Report created by : Kaushik Prasad Dey

Topic : NIDDK (National Institute of Diabetes and Digestive and Kidney Diseases) – research for the most chronic, costly, and consequential diseases and predict whether a patient has diabetes, based on certain diagnostic measurements.

Description

NIDDK (National Institute of Diabetes and Digestive and Kidney Diseases) research creates knowledge about and treatments for the most chronic, costly, and consequential diseases.

- The dataset used in this project is originally from NIDDK. The objective is to predict whether or not a patient has diabetes, based on certain diagnostic measurements included in the dataset.
- Build a model to accurately predict whether the patients in the dataset have diabetes or not.

Dataset Description:

The datasets consists of several medical predictor variables and one target variable (Outcome). Predictor variables includes the number of pregnancies the patient has had, their BMI, insulin level, age, and more.

VARIABLES

DESCRIPTION

PREGNANCIES	Number of times pregnant
GLUCOSE	Plasma glucose concentration in an oral glucose tolerance test
BLOODPRESSURE	Diastolic blood pressure (mm Hg)
SKINTHICKNESS	Triceps skinfold thickness (mm)
INSULIN	Two-hour serum insulin
BMI	Body Mass Index
DIABETESPEDIGREEFUNCTION	Diabetes pedigree function
AGE	Age in years
OUTCOME	Class variable (either 0 or 1). 268 of 768 values are 1, and the others

Tools Used For this Project

Project Task (Week 1)

Data Exploration:

- 1. Perform descriptive analysis. Understand the variables and their corresponding values. On the columns below, a value of zero does not make sense and thus indicates missing value:
 - Glucose
 - BloodPressure
 - Skin Thickness
 - Insulin
 - BMI
- 2. Visually explore these variables using histograms. Treat the missing values accordingly.

3. There are integer and float data type variables in this dataset. Create a count (frequency) plot describing the data types and the count of variables.

4. Check the balance of the data by plotting the count of outcomes by their value. Describe your findings and plan future course of action.

5. Create scatter charts between the pair of variables to understand the relationships. Describe your findings.

6. Perform correlation analysis. Visually explore it using a heat map.

Methodology for Task for Week -1

Note: All Python code are written inside capstone.ipynb file. Attached this file set along with the report folder.

1) Import all necessary library for this project. The Screenshot is given below.

```
[ ] # Import the Library
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

2) Next, we have to read the required csv file. The screen-shot is given below.

Note:

- a) As using in google-colab note-book for this project, two extra code I have to add as a screen-shot.
- b) Data set name is "health care diabetes.csv".

[] #load the dataset from google.colab import files uploaded= files.upload()

Choose Files No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable. Saving health care diabetes.csv to health care diabetes.csv

```
[ ] #Read the csv file with pandas .read_csv file mrthod.
load_data= pd.read_csv("/content/health care diabetes.csv")
```

 After reading csv file some following steps we have to perform for more details knowledge of this csv data set.

3.1 Read first and last five rows from the dataset.

```
[ ] #check the first 5 rows from the dataset
   load data.head()
       Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
        6
    0
                  148
                                  72
                                               35
                                                     0 33.6
                                                                                0.627 50
                                                                                             1
    1
               1
                      85
                                   66
                                               29
                                                        0 26.6
                                                                                0.351 31
                                                                                              0
    2
               8
                     183
                                  64
                                               0
                                                       0 23.3
                                                                               0.672 32
                                                                                              1
    3
               1
                      89
                                   66
                                               23
                                                       94 28.1
                                                                                0.167 21
                                                                                              0
                                   40
                                               35
    4
               0
                     137
                                                      168 43.1
                                                                                2.288 33
                                                                                               1
```

[]] #check the first 5 rows from the dataset load_data.tail()											
		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome		
	763	10	101	76	48	180	32.9	0.171	63	0		
	764	2	122	70	27	0	36.8	0.340	27	0		
	765	5	121	72	23	112	26.2	0.245	30	0		
	766	1	126	60	0	0	30.1	0.349	47	1		
	767	1	93	70	31	0	30.4	0.315	23	0		

3.2 Now, find out the shape, five point summary, statistical information & how many null values are present inside this data-set.

Shape: It helps to find out rows & columns from the data set.

[] #shape load_data.shape

(768, 9)

So, we got to know that we have 768 rows and 9 columns in that dataset.

Info: It prints information about the DataFrame. The information contains the number of columns, column labels, column data types, memory usage, range index, and the number of cells in each column (non-null values). Note: the info() method actually prints the info.

```
[] #check all info
   load_data.info()
   <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 768 entries, 0 to 767
   Data columns (total 9 columns):
    # Column
                 Non-Null Count Dtype
   - - -
       ----
                             -----
                                          ----
    0 Pregnancies
                            768 non-null int64
    1 Glucose
                            768 non-null int64
                           768 non-null int64
    2 BloodPressure
                           768 non-null int64
    3 SkinThickness
    4
                           768 non-null int64
       Insulin
                             768 non-null
    5
       BMI
                                          float64
    6 DiabetesPedigreeFunction 768 non-null float64
                 768 non-null int64
    7 Age
    8 Outcome
                            768 non-null int64
   dtypes: float64(2), int64(7)
   memory usage: 54.1 KB
```

Describe: It returns description of the data in the DataFrame. If the DataFrame contains numerical data, the description contains these information for each column: count - The number of not-empty values. mean - The average (mean) value. std - The standard deviation.

[] #describe shows five point summary

```
load_data.describe()
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

Isnull & sum: It returns how many null values are present inside this dataset & its total count.

