
MAGNETIC EFFECT OF CURRENT & MAGNETISM 

INTRODUCTION  

The molecular theory of magnetism was given by Weber and modified later by Ewing. Oersted, in 1820 
observed that a magnetic field is associated with an electric current. Since, current is due to motion of 
charges, it becomes mandatory to conclude that it is the moving charge which creates the field. 

 
MAGNET  
Two bodies even after being neutral (showing no electric interaction) may attract / repel strongly if they have a 
special property. This property is known as magnetism. This force is called magnetic force. Those bodies are 
called magnets. 
One end of the magnet (say A) is directed approximately towards north and the other end (say B) 
approximately towards south. This observation is made everywhere on the earth. Due to this reason the end 
A, which points towards north direction is called NORTH POLE and the other end which points towards south 
direction is called SOUTH POLE. They can be marked as ‘N’ and ‘S’ on the magnet. 
 
Pole strength magnetic dipole and magnetic dipole moment : 
A magnet always has ‘N’ and ‘S’ and it is poles of two magnets repel each other and the anile poles of two 
magnets attract each other they from action reaction pair. 

   
 
Magnetic Field 

 (a) Biot-savart’s law ( B


 due to a current element) 
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 (b) B


 due to a moving point charge 
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 (c) B


 due to a straight current carrying wire 
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  Case (i) For infinite long straight current carrying wire 
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  Case (ii) For semi infinite long straight current carrying wire 
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Example 1 : Find the field strength at a distance R from an infinite straight wire that carries a 
current I. 

Solution :  Figure shows the infinitesimal contribution to the field, d  B  from an arbitrary current 

element. In order to integrate contributions of all the elements, we use the angle , 
measure from the perpendicular, as the variable. From the diagram we see that  

  |d l   r̂ |  = dl sin   

    = dl sin (
2


) = dl cos   . . . (i) 

  Since l = R tan , we have  

   dl = R sec2 d.   . . . (ii) 
  Furthermore, 

   r = R sec   

  On substituting these expression into equation and integrating we find  

  B = 
2

1

oI cos d
4 R


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
 

   

     = oI

4 R




 (sin 1 + sin 2)   . . . (iii) 

Note: Those angles on opposite sides of the 

perpendicular are assigned opposite signs. This 

ensures that the contributions from either side of 

the wire add together rather than subtract. For an 

infinite wire, the limits of integration are –/2 to 

+/2. Thus  

  B = oI

2 R
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Calculating the magnetic field produced by a 

long straight wire we may use the angle  as 
the variable. 

 
 
MAGNETIC FIELD DUE TO A CIRCULAR LOOP  

 (d) B


 due to a current carrying circular loop 

   (i) At centre : Due to each d  element of the loop B


 at ‘C’ is inwards (in this case) 
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   Direction of B


 : The direction of the magnetic 
field at the centre of a circular wire can be 
obtained using the right hand thumb rule. If the 
fingers are curled along the current, the 
stretched thumb will point towards the magnetic 
field. 

                 



   Another way to find the direction is to look into 
the loop along its axis. If the current is in 
anticlockwise direction, the magnetic field is 
towards the viewer. If the current is in clockwise 
direction, the field is away from the viewer. 
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   (ii) Semicircular and quarter of a circle 
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  (iii) On the axis of the loop  
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   N = number of turns (integer) 

 

x B 

I P 

 

 (e) A loop as a magnet : The pattern of the magnetic field due to current carrying circular loop is 
comparable with the magnetic field produced by a bar magnet. 

 

 

M       L 

B 

I 
 

 

 

 S            N 
 

   The side ''L  (the side from which the B


 emerges out) of the loop acts as ‘NORTH POLE’ and 

side M (the side in which the B


 enters) acts as the ‘SOUTH POLE’.  
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  It is similar to axisB  due to magnet 
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  Magnetic dipole moment of the loop  (M)  
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 (f) B


 at the axis of a Solenoid  
  Solenoid contains large number of circular loops wrapped around a non-conducting cylinder. (it 

may be a hollow cylinder or it may be a solid cylinder) 
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  where n is number of turns per unit length  
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   (i) For Ideal solenoid (long solenoid) 
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   (ii) Comparison between ideal and real solenoid  
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Example 2 : In the shown figure a current 2i is flowing in a straight 
conductor and entering along the diameter of the circular 
loop of similar conductor through the point A. The current is 
leaving the loop along another similar semi-infinite conductor 
parallel to the plane of the loop through the other opposite 
end D of the diameter. 
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  What is the magnetic field at the centre of the loop P?  
 
