Sample test on Polynomial and Factorization for class X

SECTION - A (Single-Answer Type) :

1. The degree of the polynomial $p(x)=\left(x^{2}+1\right)^{4}\left(2-x^{3}\right)^{2}$ is \ldots
(A) 8
(B) 11
(C) 14
(D) None
2. The remainder obtained when $p(x)=x^{2010}-x^{2009}-x^{2008}-\ldots-x^{2}-x-1$, is divided by $(x-2)$ is \ldots
(A) 0
(B) 1
(C) 2
(D) 2^{2010}
3. $x^{4}-6 x^{3}+7 x^{2}+6 x+1 \equiv \ldots$
(A) $\left(x^{2}-3 x+1\right)^{2}$
(B) $\left(x^{2}+3 x-1\right)^{2}$
(C) $\left(x^{2}-3 x-1\right)^{2}$
(D) $\left(x^{2}+3 x+1\right)^{2}$
4. Which among the following expressions is homogeneous but not symmetric :
(A) $2 x^{2}-3 x y+2 y^{2}$
(B) $(x+3 y)(3 x+y)$
(C) $(4 x-1)(4 y-1)$
(D) $(3 x+2 y)(3 x-2 y)$

SECTION - B (Multi-Answer Type) :
[$2 \times 4 \mathrm{M}=8 \mathrm{M}$]
5. Which among the following is not a factor of the polynomial $p(x)=6 x^{3}-7 x^{2}-x+2$:
(A) $x-1$
(B) $2 x-3$
(C) $2 x+1$
(D) $3 x+2$
6. Which among the following expressions is both homogeneous and cyclic :
(A) $(a+2 b)(b+2 c)(2 a+c)$
(B) $2 x^{2}-3 x y+2 y^{2}-3 y z+2 z^{2}-3 z x$
(C) $a^{2}(b-c)-b^{2}(a-c)+c^{2} a-b c^{2}$
(D) $\left(x^{2}-2 x y+y^{2}\right)\left(y^{2}-2 y z+z^{2}\right)$

SECTION - C (Column-Matching Type) :
[$5 \times 2 \mathrm{M}=10 \mathrm{M}$]

Column -1		Column - 2	
A	If $1<x<2$, then $\sqrt{\left(x^{2}-3 x+2\right)^{2}} \equiv \ldots$	P	0
B	The remainder obtained when x^{2010} is divided by $(x+1)(x-1)$ is \ldots	Q	1
C	If a, b, c are distinct reals, then $\sum_{a, b, c} \frac{1}{(b-c)(c-a)} \equiv \ldots$	R	3
D	$\left(x^{2}-2 x-1\right)\left(x^{2}-2 x+3\right)+2+a$ is the square of a real quadratic, if $a=\ldots$	S	$(x-1)(x-2)$
E	When a polynomial $p(x)$ (of degree $>3)$ is divided by $\left(2 x^{3}-1\right)$, the degree of the remainder is atmost \ldots	T	$(1-x)(x-2)$