0

0

```
[ ] #check null
```

```
load_data.isnull().sum()
Pregnancies
Glucose
BloodPressure
```

BloodPressure	0
SkinThickness	0
Insulin	0
BMI	0
DiabetesPedigreeFunction	0
Age	0
Outcome	0
dtype: int64	

Perform Descriptive Analysis

Visually explore these variables using histograms. Treat the missing values accordingly.

Case for Variable Glucose

Before treating missing value(in my case 0) .

```
[ ] # how many 0 value are present inside Glucose column.
    count =(load_data['Glucose']==0).sum()
5
```

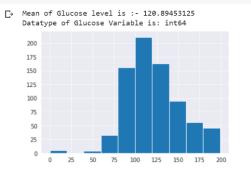
Handle the missing value(in my case 0)

Here, we treated the 0 value as null value & have to replace with mean() for Gloucose column.

If, we compare the Histogram before & after the missing value treatment, it shows like that

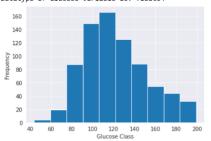
Before

#Glucose before converting 0 to mean
plt.hist(load_data['Glucose'])
print("Mean of Glucose level is :-", load_data['Glucose'].mean())
print("Datatype of Glucose Variable is:",load_data['Glucose'].dtypes)



After

- # #After converting 0 values to mean for the Glucose & plot its histogram. plt.figure(figsize=(6,4)) plt.xlabel('Glucose Class') load_data['Glucose'].plot.hist() sns.set_style(style='darkgrid') print("Mean of Glucose level is :-", load_data['Glucose'].mean()) print("Datatype of Glucose Variable is:",load_data['Glucose'].dtypes)
- C→ Mean of Glucose level is :- 121.68160502115886 Datatype of Glucose Variable is: float64



Case for Variable BloodPressure

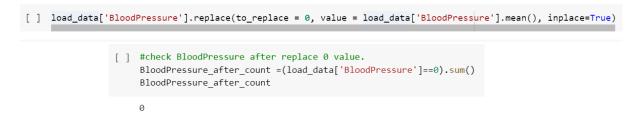
Before treating missing value(in my case 0)

[] # how many 0 value are present inside Glucose column. BloodPressure_before_count =(load_data['BloodPressure']==0).sum() BloodPressure_before_count

35

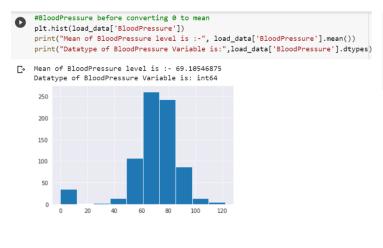
Handle the missing value (in my case 0)

Here, we treated the 0 value as null value & have to replace with mean() for Gloucose column.BloodPressure:



If, we compare the Histogram before & after the missing value treatment, it shows like that

Before



After

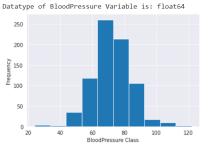
[] #After converting 0 values to mean for the BloodPressure & plot its histogram. plt.figure(figsize=(6,4))

plt.xlabel('BloodPressure Class')
load data['BloodPressure'].plot.hist()

sns.set_style(style='darkgrid')

print("Mean of BloodPressure level is :-", load_data['BloodPressure'].mean())
print("Datatype of BloodPressure Variable is:",load_data['BloodPressure'].dtypes)

Mean of BloodPressure level is :- 72.25480651855469



Case for Variable Skin-Thickness

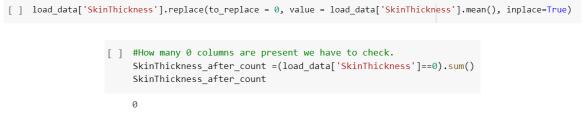
Before treating missing value (in my case 0)

[] #How many 0 columns are present we have to check. SkinThickness_before_count =(load_data['SkinThickness']==0).sum() SkinThickness_before_count

227

Handle the missing value (in my case 0)

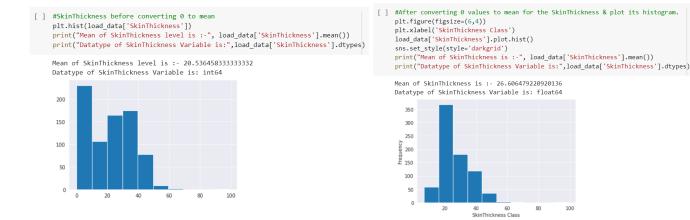
Here, we treated the 0 value as null value & have to replace with mean() for Gloucose column.SkinThickness.



If, we compare the Histogram before & after the missing value treatment, it shows like that

Before

After



Case for Variable Insulin

Before treating missing value (in my case 0) #How many 0 columns are present we have to check. Insulin_before_count =(load_data['Insulin']==0).sum() Insulin_before_count 374

Handle the missing value (in my case 0)

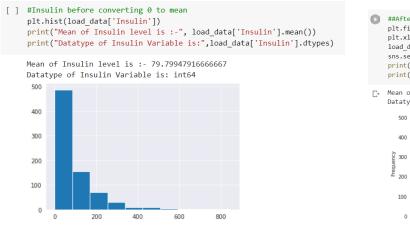
Here, we treated the 0 value as null value & have to replace with mean() for Gloucose column.Insulin.

