PHYSICS PAPER

(Magnetic Field due to Current \& Earth's Magnetism)

(Section-A)

1. The magnetic field at the origin due to a current element I $\overrightarrow{\text { dl }}$ placed at a position $\overrightarrow{\mathrm{r}}$ is -
(A) $\frac{\mu \mathrm{o} \text { i }}{4 \pi} \frac{\mathrm{dl} \times \mathrm{r}}{r 3}$
(B) $-\frac{\mu \mathrm{o} \mathrm{i}}{4 \pi} \frac{\mathrm{r} \times \mathrm{dl}}{r 3}$
(C) $\frac{\mu \mathrm{o} \mathrm{i}}{4 \pi} \frac{\mathrm{r} \times \mathrm{dl}}{r 3}$
(D) $-\frac{\mu \mathrm{o}}{4 \pi} \frac{\mathrm{dl} \times \mathrm{r}}{r 3}$
2. A charged particle is moved along a magnetic field line. The magnetic force on the particle is(A) along its velocity (B) opposite to its velocity (C) perpendicular to its velocity (D) zero
3. A moving charge produces -
(A) Electric field
(B) Magnetic field
(C) both of them
(D) none of these
4. Let r be the distance of a point on the axis of a bar magnet from its center. The magnetic field at such a point is proportional to -
(A) $\frac{1}{r}$
(B) $\frac{1}{r 2}$
(C) $\frac{1}{r 3}$
(D) none of these
5. Let r be the distance of a point on the axis of a magnetic dipole from its center. The magnetic field at such a point is proportional to -
(A) $\frac{1}{r}$
(B) $\frac{1}{r 2}$
(C) $\frac{1}{r 3}$
(D) none of these
6. An electron is moving along +ve X -axis in the presence of uniform magnetic field along +ve Y-axis. What is the direction of the force acting on it?
7. Where on the surface of Earth is the angle of dip 90° ?
8. Two bar magnets are quickly moved towards a metallic loop connected across a capacitor ' C ' as shown in the figure. Predict the polarity of the capacitor.

9. The horizontal component of the earth's magnetic field at a place is B and angle of dip is 60°. What is the value of vertical component of earth's magnetic field at equator?

(Section-B)

10 . The susceptibility of a magnetic material is 2.6×10^{-5}. Identify the type of magnetic material and state its two properties.
11. Two identical circular loop, P and Q , each of radius r and carrying currents I and 21 respectively are lying in parallel planes such that they have a common axis.

The direction of current in both the loops is clockwise as seen from O which is equidistant from the both loops. Find the magnitude of the net magnetic field at point O .

(Section-C)

Attempt any three:-
12. Distinguish the magnetic properties of dia-, para- and ferro-magnetic substances in terms of (i) susceptibility, (ii) magnetic permeability. Give one example of each of these materials. Draw the field lines due to an external magnetic field near a (i) diamagnetic, (ii) paramagnetic substance.
13. Derive a mathematical expression for the magnetic field strength at the center of the circular coil carrying electric current.
14. A current carrying conductor is placed at an angle of 30° to a uniform magnetic field of strength $2^{*} 10^{3} \mathrm{~T}$. The length of the conductor inside the magnetic field is 2 m and the current flowing through it is 1.6 A . Calculate the magnitude of the force experienced by it?
15. (A) Using Ampere's circuital law, obtain the expression for the magnetic field due to a long solenoid at a point inside the solenoid on its axis.
(B) In what respect is a toroid different from a solenoid? Draw and compare the pattern of the magnetic field lines in the two cases.
(C) How is the magnetic field inside a given solenoid made strong?

