## BINOMIAL EXPRESSION

Any algebraic expression consisting of only two terms is known as a binomial expression.

## BINOMIAL THEOREM

Such formula by which any power of a binomial expression can be expanded in the form of a series is known as binomial theorem. For a positive integer $n$ the expansion is given by

$$
(a+x)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} x+{ }^{n} C_{2} a^{n-2} x^{2}+\cdots+{ }^{n} C_{n} x^{n}
$$

where ${ }^{n} C_{0},{ }^{n} C_{1},{ }^{n} C_{2}, \cdots,{ }^{n} C_{n}$ are called the binomial coefficients. The value ${ }^{n} C_{r}$ is defined as

$$
{ }^{n} C_{r}=\frac{n!}{r!(n-r)!}=\frac{n(n-1)(n-2) \cdots(n-r+1)}{1 \cdot 2 \cdot 3 \cdots r}
$$

Similarly $(a-x)^{n}={ }^{n} C_{0} a^{n}-{ }^{n} C_{1} a^{n-1} x+{ }^{n} C_{2} a^{n-2} x^{2}+\cdots+(-1)^{n} C_{n} x^{n}$
Example 1: Expand $\left(x+\frac{1}{x}\right)^{7}$.
Solution : $\quad\left(x+\frac{1}{x}\right)^{7}={ }^{7} C_{0} x^{7}+{ }^{7} C_{1} x^{6} \frac{1}{x}+{ }^{7} C_{2} x^{5} \frac{1}{x^{2}}+{ }^{7} C_{3} x^{4} \frac{1}{x^{3}}+{ }^{7} C_{4} x^{3} \frac{1}{x^{4}}$

$$
+{ }^{7} C_{5} x^{2} \frac{1}{x^{5}}+{ }^{7} C_{6} \times \frac{1}{x^{6}}+{ }^{7} C_{7} \frac{1}{x^{7}}
$$

$$
=x^{7}+7 x^{5}+21 x^{3}+35 x+\frac{35}{x}+\frac{21}{x^{3}}+\frac{7}{x^{5}}+\frac{1}{x^{7}} .
$$

## GENERAL TERM IN THE EXPANSION

The general term in the expansion of $(a+x)^{n}$ is $(r+1)^{\text {th }}$ term given by $t_{r+1}=n C_{r} a^{n-r} x^{r}$. Similarly the general term in the expansion of $(x+a)^{n}$ is given by $t_{r+1}={ }^{n} C_{r} x^{n-r} a^{r}$. The terms are considered from the beginning.
Note:
(i) The $(r+1)^{\text {th }}$ term from the end $=(n-r+1)^{\text {th }}$ term from the beginning.
(ii) The binomial coefficients in the expansion of $(a+x)^{n}$ equidistant from the beginning and the end are equal.
(iii) Middle term of $(a+x)^{n}$ :
(a) is $\left(\frac{n}{2}+1\right)^{\text {th }}$ term, when $n$ is even
(b) is $\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ term and $\left(\frac{\mathrm{n}+3}{2}\right)^{\text {th }}$ term, when $n$ is odd

Example 2 : Find the co-efficient of $x^{24}$ in $\left(x^{2}+\frac{3 a}{x}\right)^{15}$.
Solution : $\quad$ General term $((r+1)$ th term $)$ in $\left(x^{2}+\frac{3 a}{x}\right)^{15}$
$={ }^{15} C_{r}\left(x^{2}\right)^{15-r}\left(\frac{3 a}{x}\right)^{r}={ }^{15} C_{r} x^{30-2 r} \frac{3 a^{r} a^{r}}{x^{r}}={ }^{15} C_{r} 3^{r} a^{r} x^{30-3 r}$
If this term contains $x^{24}$. Then $30-3 r=24 \Rightarrow 3 r=6 \Rightarrow r=2$
Therefore, the co-efficient of $\mathrm{x}^{24}={ }^{15} \mathrm{C}_{2} \times 9 \mathrm{a}^{2}$.

## GREATEST BINOMIAL COEFFICIENT

The greatest binomial coefficient is the binomial coefficient of middle term.
Greatest binomial coefficient in $(1+x)^{n}$
(i) is ${ }^{n} C_{n / 2}$ when $n$ is even
(ii) ${ }^{\mathrm{n}} \mathrm{C}_{\frac{\mathrm{n}+1}{2}}$ and ${ }^{\mathrm{n}} \mathrm{C}_{\frac{\mathrm{n}-1}{2}}$ when $n$ is odd

## GREATEST TERM

To determine the numerically greatest term (absolute term) in the expansion of $(a+x)^{n}$, where $n$ is a positive integer.

$$
\left|\frac{T_{r+1}}{T_{r}}\right|=\left|\frac{{ }^{n} C_{r} a^{n-r} x^{r}}{{ }^{n} C_{r-1} a^{n-r+1} \cdot x^{r-1}}\right|=\left|\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}\right|\left|\frac{x}{a}\right|=\left|\frac{n+1}{r}-1\right|\left|\frac{x}{a}\right|
$$

Thus $\left|T_{r+1}\right|>\left|T_{r}\right|$ if $\left(\frac{n+1}{r}-1\right)\left|\frac{x}{\mathrm{a}}\right|>1$
$\Rightarrow \quad \mathrm{r}<\frac{\mathrm{n}+1}{1+\left|\frac{\mathrm{a}}{\mathrm{x}}\right|}$
$\left(\frac{n+1}{r}-1\right)$ must be positive since $n>r$. Thus $T_{r+1}$ will be the greatest term if $r$ has the greatest value consistent with inequality (1).