[] load_data['Insulin'].replace(to_replace = 0, value = load_data['Insulin'].mean(), inplace=True)

[] #How many 0 columns are present we have to check. Insulin_after_count =(load_data['Insulin']==0).sum() Insulin_after_count

If, we compare the Histogram before & after the missing value treatment, it shows like that

Before



0

After

Insulin Class

Case for Variable BMI

Before treating missing value (in my case 0)

- #How many 0 columns are present we have to check. BMI_before_count =(load_data['BMI']==0).sum() BMI_before_count
- [→ 11

Handle the missing value (in my case 0)

Here, we treated the 0 value as null value & have to replace with mean() for BMI column.

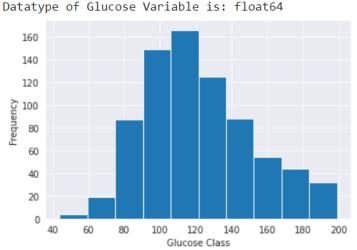
[] load_data['BMI'].replace(to_replace = 0, value = load_data['BMI'].mean(), inplace=True)

If, we compare the Histogram before & after the missing value treatment, it shows like that.



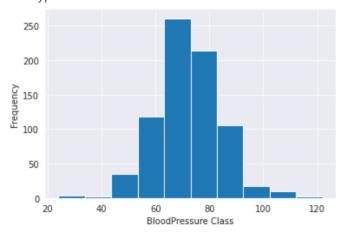
So, finally all histogram are looks like in below

Histogram for Glucose



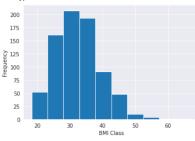
Mean of Glucose level is :- 121.68160502115886

Mean of BloodPressure level is :- 72.25480651855469 Datatype of BloodPressure Variable is: float64



After

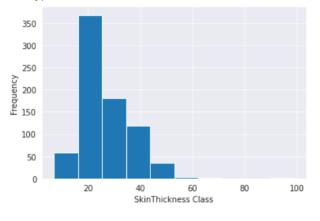
- ##After converting 0 values to mean for the BMI & plot its histogram. plt.figure(figsize=(6,4)) plt.xlabel('BMI Class') loa_data['BMI'].plot.hist() sns.set_style(style='darkgrid') print("Mean of BMI is :-", load_data['BMI'].mean()) print("Datatype of BMI Variable is:",load_data['BMI'].dtypes)
- Dean of BMI is :- 32.4508051554362 Datatype of BMI Variable is: float64



Histogram for Blood-Pressure

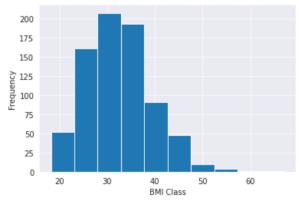
Histogram for Skin-ThickNess

Mean of SkinThickness is :- 26.606479220920136 Datatype of SkinThickness Variable is: float64



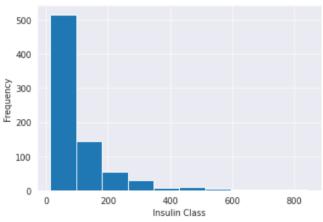
Histogram for BMI

Mean of BMI is :- 32.4508051554362 Datatype of BMI Variable is: float64



Histogram for Insulin

Mean of Insulin is :- 118.66016303168404 Datatype of Insulin Variable is: float64



Create a count(frequency) plot describing the data types & the count of variables

Count Table for Variable Glucose

0		g for eve data[<mark>'Glu</mark>			ounts().he	ead(7)
	111.0 129.0 125.0 106.0 112.0	17 17 14 14 14 14 13 Glucose,	dtype:	int64		

Count Table for Variable BMI

Count Table for Variable Blood Pressure

[40]	<pre>#value counts for BloodPressure load_data['BloodPressure'].value_counts().head(7)</pre>							
Ċ	70.0 74.0 78.0 68.0 72.0 64.0 80.0 Name:	57 52 45 45 44 43 40 BloodPressure, dtype: int64						

Count Table for Variable SkinThickness

D

[44] #value counts for BMI load_data['BMI'].value_counts().head(7)

32.000000	13
31.600000	12
31.200000	12
31.992578	11
32.400000	10
33.300000	10
30.100000	9
Name: BMI,	dtype:
	31.600000 31.200000 31.992578 32.400000 33.300000

Count Table for Insulin

[] #value counts for Insulin load_data['Insulin'].value_counts().head(7)

int64

79.799479	374		
105.000000	11		
130.000000	9		
140.000000	9		
120.000000	8		
94.000000	7		
180.000000	7		
Name: Insulin,	dtype:	int64	

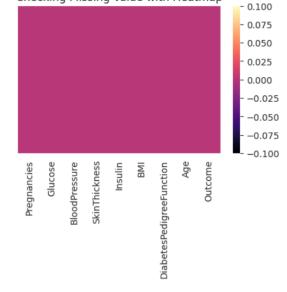
#value counts for SkinThickness
load_data['SkinThickness'].value_counts().head(7)

20.53645	8 227		
32.00000	90 31		
30.00000	00 27		
27.00000	0 23		
23.00000	00 22		
33.00000	00 20		
28.00000	00 20		
Name: Sk	inThickness,	dtype:	int64

