Lecture on Storage Systems

File systems under Linux

André Brinkmann

UNIVERSITAT PADERBORN 'L‘
(LN

Die Universitdt der Informationsgesellschaft

/ Outline

* File systems under Linux
— File systems in Unix / Linux
— Symbolic links
— Mounting of file systems

* Virtual file system
— Superblock
— Inode
— Dentry object
— File object
 Example implementation of a file system in Linux
based on ext2

UNIVERSITAT PADERBORN 'L‘
(LN

Die Universitdt der Informationsgesellschaft

Unix file systems

* Hierarchical

— Tree structure

— File catalogues as internal nodes

— Files as leaves

— No restrictions regarding width and depth
* Consistent

— Nearly all system objects are represented as files and can be used via the file
interface (files, catalogues, communication objects, devices, ...)

— Syntactically equal treatment of all types, semantically as far as possible
— Hence: Applications are independent from the object type
 Simple
— Only a few, but flexible file operations
— Simple file structure

Slide based on Lecture Operating Systems by Prof. Dr. U. Heiss UNIVERSITAT PADERBORN 'A‘

Die Universitdt der Informationsgesellschaft

Files in Unix

* Byte string

* Arbitrarily addressable

* Content has no predefined properties
 Form and content created by user

* Restricted to a single logical medium

* Protected by access rights
— r (read)
— w (write)
— X (execute)
e defined for user, group, others

Slide based on Lecture Operating Systems by Prof. Dr. U. Heiss UNIVERSITAT PADERBORN 'A‘

Die Universitdt der Informationsgesellschaft

Inode (Index node)

* Each file is represented by an Inode

* |t contains
— Owner (UID, GID)
— Access rights
— Time of last modification / access
— Size
— Type (file, directory, device, pipe, ...)
— Pointers to data blocks that store file's content

Slide based on Lecture Operating Systems by Prof. Dr. U. Heiss UNIVERSITAT PADERBORN 'A‘

Die Universitdt der Informationsgesellschaft

Directories (file catalogues)

* Directories are handled as normal files, but are marked in Inode-
type as directory
 Adirectory entry contains
— Length of the entry
— Name (variable length up to 255 characters)
— Inode number

* Multiple directory entries may reference the same Inode
number (hard link)

* Users identify files via pathnames ("/path/to/file") that are
mapped to Inode numbers by the OS

* If the path starts with "/", it is absolute and is resolved up from
the root directory

* Otherwise the path is resolved relative to the current directory

Slide based on Lecture Operating Systems by Prof. Dr. U. Heiss UNIVERSITAT PADERBORN 'A‘

Die Universitdt der Informationsgesellschaft

/ Directories

* Each directory contains an entry "." that
represents the Inode of the current directory

mnm »n

 The second entry "..” references parent directory

 The path is resolved from left to right and the
respective name is looked up in the directory

* Aslong as the current name is not the last in the
path, it has to be a directory. Otherwise, the
lookup terminates with an error

Slide based on Lecture Operating Systems by Prof. Dr. U. Heiss UNIVERSITAT PADERBORN 'A‘

Die Universitdt der Informationsgesellschaft

Symbolic Links

 To improve shared access to files, UNIX allows use of symbolic links to reference
single files and directories via multiple different paths

* symlink (bisheriger name, neuer name) creates an additional path to the

resource

 Example Y,
after symlink("/usr/src/uts/sys","/usr/include/sys") |
and symlink("/usr/include/realfile.h", usr

"/usr/src/uts/sys/testfile.h") /\
there exist three paths to the same file sre include

uts Sys realfile.h

sys =

inode.h /\ testfile.h

Slide based on Lecture Operating Systems by Prof. Dr. U. Heiss UNIVERSITAT PADERBORN 'A‘

Die Universitdt der Informationsgesellschaft

Hard and Symbolic Links

* A hard link is an additional file name
— There exists another directory entry that points to the same file
— All hard links point to the same Inode
— Each new hard link increments the link counter of the Inode

— As long as the link counter # 0, the file "survives" a remove() and only the link
counter is decremented

— If the last link is removed, the file is deleted and the Inode can be reused
— Hard links can only be created for files in the same file logical file system

* A symbolic link (soft link) is a file that contains the path of another file or
directory

— Symbolic links are interpreted and resolved on every access

— If the target of a symbolic link is deleted, the link becomes invalid but
remains existent

— Symbolic links to files and directories can be created for files that do not exist
(vet)

Slide based on Lecture Operating Systems by Prof. Dr. U. Heiss UNIVERSITAT PADERBORN L(‘

Die Universitdt der Informationsgesellschaft (L

Logical and Physical File System

* Alogical file system may consist of multiple physical file systems

* Afile system can be hooked into any path of the virtual file system tree with the "mount"
command

 Mounted file systems are managed by the OS in a "mount table" that connects paths to
mount points

* This allows to identify the root Inodes of mounted file systems

etc usr «— mount-point

/\/\

getty passwd

bin |ncl<de src
awk yacc stdio.h uts
Slide based on Lecture Operating Systems by Prof. Dr. U. Heiss UNIVERSITAT PADERBORN i‘
Die Universitdt der Informationsgesellschaft

Virtual File System

* The Virtual File System (VFS) implements a generic file system interface
between the actual file system implementation (in kernel) and
accessing applications to provide interoperability

=» Applications can access different file systems on different media via a
homogeneous set of UNIX system calls

HDD with ext4

VFS < » Cp

DVD with UDF

Slide based on R. Love: Linux Kernel Development UNIVERSITAT PADERBORN 'A‘

Die Universitdt der Informationsgesellschaft

Virtual File System

Example: write (£, &buf, len);

 Write of 1en Bytes in file with descriptor £ from Buffer buf is
translated into system call