Solution : The magnetic field at the centre P due to the entering current along diameter is zero. 
  The magnetic field at P due to the semicircular loop AED is 
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  The magnetic field at P due to the semi-circular segment AGD is 
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  and the field at P due to the semi infinite straight conductor is given by 
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   The net field at P is 
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   The net magnetic field at P is o
i 1

2 a




along the perpendicular to the plane of the loop downward. 

 
 (g) Ampere’s circuital law 

  The line integral  


dB.  on a closed curve of any shape is equal to 0 (permeability of free 

space) times the net current I through the area bounded by the curve. 
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  (i) Line integral is independent of the shape of path and position of wire with in it. 

  (ii) The statement   0.. 


dB  does not necessarily mean that 0B


 everywhere along the 

path but only that no nett current is passing through the path 

  (iii) Sign of current:  The current due to which B


 is produced in the same sense as d  i.e. 




dB.  positive will be taken positive and the current which produces B


 in the sense 

opposite to d  will be negative. 

 (h) B


 due to hollow current carrying infinitely long cylinder : (I is uniformly distributed on the whole 
circumference) 
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 (i) B


 due to solid infinite current carrying cylinder 
   Assume current is uniformly distributed on the whole section area 

  (i) Rr   
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  (ii) Rr     
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Example 3 :  Suppose that the current density in a wire of radius a varies with 
r according to J=Kr

2
, where K is a constant and r is the distance 

from the axis of the wire. Find the magnetic field at a point 
distance r from the axis when (a) r < a and (b) r > a 

 

 

Solution: Choose a circular path centred on the axis of the conductor and apply Ampere’s law. 

  (a)  To find the current passing through the area enclosed by the path 
integrate 

   dI = JdA = (Kr
2
) (2rdr) 
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  (b)  If r > a, then net current through the Amperian loop is  

   
4a

2

0

Ka
I Kr 2 rdr

2


    

   
4

0
Ka

B
4r


   

 
MAGNETIC FORCE ON MOVING CHARGE 
 (a) Magnetic force acting on a moving charge particle in magnetic field 

  When a charge q move with velocity ,v


 in magnetic field ,B


 then the magnetic force 

experienced by moving charge is given by formula: 



   )( BvqF


   

   ,sin||  qvBF


 where  is angle between v


 and B


 

  Note:  

   (i) F


 is perpendicular to both v


 and B


 

  (ii) Since F


 is perpendicular to v


, power due to magnetic force on a charge particle is zero 

( vFP


. ). 
  (iii) Since the work done by magnetic force is zero in every part of the motion, the magnetic 

force cannot increase or decrease the speed (or kinetic energy) of a charged particle. It 
can only change the direction of velocity. 

  (iv) On a stationary charged particle, magnetic force is zero. 

  (v) If ,|| Bv


 then also magnetic force on charged particle is zero. It moves along a straight 

line if only magnetic field is acting. 
 
 (b) Motion of charged particles under the effect of magnetic force 
   (i) If particle is at rest  

     0v    0mF    particle will remain at rest 

   (ii) Bv


||  here  = 0 or  = 180 

      0mF


    0a


  v


 constant  

      particle will move in a straight line with constant velocity 

  (iii) If v


 is perpendicular to B


 and B


 is uniform 

    qvBFm 
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   Since mF


 is always perpendicular to v


 path of charged 

particle will be a circle 
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   where, p  momentum of particle; K kinetic energy of particle; V = accelerating 

potential.  
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   Note: 
   (1) The plane of the circle is perpendicular to magnetic field. If the magnetic field is along 

z-direction, the circular path is in yx  plane. The speed of the particle does not 

change in magnetic field. 

    Hence, if 0v  be the particle, then velocity of particle at any instant of time will be 

     jvivv yx
ˆˆ 


  where  

2
0
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    (2) ,T  f and  are independent of v  while the radius is directly proportional to v . 

  (iv) Angle between v


 and B


 is other than 0, 90, or 180 (Helical path) 
   If the velocity of the charge is not perpendicular to the magnetic field, we can break the 

velocity in two components ,IIv  parallel to the field and v , perpendicular to the field. 