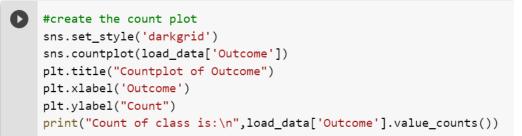
Checking Missing Values with Heat-Map

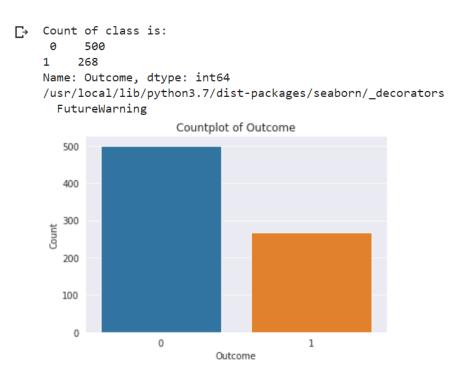
- #checking Missing value with heatmap plt.figure(figsize=(5,3),dpi=100) plt.title('Checking Missing Value with Heatmap') sns.heatmap(load_data.isnull(),cmap='magma',yticklabels=False)
- <matplotlib.axes._subplots.AxesSubplot at 0x7efde34749d0>

Checking Missing Value with Heatmap



Plotting the count of outcomes by their values.



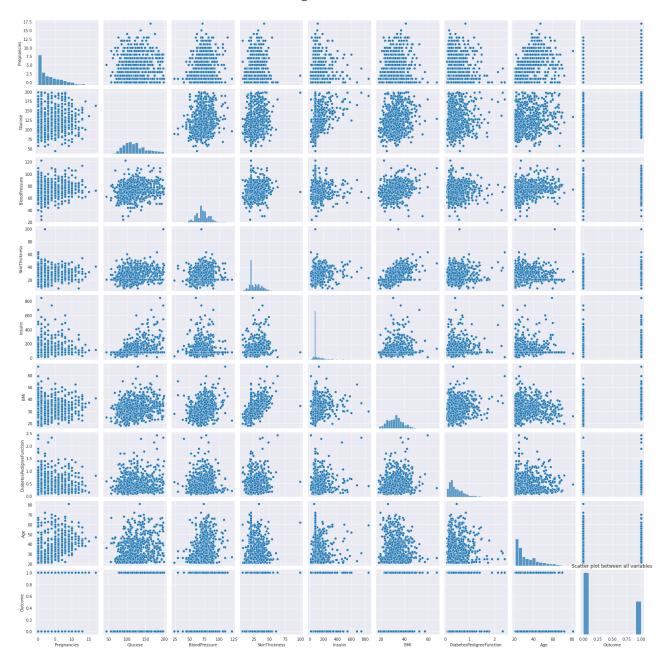


Describe the finding

We can see that both class is balanced so we need not to perform any sampling method to maintain the balance between both classes. Therefor directly using this data in training and testing purpose without performing any sampling method. Meanwhile during Model Validation , we also need not worry about ROC Curve because data is not imbalanced, but as this is a medical data so I will be using ROC curve to make sure TYPE 2 ERROR will not be there.

Scatter plot

Create scatter charts between the pair of variables to understand the relationships. Describe your fin dings.

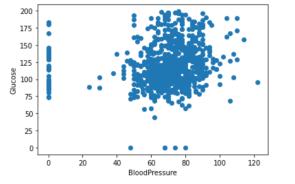


Describe the observation

We can see from scatter plot that there is no strong multicolinearity among features, but between skin thickness and BMI, Pregnancies and age it looks like there is small chance of positive correlation.

Also create scatter plot to identify the co relation between variables observation.

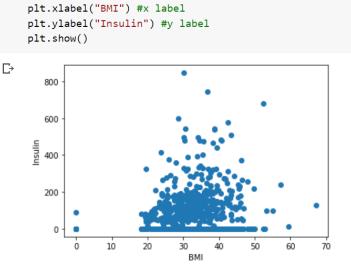
Scatter plot with Glucose and Blood-Pressure



So, from this observation we can seen that the positive (+) co-relation is happened between BloodPressure & Glucose.

Scatter plot with BMI and Insulin

#creating a scatter plot

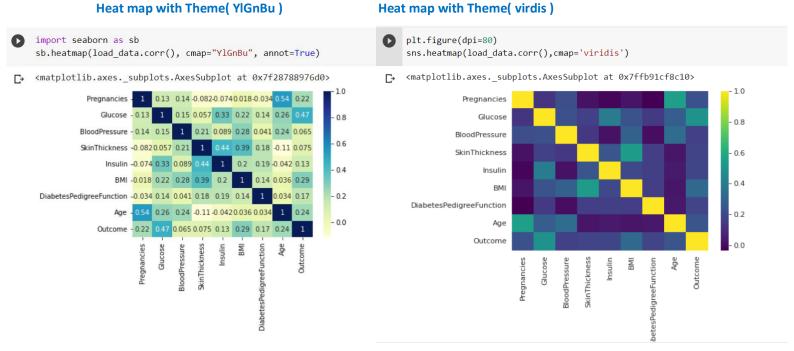


plt.scatter(load_data['BMI'], load_data['Insulin'])

So, from this observation we can seen that the positive (+) corelation is happened between BMI & Insulin.

