Class - XI MATHEMATICS F.M- 45
Topic-Binomial Theorem P.M- 30
Time -1 Hours Date-06.10. 13

1. Expand
$$\left(x^2 + \frac{3}{x}\right)^4$$
, $x \neq 0$.

- 2. Using binomial theorem, prove that $6^n 5n$ always leaves remainder 1 when divided by 25.
- 3. $\left(\frac{2}{x} \frac{x}{2}\right)^5$.
- **4.** Using binomial theorem, evaluate each of the following (101)⁴
- **5.** Find $(a+b)^4 (a-b)^4$. Hence, evaluate $(\sqrt{3} + \sqrt{2})^4 (\sqrt{3} \sqrt{2})^4$.
- **6.** Show that $9^{n+1} 8n 9$ is divisible by 64, whenever *n* is a positive integer.
- 7. Find a if the 17^{th} and 18^{th} terms of the expansion $(2+a)^{50}$ are equal.
- **8.** Find the coefficient of x^6y^3 in the expansion of $(x+2y)^9$.
- **9.** The coefficients of the three consecutive terms in the expansion of $(1 + a)^n$ are in the ratio 1:7:42. Find n.
- **10.** Find the 4th term in the expansion of $(x-2y)^{12}$.
- **11.** Find the 13th term in the expansion of $\left(9x \frac{1}{3\sqrt{x}}\right)^{18}$, $x \ne 0$.
- **12.** The coefficient of the $(r-1)^{th}$, r^{th} and $(r+1)^{th}$ terms in the expansion of $(x+1)^n$ are in the ratio 1:3:5. Find n and r.
- 13. Find a positive value of m for which the coefficient of x^2 in the expansion $(1+x)^m$ is 6.
- **14.** Find the term independent of x in the expansion of $\left(\frac{3}{2}x^2 \frac{1}{3x}\right)^6$.
- **15.** Evaluate $(\sqrt{3} + \sqrt{2})^6 (\sqrt{3} \sqrt{2})^6$.