Practice Set: Applications of Derivatives
 Mean Value Theorems

May 12, 2024

Subjective Type

1. Suppose that $f(0)=-3$ and $f^{\prime}(x) \leq 5, \forall x$. Then, what is the largest value which $f(2)$ can attain?
2. Prove that for $\beta>1$, the equation $x \log x+x=\beta$ has at least one solution in $[1, \beta]$.
3. If $f(x)$ is continuous and differentiable in $[-3,9]$ and $f^{\prime}(x) \in[-2,8], \forall x \in(-3,9)$. Let N be the number of divisors of the greatest possible value of $f(9)-f(-3)$, then find the sum of digits of N.

Single Choice Type

4. Let the function

$$
f(x)=\left\{\begin{array}{lr}
\cos ^{-1} x, & -1 \leq x \leq 0 \\
m x+c, & 0<x \leq 1
\end{array}\right.
$$

satisfies Lagrange's mean value theorem in $[-1,1]$ then ordered pair (m, c) is :
(a) $\left(1,-\frac{\pi}{2}\right)$
(b) $\left(1, \frac{\pi}{2}\right)$
(c) $\left(-1,-\frac{\pi}{2}\right)$
(d) $\left(-1, \frac{\pi}{2}\right)$
5. If $c=\frac{1}{2}$ and $f(x)=2 x-x^{2}$, then the interval of x on which LMVT is applicable is
(a) $(1,2)$
(b) $(-1,1)$
(c) $(0,1)$
(d) $(2,1)$
6. Given $f^{\prime}(1)=1$ and $f(2 x)=f(x), \forall x>0$.If $f^{\prime}(x)$ is differentiable then there exists a number $c \in(2,4)$ such that $f^{\prime \prime}(c)$ equals
(a) $\frac{1}{4}$
(b) $-\frac{1}{2}$
(c) $-\frac{1}{4}$
(d) $-\frac{1}{8}$

Comprehension Type

Let $f(x)$ be a function such that its derivative $f^{\prime}(x)$ is continuous in $[a, b]$ and differentiable in (a, b). Consider a function $\phi(x)$

$$
=f(b)-f(x)-(b-x) f^{\prime}(x)-(b-x)^{2} A .
$$

If Rolle's theorem is applicable to $\phi(x)$ on $[a, b]$, answer following questions.
7. If there exists some number $c(a<c<b)$ such that $\phi^{\prime}(c)=0$ and

$$
f(b)=f(a)+(b-a) f^{\prime}(a)+\lambda(b-a)^{2} f^{\prime \prime}(c),
$$

then λ is
(a) 1
(b) 0
(c) $\frac{1}{2}$
(d) $-\frac{1}{2}$
8. Let $f(x)=\sin x, a=\alpha$ and $b=\alpha+h$. If there exists real number t such that $0<t<1, \phi^{\prime}(\alpha+t h)=0$ and

$$
\frac{\sin (\alpha+h)-\sin \alpha-h \cos \alpha}{h^{2}}=\lambda \sin (\alpha+t h),
$$

then $\lambda=$
(a) $\frac{1}{2}$
(b) $-\frac{1}{2}$
(c) $\frac{1}{4}$
(d) $\frac{1}{3}$
9. Let $f(x)=x^{3}-3 x+3, a=1$ and $b=1+h$. If there exists $c \in(1,1+h)$ such that $\phi^{\prime}(c)=0$ and $\frac{f(1+h)-f(1)}{h^{2}}=\lambda c$, then $\lambda=$
(a) $1 / 2$
(b) 2
(c) 3
(d) does not exist

eabaipaath