Perform Co-relation Analysis with heat map

	lead data comp()								Τ Ψ	• 4 7
'	load_data.corr()									
•		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
	Pregnancies	1.000000	0.129459	0.141282	-0.081672	-0.073535	0.017683	-0.033523	0.544341	0.221898
	Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	0.221071	0.137337	0.263514	0.466581
	BloodPressure	0.141282	0.152590	1.000000	0.207371	0.088933	0.281805	0.041265	0.239528	0.065068
	SkinThickness	-0.081672	0.057328	0.207371	1.000000	0.436783	0.392573	0.183928	-0.113970	0.074752
	Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	0.197859	0.185071	-0.042163	0.130548
	BMI	0.017683	0.221071	0.281805	0.392573	0.197859	1.000000	0.140647	0.036242	0.292695
	DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	0.140647	1.000000	0.033561	0.173844
	Age	0.544341	0.263514	0.239528	-0.113970	-0.042163	0.036242	0.033561	1.000000	0.238356
	Outcome	0.221898	0.466581	0.065068	0.074752	0.130548	0.292695	0.173844	0.238356	1.000000



Project Task: Week 2

Data Modeling

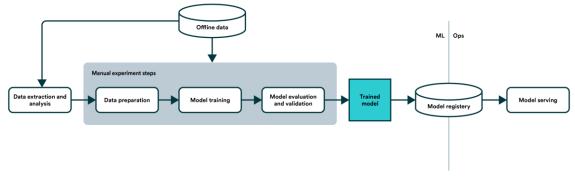
- 1. Devise strategies for model building. It is important to decide the right validation framework. Express your thought process.
- 2. Apply an appropriate classification algorithm to build a model.
- 3. Compare various models with the results from KNN algorithm.
- 4. Create a classification report by analyzing sensitivity, specificity, AUC (ROC curve), etc.

Please be descriptive to explain what values of these parameter you have used.

Methodology for Task for Week -2

Note: All Python code are written inside capstone.ipynb file. Attached this file set along with the report folder.

So, from the below data pipeline we have to reach that training model stage but currently we are



in data processing stage.

Step -1:

#loc is label-based, which means that you have to specify rows and #columns based on their row and column labels. X=load_data.iloc[:,:-1].values y=load_data.iloc[:,-1].values

Step -2 (Splitting the data-set into training and testing part)

now we have import train test split from sklearn. model_selection.

now split our dataset into 80% training and 20% testing & random state is treated as hyperparameter whi ch control the shuffing process.

With random_state=0, we get the same train and test sets across different executions.

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.20,random_state=0)
```

Step -3 (To identify how many rows and columns are present in X_train, X_test, y_train and y_test.

```
[53] #now we have to know how many rows and columns are present in train and test data set.
print(f"X_train shape value determinates",X_train.shape)
print(f"X_test shape value determinates",X_test.shape)
print(f"y_train shape value determinates",y_train.shape)
print(f"y_test shape value determinates",y_test.shape)
X_train shape value determinates (614, 8)
X_test shape value determinates (154, 8)
y_train shape value determinates (614,)
y_test shape value determinates (154,)
```

Step -4 : Now we have to import StandardScaler which

use to standardize the data values into a standard format

```
[56] #now we have to create object from StandardScaler
Scale_value=StandardScaler()
x_train_std=Scale_value.fit_transform(X_train)
x_test_std=Scale_value.transform(X_test)
```

[57] #A lambda function is a small anonymous function. A lambda function can #take any number of arguments, but can only have one expression. norm_v=lambda a:(a-min(a))/(max(a)-min(a))

Step -5 : we again validated with the shape value of X_train_form, X_test_form, y_train_form & y_test_form.

```
[58] df_norm=load_data.iloc[:,:-1]