The components IIv  remains unchanged as the force Bvq


  is perpendicular to it. In the 

plane perpendicular to the field, the particle traces a circle of radius r. The path is a helix. 
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 Note :  
   Following points are worthnoting in case of a helical path 
   (1) The plane of the circle of the helix is perpendicular 

to magnetic field. 
   (2) The axis of the helix is parallel to magnetic filled. 
   (3) The particle while moving in helical path in magnetic 

field touches the line passing through the starting 
point parallel to the magnetic field after every pitch. 
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 (c) Charged particle in uniform BE


&  

  When a charged particle moves with velocity v


 in an electric field E


 and magnetic field B


, 
then. Net force experienced by it is given by following equation. 

   )( BvqEqF
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  

   Combined force F


 is known as lorentz force  

  (i) vBE


||||   
E B v  

   In above situation particle passes underviated but its velocity will change due to electric 
field and magnetic force on it is zero. 

   (ii) BE


||  and uniform, particle is released with velocity 0v  at an angle . 
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 (d) Cycloid motion  

   Suppose that B


 points in the x-direction, and E


 in the z-direction. 
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   Their general solution is  

   








412

321

sincos)(

)/(sincos)(

CtCtCtz

CtBEtCtCty
 

   t
B

E
tztt

B

E
ty 





 cos1()(),sin()( ) 

    
B

E
R


  

   
222 )()( RRztRy   

   
B

E
Rv   

  The particle moves as through it were a spot on the rim of a wheel, rolling down the y axis at 
speed, v . The curve generated in this way is called a cycloid. Notice that the overall motion is 

not in the direction of ,E


but perpendicular to it. 

 

Example 4 :  A uniform magnetic field of 30 mT exists in the + X direction. A particle of charge +ve and mass 

1.67  10
-27

 kg is projected through the field in the + Y direction with a speed of  

4.8  16
6
 m/s. 

  (a) Find the force on the charged particle in magnitude and direction  
  (b) Find the force if the particle were negatively charged. 
  (c) Describe the nature of path followed by the particle in both the cases.  
 

Solution : (a)  BxvqF


  =    iBxjve


 = e VB  k


  

   = (1.6  1019
) (4.8  10

6
) (30  103

) sin 90
  

   
= 2.3  1014

 N. 

   The direction of the force is in the (z) direction.   
 
  (b) If the particle were negatively charged, the magnitude of the force will be the same but the 

direction will be along (+z) direction. 

   In this case,  jVV


  

 

  (c)  As V  B, the path described is a circle, where radius is given by  

    R  = mV/qB = (1.67  1027
) (4.8  10

6
)/(1.6  1019

) (30  103
)  

        = 1.67 m.  

 
MAGNETIC FORCE ON A CURRENT CARRYING WIRE 

 Suppose a conducting wire, carrying a current i, is placed in a magnetic field .B


 Consider a small 

current element i d  of the wire (figure).   

 The magnetic force acting on this current element di  is given by  

  BidFd



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  

    BdiF

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 If B


 is uniform then,  

    BLiFBdiF





   

 Here   


dL  vector length of the wire = vector connecting the end points of the wire  
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 Note  : 

 (a) If a current loop of any shape is placed in a uniform B


 then F  on it is 0 0( L


 ) 

 (b) Point of application of magnetic force  
  On a straight current carrying wire the magnetic 

force in a uniform magnetic field can be assumed 
to be acting at its mid point. 

  This can be used for calculation of torque. 
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CURRENT LOOP IN UNIFORM MAGNETIC FIELD  

  BM


  

   sin|| MB


; where NIAM   

  Work done in rotating loop in uniform field from 1  to 2  

  )cos(cos 21 MBW  
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Example 5 : A uniformly charged disc whose total charge has magnitude 

q and whose radius is r rotates with constant angular velocity 

of magnitude . What is the magnetic dipole moment? 

Solution : The surface charge density is q/r
2
. Hence the charge within 

a ring of  radius R and width dR is  

  
2 2

q 2q
dq (2 RdR) (RdR)

r r
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   The current carried by this ring is its charge divided by the rotation period, 
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   The magnetic moment contributed by this ring has the magnitude dM = a |di|, where a is the area 
of the ring.  

   dM = R
2
 |di| = 3
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