is even or odd signal? c) Find the period of the signal $x[n] = 25 \cos\left[\frac{\pi n}{3}\right] + 300 \sin^2\left[\frac{\pi n}{4}\right]$ 5 2. a) Give 4 differences between Continuous and Discrete Sinusoids. 4 b) Convolve: $x(t) = e^{-\alpha t} u(t)$ with $h(t) = e^{\alpha t} u(-t)$ 6 3. a) Derive the condition for the periodicity of discrete sinusoids and find period. 4 b) Plot the signal x(t), find its first derivative. 4 x(t) = 2u(t+3) + 3u(t+1) - 8u(t) + 3u(t-1) + 2u(t-3)c) Solve: $\int_{-\infty}^{\infty} e^{(2x)} \delta(x+3) u(2x) dx$ 2
- 4. a) Prove the periodicity of the signal x(t) = e^{jω₀t} and find its period.
 4
 b) In general, if a signal x(t) is even, is x(t-1) also an even signal?
 2
 - c) If x(t) = u(t+1) + u(t-1) 2u(t-3) then plot $x(\frac{t}{3}-2)u(t+2)$ 4
- 5. a) Prove that the multiplication of two even signals or two odd signals results in an even signal.

b) Convolve
$$x[n] = \{ \begin{cases} 8, 9, -9, 7 \\ 1 \end{cases} \}$$
 and $h[n] = \{ -3, 5, 7 \\ 1 \end{cases} \}$ 6

6. a) Let $X_1(t)$ and $X_2(t)$ be periodic with periods T_1 and T_2 respectively. Under what conditions the sum $X(t) = X_1(t) + X_2(t)$ periodic? 4

6

b) Find and plot the Even and Odd components of the following signal. $x[n] = \delta[n+3] + 2\delta[n+2] + 3\delta[n+1] + 4\delta[n] + 5\delta[n-4]$

7.	a) Give 4 differences between Even and Odd signals.	4
	b) Investigate whether the signal x(t) = t u(t), is Energy or Power signal?	6
8.	a) If x(t) is odd signal, find the value of $\int_{-a}^{a} x(t) dt$	4
	b) Check the following properties of the system $y(t) = 10 x(t) + 5$	4
	i. Memory ii. Causality iii. Linearity iv. Time Invariance	
	c) Find the value $\delta[n] + \delta[2n] + 3\delta[6n]$?	2
9.	Realize the Direct Form 1 and Direct Form 2 realization of the following. $y[n] - \frac{3}{2}y[n-1] + \frac{5}{6}y[n-3] - \frac{1}{6}y[n-5] = x[n] - 5x[n-2] + 9x[n-4] + 3x[n-2]$	10 - 6]
10.	Investigate the properties of the following systems $h[n] = 2^n u[n-1]$ and $h(t) = e^{-2 t }$	10
11.	Obtain the total response of the system:	10
	$\frac{d^2 y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = 4e^{-2t}u(t); y(0) = 0 \text{ and } y'(0) = 4$	
12.	State and prove Commutative and Associative Properties of Convolution	10
13.	Find and plot the CTFS of	10
x ($t) = 1 + sin(\omega_0 t) + 2cos(\omega_0 t) + cos(2\omega_0 t + \frac{\pi}{4})$	
14.	State and prove the following properties of Fourier Series representation.	10
	A) MODULATION B) PARSEVAL'S Theorem	
15.	Find the coefficient of CTFS of $x(t) = \begin{cases} A, & 0 < t < T/2 \\ 0, & T/2 < t < T \end{cases}$ and $x(t) = x(t+T)$	10
16.	Find and plot the DTFS of	10
	A) $x[n] = cos\left[\frac{\pi n}{3}\right] + sin\left[\frac{\pi n}{4}\right]$ B) $x[n] = cos^2\left[\frac{\pi n}{8}\right]$	

- 17. Find the Fourier Transform of the signal $e^{-at} u(t)$, using which find the Fourier Transform of $e^{-at} sin(\omega_0 t)u(t)$. Also find the Fourier Transform of $e^{-2t} sin(\pi t)u(t)$. [4+4+2]
- 18. State and prove Time Scaling, Frequency Differentiation and Duality properties of CTFT? [3+4+3]
- 19. Find the Fourier Transform of following signals

$$x(t) = \delta(t), \quad x(t) = 1, \quad x(t) = sgn(t), \quad x(t) = u(t), \quad x(t) = \frac{1}{\pi t}$$
 [2+2+2+2]

- 20. Find the CTFT of $x(t) = e^{-3|t-2|}$ and The Inverse Fourier Transform of $\frac{j\omega+12}{(j\omega)^2+5j\omega+6}$ [5+5]
- 21. Find and Plot the Fourier Transform of $x(t) = \frac{sin(at)}{\pi t}$ and $x(t) = \frac{1}{a^2 + t^2}$ [5+5]
- 22. Give the DTFT and IDTFT equations. Find the DTFT of the following signals.

$$\mathbf{x}[\mathbf{n}] = \left\{ \frac{-1}{-1}, \frac{1}{-1}, \frac{2}{-1}, \frac{-2}{+}, \right\}, \quad \mathbf{x}[\mathbf{n}] = -\mathbf{a}^{\mathbf{n}}\mathbf{u}[-\mathbf{n}-1], \quad \mathbf{x}[\mathbf{n}] = -\mathbf{a}^{\mathbf{n}}\mathbf{u}[\mathbf{n}]$$

$$[2+2+2+2+2]$$

- 23. Explain the Dirichlet Conditions for Convergence of Fourier Series? Give any of the 8 characteristics of ROC of Z Transform? [6+4]
- 24. Write the Z⁻¹ transformation equation and Find the Z transforms of the following signals? [1+3+3+3]

$$x[n] = \alpha^{n+1}u[n+1], \quad x[n] = n\alpha^n u[n], \quad x[n] = 2^n u[n-2]$$

- 25. State and prove MODULATION and CONVOLUTION properties of CTFT.
- 26. Find CTFT of $x(t) = p_a(t)$ and $h(t) = e^{-a|t|}$
- 27. Obtain DTFT of : $h[n] = -2^n u[-n-1]$ and $h(n) = a^{|n|}$
- 28. State and prove CONVOLUTION and Z DIFFERENTIATION Properties of Z.
- 29. Find Z Transforms of

$$x[n] = \alpha^{n+1}u[n+1], \quad x[n] = n\alpha^n u[n], \quad x[n] = 2^n u[n-2]$$