[59] df_normalized=df_norm.apply(norm_v)
```

0

K_train_norm,X_test_norm,y_train_norm,y_test_norm=train_test_split(df_normalized.values,y,test_size=0.20,randou

[62] print(f"X_train norm shape value determinates",X_train_norm.shape) print(f"X_test norm shape value determinates",X_test_norm.shape) print(f"y_train norm shape value determinates",y_train_norm.shape) print(f"y_test norm shape value determinates",y_test_norm.shape)

X_train norm shape value determinates (614, 8) X_test norm shape value determinates (154, 8) y_train norm shape value determinates (614,) y_test norm shape value determinates (154,)

macro avg 0.79 0.77 0.78 ighted avg 0.81 0.82 0.81

weighted avg

Now Starting Different Model Building Process (KNN)

KNN (KNN with Standard Scaling)

K-NN algorithm stores all the available data and classifies a new data point based on the similarity.

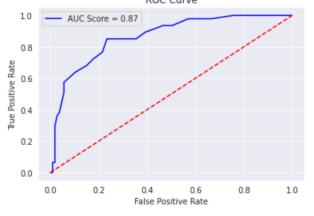
K-Nearest Neighbor(KNN) Algorithm				[63] knn_pre	ed				
<pre>[62] #Now time to import KNeighborsClassifier and Predict from sklearn.neighbors import KNeighborsClassifier knn_model_value = KNeighborsClassifier(n_neighbors=25) #Using 25 Neighbors just as thumb rule sqrt of observation knn_model_value.fit(x_train_std,y_train) knn_pred=knn_model_value.predict(x_test_std)</pre>					<pre> array([1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,</pre>				
	Model Validation ==> Accuracy-Score of KNN Model:: 0.81818181818182					<pre>[65] print("Model Validation ==>\n") print("Accuracy-Score of KNN Model::") print(metrics.accuracy_score(y_test,knn_pred)) print("\n","Classification Report::") print(metrics.classification_report(y_test,knn_pred),'\n') print("\n","ROC Curve") knn_prob=knn_model_value.predict_proba(x_test_std)</pre>			
	Classificatio		nocol1	f1-score		<pre>knn_prob1=knn_prob[:,1] fpr,tpr,thresh=metrics.roc_curve(y_test,knn_prob1)</pre>			
	precision recall f1-score			TI-SCOPE	support	roc_auc_knn=metrics.auc(fpr,tpr) #plt.figure(dpi=80)			
	0 0.85 0.90 0.87 1 0.73 0.64 0.68		107	<pre>plt.title("ROC Curve") plt.xlabel('False Positive Rate')</pre>					
			47	plt.ylabel('True Positive Rate')					
	accuracy	0.70	0	0.82	154	<pre>plt.plot(fpr,tpr,'b',label='AUC Score = %0.2f'%roc_auc_knn) plt.plot(fpr,fpr,'r',color='red') plt.legend()</pre>			

154

154

OBSERVATION

ROC Curve <matplotlib.legend.Legend at 0x7f19bfb18a10> ROC Curve



SO, from KNN standard scaling we can got the Model Accuracy is 0.81 and from the classification report we got its Precision, recall, f1-scoare and support value. With Addition its ROC Curve AUC score is 87%. That is good.

KNN-Normalization

[67] knn_pred_norm

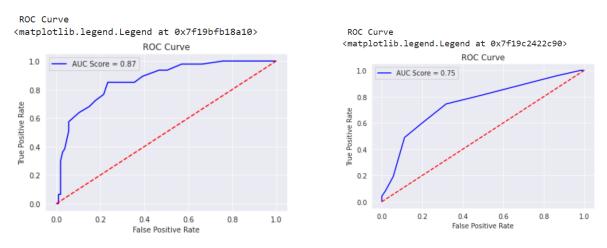
1	[69]	<pre>print("Model Validation ==>\n")</pre>	Model Validation ==>				
)55		print("Accuracy Score of KNN Model with Normalization::")					
		<pre>print(metrics.accuracy_score(y_test_norm,knn_pred_norm))</pre>	Accuracy Score of KNN Model with Normalization			ization::	
		<pre>print("\n","Classification Report::")</pre>	0.8311688311688312				
		<pre>print(metrics.classification_report(y_test_norm,knn_pred_norm),'\n')</pre>)				
		<pre>print("\n","ROC Curve")</pre>	0. 1. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.			0. 0. 0. 01)	
		knn_prob_norm=knn_model_value.predict_proba(X_test_norm)	Classification Report::				
		knn_prob_norm1=knn_prob_norm[:,1]		precision	recall	f1-score	support
		fpr,tpr,thresh=metrics.roc_curve(y_test_norm,knn_prob_norm1)					
		roc_auc_knn=metrics.auc(fpr,tpr)	0	0.86	0.90	0.88	107
		<pre>plt.title("ROC Curve")</pre>	1	0.74	0.68	0.71	47
		plt.xlabel('False Positive Rate')					
		plt.ylabel('True Positive Rate')	accuracy			0.83	154
		<pre>plt.plot(fpr,tpr,'b',label='AUC Score = %0.2f'%roc_auc_knn)</pre>	macro avg	0.80	0.79	0.80	154
		<pre>plt.plot(fpr,fpr,'r',color='red')</pre>	weighted avg	0.83	0.83	0.83	154
		plt.legend()					

OBSERVATION

we compare, the KNN-Standardization and Normalization from the below ROC curve.

KNN- Standardization

KNN- Normalization



We can clearly see that KNN with Standardization is better than Normalization.

Now Starting Different Model Building Process (LOGSTIC REGRESSION)

Logistic regression is an example of **supervised learning**. It is used to calculate or predict the probability of a binary (yes/no) event occurring.

Model Creation:

```
[71] #import Logistic Regression and tried to building a model.
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
lr_model_classifier = LogisticRegression(C=0.01)
lr_model_classifier.fit(x_train_std,y_train)
lr_pred=lr_model_classifier.predict(x_test_std)
```

From the below code we can got output for Model Accuracy, classification report, confusion Matrix & R OC curve:

weighted avg

0.81

0.80

0.81

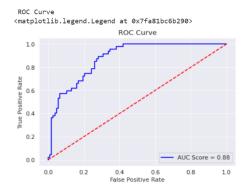
154

	Model Accura	acy :					
<pre>!] #from the below code we can got output for Model Accuracy, classification report, confusion Matrix & ROC c print("Model Validation ==>\n") print(metrics.accuracy_score of Logistic Regression Model::") print(metrics.accuracy_score(y_test,lr_pred)) print(metrics.classification_report(y_test,lr_pred), '\n') print("\n", "Confusion Matrix::") cm = confusion_matrix(y_test,lr_pred,labels=None) print(metricm)</pre>	Model Validat Accuracy Scor	Model Validation ==> Accuracy Score of Logistic Regression Model:: 0.8116883116883117					
<pre>print("n","ROC Curve") ln_prob=ln_model_classifier.predict_proba(x_test_std) ln_probl=ln_prob[:,1] fpr,tpr,thresh=metrics.roc_curve(y_test,ln_prob1) roc_auc(=rmetrics.auc(fpr,tpr)</pre>	Classifica	Classification Report:					
plt.figure(dpi=80)	Classification	Report::					
plt.title("ROC Curve") plt.xlabel('False Positive Rate')		precision	recall	f1-score	support		
plt.ylabel('True Positive Rate')	0	0.82	0.93	0.87	107		
<pre>plt.plot(fpr,tpr,'b',label='AUC Score = %0.2f'%roc_auc_lr)</pre>	1	0.78	0.53	0.63	47		
<pre>plt.plot(fpr,fpr,'r',color='red')</pre>	1	0.78	0.55	0.05	47		
plt.legend()				0.01	154		
	accuracy			0.81	154		
	macro avg	0.80	0.73	0.75	154		

Confusion Matrix:

Confusion Matrix:: [[100 7] [22 25]]

ROC CURVE:



Observation:

Accuracy of KNN is better than Logistic Regression, but auc score of Logistic regression is better.

Now Starting Different Model Building Process (Decision Tree Classifier)

Decision Tree is **also a Supervised Machine Learning Algorithm that uses a set of rules to make decisions**, similarly to how humans make decisions. One way to think of a Machine Learning classification algorithm is that it is built to make decisions.

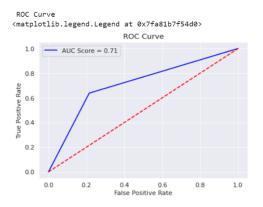
Model Creation:

