Practice Set: Applications of Derivatives

Mean Value Theorems

May 12, 2024

Class XII

Time: 30 min

Subjective Type

- 1. Suppose that f(0) = -3 and $f'(x) \le 5$, $\forall x$. Then, what is the largest value which f(2) can attain?
- 2. Prove that for $\beta > 1$, the equation $x \log x + x = \beta$ has at least one solution in $[1, \beta]$.
- 3. If f(x) is continuous and differentiable in [-3, 9] and $f'(x) \in [-2, 8]$, $\forall x \in (-3, 9)$. Let N be the number of divisors of the greatest possible value of f(9) - f(-3), then find the sum of digits of N.

Single Choice Type

4. Let the function

$$f(x) = \begin{cases} \cos^{-1} x, & -1 \le x \le 0\\ mx + c, & 0 < x \le 1 \end{cases}$$

satisfies Lagrange's mean value theorem in [-1, 1] then ordered pair (m, c) is :

- (a) $(1, -\frac{\pi}{2})$ (b) $(1, \frac{\pi}{2})$ (c) $(-1, -\frac{\pi}{2})$ (d) $(-1, \frac{\pi}{2})$
- 5. If $c = \frac{1}{2}$ and $f(x) = 2x x^2$, then the interval of x on which LMVT is applicable is (a) (1,2) (b) (-1,1) (c) (0,1) (d) (2,1)
- 6. Given f'(1) = 1 and f(2x) = f(x), $\forall x > 0$. If f'(x) is differentiable then there exists a number $c \in (2, 4)$ such that f''(c) equals
 - (a) $\frac{1}{4}$ (b) $-\frac{1}{2}$ (c) $-\frac{1}{4}$ (d) $-\frac{1}{8}$

Comprehension Type

Let f(x) be a function such that its derivative f'(x) is continuous in [a, b] and differentiable in (a, b). Consider a function $\phi(x)$

$$= f(b) - f(x) - (b - x)f'(x) - (b - x)^2 A.$$

If Rolle's theorem is applicable to $\phi(x)$ on [a, b], answer following questions.

7. If there exists some number c(a < c < b) such that $\phi'(c) = 0$ and

$$f(b) = f(a) + (b - a)f'(a) + \lambda(b - a)^2 f''(c),$$

then λ is			
(a) 1	(b) 0	(c) $\frac{1}{2}$	(d) $-\frac{1}{2}$

8. Let $f(x) = \sin x, a = \alpha$ and $b = \alpha + h$. If there exists real number t such that $0 < t < 1, \phi'(\alpha + th) = 0$ and

$$\frac{\sin(\alpha+h) - \sin\alpha - h\cos\alpha}{h^2} = \lambda \sin(\alpha+th),$$

then $\lambda =$
(a) $\frac{1}{2}$ (b) $-\frac{1}{2}$ (c) $\frac{1}{4}$ (d) $\frac{1}{3}$

9. Let $f(x) = x^3 - 3x + 3$, a = 1 and b = 1 + h. If there exists $c \in (1, 1 + h)$ such that $\phi'(c) = 0$ and $\frac{f(1+h) - f(1)}{h^2} = \lambda c$, then $\lambda =$

(a) 1/2 (b) 2 (c) 3 (d) does not exist

Shajpaathh