- Two waves of equal frequencies have their amplitude in the ratio of 5: 3. They are superimposed on each other. Calculate the ratio of the maximum to minimum intensities of the resultant wave.
- wavelength 6.00 m. Consider points along the line between the two sources. At what distances, if any, from A is the interference (a) constructive (b) destructive?
- A radio transmitting station operating at a frequency of 120 MHz has two identical antennas that radiate in phase. Antenna *B* is 9.00 m to the right of antenna *A*. Consider point *P* between the antennas and along the line connecting them, a horizontal distance *x* to the right of antenna *A*. For what values of *x* will constructive interference occur at point *P*?
- A convergent lens with a focal length of $f = 10 \,\mathrm{cm}$ is cut into two halves that are then moved apart to a distance of $d = 0.5 \,\mathrm{mm}$ (a double lens). Find the fringe width on screen at a distance of 60 cm behind the lens if a point source of monochromatic light ($\lambda = 5000 \,\mathrm{Å}$) is placed in front of the lens at a distance of $a = 15 \,\mathrm{cm}$ from it.
- S) A deuteron and an α -particle have same kinetic energy. Find the ratio of their de-Broglie wavelengths.
- Find the de-Broglie wavelengths of

 (a) a 46 g golf ball with a velocity of 30 m/s

 (b) an electron with a velocity of 10⁷ m/s.
- Derive the expression for potential energy and kinetic energy of electron in hydrogen like atom?
- Find the longest wavelength present in the Balmer series of hydrogen.
- 7) Find the ionisation energy of a doubly ionized lithium atom.
- A hydrogen atom is in a state with energy –1.51 eV. In the Bohr model, what is the angular momentum of the electron in the atom with respect to an axis at the nucleus?