```
[84] #import Decesion Tree Classifier and tried to building a model.
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix
dtc_model_classifier = DecisionTreeClassifier()
dtc_model_classifier.fit(x_train_std,y_train)
dtc_pred=dtc_model_classifier.predict(x_test_std)
```

From the below code we can got output for Model Accuracy, classification report, confusion Matrix & R OC curve:

<pre>[85] print("Model Validation ==>\n") print("Accuracy Score of Decesion Tree Classfier Model::")</pre>	Model Accuracy	y:				
<pre>print(Accuracy score of becesion free classifier model) print(metrics.accuracy_score(y_test,dtc_pred))</pre>						
print("\n","Classification Report::")	Accuracy Score of Decesion Tree Classfier Model::					
<pre>print(metrics.classification_report(y_test,dtc_pred),'\n') print("\n","Confusion Matrix::")</pre>	0.7402597402597403					
<pre>cm = confusion_matrix(y_test,dtc_pred,labels=None) print(cm) print("\n","ROC Curve")</pre>	Classification Report :					
lr_prob=dtc_model_classifier.predict_proba(x_test_std)	Classification Report:: precision recall f1-score support					
lr prob1=lr prob[:,1]						
fpr,tpr,thresh=metrics.roc_curve(y_test,lr_prob1)		recall	f1-score	support		
roc_auc_lr=metrics.auc(fpr,tpr)						
plt.figure(dpi=80)	0	0.83	0.79	0.81	107	
<pre>plt.title("ROC Curve")</pre>	1	0.57	0.64	0.60	47	
<pre>plt.xlabel('False Positive Rate')</pre>						
plt.ylabel('True Positive Rate')				0.74	454	
<pre>plt.plot(fpr,tpr,'b',label='AUC Score = %0.2f'%roc_auc_lr)</pre>	accuracy			0.74	154	
<pre>plt.plot(fpr,fpr,'r',color='red')</pre>	macro avg	0.70	0.71	0.70	154	
<pre>plt.legend()</pre>	weighted avg	0.75	0.74	0.74	154	

ROC CURVE :



Now Starting Different Model Building Process (Random Forest Classifier)

A random forest is a meta estimator that fits a number of decision tree classifiers on various subsamples of the dataset and uses averaging to improve the predictive accuracy and control overfitting.

Model Creation:

```
[88] #Import Random Forest Classifier Model
from sklearn.ensemble import RandomForestClassifier
rf_model_classifier = RandomForestClassifier(n_estimators=1000,random_state=0)
rf_model_classifier.fit(x_train_std,y_train)
rf_pred_classifier=rf_model_classifier.predict(x_test_std)
```

From the below code we can got output for Model Accuracy, classification report, confusion Matrix & R OC curve:

```
[83] print("Model Validation ==>\n")
     print("Accuracy Score of Random Forest Classifier Model::")
     print(metrics.accuracy_score(y_test,rf_pred_classifier))
     print("\n","Classification Report::")
     print(metrics.classification_report(y_test,rf_pred_classifier),'\n')
     print("\n","Confusion Matrix::")
     cm = confusion_matrix(y_test,rf_pred_classifier,labels=None)
     print(cm)
     print("\n","ROC Curve")
     rf_prob=rf_model_classifier.predict_proba(x_test_std)
     rf_prob1=rf_prob[:,1]
     fpr,tpr,thresh=metrics.roc_curve(y_test,rf_prob1)
     roc_auc_rf=metrics.auc(fpr,tpr)
     plt.figure(dpi=80)
     plt.plot(fpr,tpr,'b',label='AUC Score = %0.2f'%roc_auc_rf)
     plt.title("ROC Curve")
     plt.xlabel('False Positive Rate')
     plt.ylabel('True Positive Rate')
     plt.plot(fpr,fpr,'r--',color='red')
     plt.legend()
```

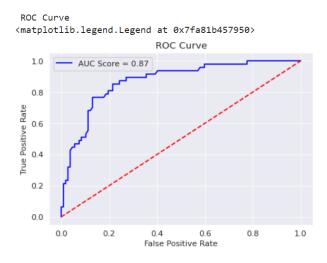
Model Accuracy:

Accuracy Score of Random Forest Classifier Model:: 0.8246753246753247

Classification Report

Classificati	on Report:: precision	recall	f1-score	support
0 1	0.88 0.71	0.87 0.72	0.87 0.72	107 47
accuracy macro avg weighted avg	0.79 0.83	0.80 0.82	0.82 0.79 0.83	154 154 154

ROC Curve



Observation from All Model Decision

So we can see Random Forest Classifier is best among all, you also wondering auc score is lesser by 1 than others also am considering it to be best because balance of classes between Precision (is the fraction of relevant instances among the retrieved instances) and Recall (fraction of relevant instances that were retrieved) is far better than other Models. So we can consider a loss in AUC by 1.

Model Deployment

Deployment is the method by which you integrate a machine learning model into an existing production environment to make practical business decisions based on data. It is one of the last stages in the machine learning life cycle and can be one of the most cumbersome.

Joblib is a set of tools to provide **lightweight pipelining in Python.** In particular: transparent disk-caching of functions and lazy re-evaluation (memoize pattern) easy simple parallel computing.

IMPORT JOBLIB

[86] import joblib

KNN Model (Export):

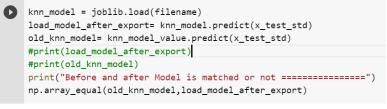
[74] #working exporter for KNN
 export_path = "/content/export_model/"
 filename="knn_model_view.sav"
 joblib.dump(knn_model_value, export_path+ filename)

['/content/export_model/knn_model_view.sav']

export_model

knn_model_view.sav

Before and After Model is Matched or Not?



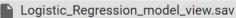
Observation

So, when we started model prediction and when we export the model and import both array value are same.

Logistic Regression Model (Export): [73] #working exporter for Logistic_Regression export_path = "/content/export_model/" filename="Logistic_Regression_model_view.sav" joblib.dump(lr_model_classifier, export_path+ filename)

['/content/export_model/Logistic_Regression_model_view.sav']

export_model



Before and After Model is Matched or Not ?

Observation

So, when we started model prediction and when we export the model and import both array value are same.

Decision Tree Model (Export):

```
#working exporter for Decesion Tree Model
export_path = "/content/export_model/"
filename="Decesion_Tree_model_view.sav"
joblib.dump(dtc_model_classifier, export_path+ filename)
```

['/content/export_model/Decesion_Tree_model_view.sav']

export_model

Decesion_Tree_model_view.sav

Before and After Model is Matched or Not?

```
[112] filename=export_path+"Decesion_Tree_model_view.sav"
    dt_model = joblib.load(filename)
    load_model_after_export_dt= dt_model.predict(x_test_std)
    old_dt_model= dtc_model_classifier.predict(x_test_std)
    #print(load_model_after_export_dt)
    #print(old_dt_model)
    print("Before and after Model is matched or not ==========""")
    np.array_equal(old_dt_model,load_model_after_export_dt)
```

Observation

So, when we started model prediction and when we export the model and import both array value are same.

Random Forest Classifier (Export):

```
[90] #working exporter for Random Forest Model
    export_path = "/content/export_model/"
    filename="Random_Forest_model_view.sav"
    joblib.dump(rf_model_classifier, export_path+ filename)
```

['/content/export_model/Random_Forest_model_view.sav']

export_model

Before and After Model is Matched or Not?

#Random Forest Classifier model checking

filename=export_path+"Random_Forest_model_view.sav"
rf_clasifier_model = joblib.load(filename)
load_model_after_export_rf= rf_clasifier_model.predict(x_test_std)
old_rf_model= rf_model_classifier.predict(x_test_std)
#print(load_model_after_export_dt)
#print(old_dt_model)
print("Before and after Model is matched or not ========"">model_classifier_model_after_export_rf)

Observation

So, when we started model prediction and when we export the model and import both array value are same.

Entire Project Structure

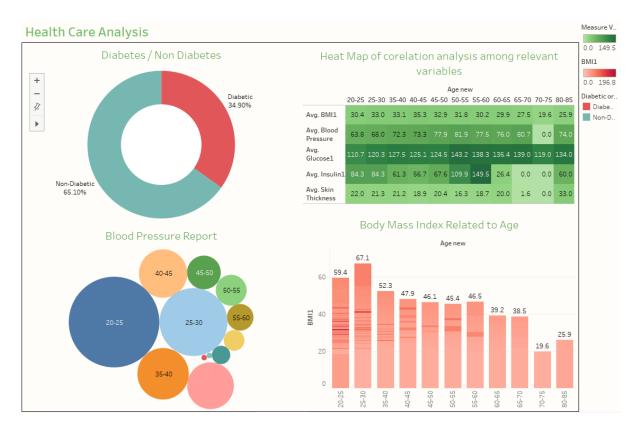
•

- export_model
 - Decesion_Tree_model_view.sav
 - Logistic_Regression_model_view.sav
 - Random_Forest_model_view.sav
 - knn_model_view.sav
- sample_data
 - health care diabetes.csv

Data Reporting

5. Create a dashboard in tableau by choosing appropriate chart types and metrics useful for the business. The dashboard must entail the following:

- Pie chart to describe the diabetic or non-diabetic population
- Scatter charts between relevant variables to analyze the relationships
- Histogram or frequency charts to analyze the distribution of the data
- Heatmap of correlation analysis among the relevant variables
- Create bins of these age values: 20-25, 25-30, 30-35, etc. Analyze different variables for these age brackets using a bubble chart.



Methodology for Data Reporting

WebLink :

https://public.tableau.com/app/profile/kaushik.dey/viz/CapstoneProject_16577424000130/Dash board1?publish=yes