Example 3: Find the greatest term in the expansion of $(2+3 x)^{9}$ if $x=3 / 2$.

Solution: $\quad \frac{T_{r+1}}{T_{r}}=\left(\frac{n-r+1}{r}\right)\left(\frac{3 x}{2}\right)$

$$
=\left(\frac{10-r}{r}\right)\left(\frac{3 x}{2}\right),\left(\text { where } x=\frac{3}{2}\right)
$$

$$
=\left(\frac{10-r}{r}\right)\left(\frac{3}{2}\right)\left(\frac{3}{2}\right)=\frac{10-r}{r} \cdot \frac{9}{4}
$$

$$
\frac{T_{r+1}}{T_{r}}=\frac{90-9 r}{4 r}
$$

Therefore $T_{r+1} \geq T_{r}$ if, $90-9 r \geq 4 r \Rightarrow 90 \geq 13 r$ $r \leq \frac{90}{13}$, $r$ being an integer, hence $r=6$.
$\mathrm{T}_{\mathrm{r}+1}=\mathrm{T}_{7}=\mathrm{T}_{6+1}={ }^{9} \mathrm{C}_{6}(2)^{3}(3 \mathrm{x})^{6}=\frac{3^{13} \cdot 7}{2}$.

## PROPERTIES OF BINOMIAL COEFFICIENT

For sake of convenience the coefficients ${ }^{n} C_{0},{ }^{n} C_{1}, \cdots,{ }^{n} C_{n}$ are usually denoted by $C_{0}, C_{1}, \cdots, C_{n}$ respectively.

$$
(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\cdots+C_{n} x^{n}
$$

Putting $x=1$, we get $C_{0}+C_{1}+C_{2}+\cdots+C_{n}=2^{n}$.
Putting $x=-1$, we get $C_{0}+C_{2}+C_{4}+\cdots=C_{1}+C_{3}+C_{5}=2^{n-1}$.
Putting $x=1$ and -1 and adding, we get $C_{0}+C_{2}+C_{4}+\cdots=2^{n-1}$.
Putting $x=1$ and -1 and subtracting, we get $C_{1}+C_{3}+C_{5}+\cdots=2^{n-1}$.
Putting $x=i$ and equating real part, we get $C_{0}-C_{2}+C_{4} \cdots=2^{n / 2} \cos \frac{n \pi}{4}$.
Putting $x=i$ and equating imaginary part, we get $C_{1}-C_{3}+C_{5} \cdots=2^{n / 2} \sin \frac{\mathrm{n} \pi}{4}$.

## Notes:

(i) Differentiation: When the terms in an identity are the product of a numerical (natural number) and a binomial coefficient, then differentiation is used.
(ii) Integration: When the numerical (natural number) occurs as the denominator of the binomial coefficient, integration is used.
(iii) Multiplication of binomial expansion: When each term is summation contains the product of two binomial coefficients or square of binomial coefficient, multiplication of binomial coefficient is used.

Example 4 : If $(1+x)^{n}=\sum_{r=0}^{n}{ }^{n} C_{r} x^{r}$, then prove that $\quad C_{0}^{2}+\frac{C_{1}^{2}}{2}+\frac{C_{2}^{2}}{3}+\cdots+\frac{C_{n}^{2}}{n+1}=\frac{(2 n+1)!}{[(n+1)!]^{2}}$.
Solution: $\quad$ Given $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\cdots+C_{n} x^{n}$
Integrating w.r.t. $x$ between the limits 0 and $x$ we get

$$
\begin{align*}
& {\left[\frac{(1+x)^{n+1}}{n+1}\right]_{0}^{x}=\left[C_{0} x+C_{1} \frac{x^{2}}{2}+C_{2} \frac{x^{3}}{3}+\cdots+C_{n} \frac{x^{n+1}}{n+1}\right]_{0}^{x}} \\
& \frac{(1+x)^{n+1}}{n+1}-\frac{1}{n+1}=C_{0} x+C_{1} \frac{x^{2}}{2}+C_{2} \frac{x^{3}}{3}+\cdots+C_{n} \frac{x^{n+1}}{n+1}  \tag{2}\\
& \text { Also }(1+x)^{n}=C_{0} x^{n}+C_{1} x^{n-1}+C_{2} x^{n-2}+\cdots+C_{n} \tag{3}
\end{align*}
$$

Multiplying (2) and (3) and equating coefficient of $x^{n+1}$ of both sides we get $C_{0}^{2}+\frac{C_{1}^{2}}{2}+\frac{C_{2}^{2}}{3}+\cdots+\frac{C_{n}^{2}}{n+1}=\frac{{ }^{2 n+1} C_{n+1}-0}{n+1}=\frac{(2 n+1)!}{[(n+1)!]^{2}}$.

