IRETA Test Series

july 12,2015

Full Marks $=30$

Time $=45 \mathrm{~min}$

Candidates must read the following instructions before attempting the question papers:

- All questions are compulsory.
- Please write your name at the top of your Question paper.
- please mark the correct options on the question papers
- each correct answer carries 2 marks .There will be negative marking and $\frac{1}{2}$ marks will be deduced for each wrong answer.
- Return the Question paper to the Invigilator at the end of exam
- Use blue or black pens to marks the correct option. Overwriting should not be evaluated and you will be given negative marks.
- please do not make any stary marks on the question paper.
- please do not do any rough work on the paper. Extra sheet is provided for rough work.

1 Chosse correct options one or more than one options may be correct

1.1

Let $Z_{1}=6+i$ and $Z_{2}=4-3 i$. Let Z be a complex number such that

$$
\arg \left(\frac{Z-Z_{1}}{Z_{2}-Z}\right)=\frac{\pi}{2}
$$

then Z satisfies

- $|Z-(5-i)|=5$
- $|Z-(5-i)|=\sqrt{5}$
- $|Z-(5+i)|=5$
- $|Z-(5+i)|=\sqrt{5}$

1.2

The number of solutions of the equation

$$
Z^{2}+|Z|^{2}=0
$$

- one
- two
- three
- infinitely many

1.3

If one root of the quadratic equation

$$
(1+i) x^{2}-(7+3 i) x+(6+8 i)=0
$$

is $4-3 i$ then the other root must be

- $4+3 i$
- $1-i$
- $1+i$
- $i(1-i)$

1.4

The roots of the quadratic equation

$$
(3-x)^{4}+(2-x)^{4}=(5-2 x)^{4}
$$

are

- all real
- all imaginary
- two real and two imaginary
- None of these

1.5

The number of solutions of the equation $|x|=\cos x$

- one
- two
- three
- zero

1.6

Let $f(x)=a x^{2}+b x+c$ and $f(-1)<1, f(1)>-1, f(3)<-4$ and $a \neq 0$ then

- $a>0$
- $a<0$
- sign of "a" can't be determined
- none of these.

1.7

The number of real solution of the equation $e^{x}=x$ is

- 0
- 1
- 2
- none of these

1.8

The number of real solutions of

$$
x-\frac{1}{x^{2}-4}=2-\frac{1}{x^{2}-4}
$$

- 0
- 1
- 2
- infinite

1.9

If $\alpha, \beta, \gamma, \delta$ are the roots of $x^{4}+x^{2}+1=0$ then the equation whose roots are $\alpha^{2}, \beta^{2}, \gamma^{2}, \delta^{2}$ is

- $\left(x^{2}-x+1\right)^{2}=0$
- $\left(x^{2}+x+1\right)^{2}=0$
- $\left(x^{4}-x^{2}+1\right)=0$
- $\left(x^{2}-x+1\right)=0$

1.10

If $\left(\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}\right)$ is the A.M between a and b, then the value of n is:

- -1
- 0
- $\frac{1}{2}$
- 1

1.11

The domain of definition of

$$
f(x)=\sqrt{\frac{1-|x|}{2-|x|}}
$$

is

- $(-\infty, \infty)-[-2,2]$
- $(-\infty, \infty)-[-1,1]$
- $[-1,1] \cup(-\infty,-2) \bigcup(2, \infty)$
- None of these

1.12

If $5 f(x)+3 f\left(\frac{1}{x}\right)=x+2$ and $y=x f(x)$ then

$$
\left(\frac{d y}{d x}\right)_{x=1}
$$

is equal to

- 14
- $\frac{7}{8}$
- 1
- None of these.

1.13

If $f(x)=\sin ^{-1}(\sin x)+\cos ^{-1}(\sin x)$ and $\phi(x)=f(f(f(x)))$, then $\phi^{\prime}(x)$ is

- 1
- $\sin x$
- 0
- None of these

1.14

The diff. coeffi. of $f(\log x)$ w.r.t.x, where $f(x)=\log x$ is

- $\frac{x}{\log x}$
- $\frac{\log x}{x}$
- $(x \log x)^{-1}$
- None of these

1.15

If $\tan \frac{\alpha}{2}$ and $\tan \frac{\beta}{2}$ are the roots of the equation $8 x^{2}-26 x+15=0$ then $\cos (\alpha+\beta)$ is equal to

- $\frac{-627}{725}$
- $\frac{627}{725}$
- -1
- None of these