 The system call is forwarded to the actual file system implementation
* The file system executes the write command

| | |
| | |
: ! file system |
write() B S0 e i | write method C
: : :
| | |
User-space ! VFS ' File system ' Disk drive

Slide based on R. Love: Linux Kernel Development UNIVERSITAT PADERBORN 'A‘

Die Universitdt der Informationsgesellschaft

VES Objects and Data Structures

* VFS is object oriented

* Four base objects
— Super block: Represents specific properties of a file system
— Inode: File description

— Dentry: The directory entry represents a single component of a
path

— File: Representation of an open file that is associated with a
process

* VFS handles directories like files
— Dentry object represents component of a path that may be a file
— Directories are handled like files as Inodes

 Each object provides a set of operations

Slide based on R. Love: Linux Kernel Development UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

d

Superblock

struct super_block {

struct list_head s_list; /* Reep this first */
. dev_t s_dev; /* search index; _not_ kdev_t */
(] E a C h ﬁ | e S Ste m m u St unsigned long s_blocksize;
unsigned char s_blocksize_bits;
unsigned char s_dirt;

. unsigned long long s_maxbytes; /* Max file size */
rovide a superblock
struct super_operations *s_op;

struct dguot_operations *dg_op;
struct quotactl_ ops *s_qcop;

* Contains properties of ey tei

unsigned long s_magic;
. struct dentry *s_root;

the ﬁle System struct rw_semaphore s_wmount;
struct mutex s_lock;
int s_count;

o int s_syncing;

* Is stored on special
p atomic_t s_active;
void *s_security;

sectors of disk or is
created dynamically (i.e.

by sysfs)

struct xattr_handler

struct list_head
struct list_head
struct list head
struct hlist head
struct list_head

struct block_device
struct list_head

**s xattr;

s_inodes; r*
s_dirty; /*
s_io; /*
s_anon; r*
s_files;
*s_hdev;

s_instances;

all inodes */
dirty inodes */

parked for writeback */
anonymous dentries for (nfs) exporting */

struct guota_info s_dguot; /* Diskquota specific options */

° Stru cture is Created by unsigned int s prunes; /+ protected by deache lock */

wait_queue_head_t s_walt prunes;

. £ .
a l l O C S up e r () W h e n ::r::t_queue_head_t ::w:ioiz:iz;frozen;
—_— char s_id[32]; /* Informational name */

th ﬁI t . void *s_fs_info; /* Filesystem private info */
m J*

e e Sys e IS * The next field is for VFS *only*. No filesystems have any business

* even looking at it. You had been warned.

m O u n te d s:;’:uct semaphore s_vfs_rename_semn; /* Rludge */

/* Granuality of <¢/m/atime in ns.
Cannot be worse than a second */
u3z s_time_gran;

i
Slide based on R. Love: Linux Kernel Development

UNIVERSITAT PADERBORN 'L‘
(LN

Die Universitdt der Informationsgesellschaft

Superblock Operations

VL
* NOTE: write_inode, delete_inode, clear inode, put_inode can bhe called P E h t t M

* without the big kernel lock held in all filesystens. aC en ry Con a I ns
*/

truct = { I .
shrue Szzji;zpiez’-;zti;o??*alloc_inode) {struct super_block *sh); pOI nte r to a fu n Ctl O n

void (*destroy_inode) (struct inode *);

void (*read_inode) (struct inode *); o File System prOVideS

void (*dirty_inode) (struct inode *);

int (*write_inode) (struct inode *, int); M I t ti f t h
volid (*put_inode) ({struct inode *); I I I I p EI I le n a O n O r e
void (*drop_inode) (struct inode *);

void (*delete_inode) (struct inode *);

void (*put_super) (struct super_block *); O pe ratl O n S

void (*write_super) (struct super_hlock *);
int (*sync_fs) (struct super_block *sbh, int wait);

volid (*write_super lockfs) (struct super_block *); Y E m | .
void (*unlockfs) (struct super_block *); Xa p eo

int (*statfs) (struct super block *, struct kstatfs *);

int (* t fs) (st t block *, int *, ch *y; M
e e o o Eanga ey 7 e ke Write superblock sb:

void (*umount_begin) {struct super_block *);

: * : ! * *Y . .
int (*show_options) (struct seq_file *, struct vismount *); Sb_>S Op—>wrlte Super (Sb)
ssize_t {*quota_read) (struct super_block *, int, char *,

size_t, loff_t);
ssize t (*guota write) (struct super_ block *, int,

const char *, size t, loff t);

}i

Slide based on R. Love: Linux Kernel Development UNIVERSITAT PADERBORN 'A‘

Die Universitdt der Informationsgesellschaft

Inode Object

* Contains information specific to a file

* For typical Unix file systems, an Inode can
directly be read from disk

e Other file systems hold this information as part
of a file or in a database

=>» Inode has to be created by the file system

* Special Entries for non-data files

— i.e.1 pipe, 1 bdev, ori cdev are
reserved for pipes, block and character devices

 Some entries are not supported by all file
systems and may therefore be set to Null

Slide based on R. Love: Linux Kernel Development

struct inode {
struct hlist_node
struct list_head
struct list_head
struct list_head
unsigned long
atomic_t
unode_t
unsigned int
uid_t
gid_t
dev_t
loff_ t
struct timespec
struct timespec
struct timespec
unsigned int
unsigned long
unsigned long
unsigned long
unsigned short
spinlock_t
struct mutex
struct rw_semaphore

i hash;

i list;
i_sh_list;
i _dentry;
i ino;

i count;
i mode;

i nlink;
i uid;
i_gid;
i_rdev;

i size;

i atime;
1 mtime;
i ctime;

[

i blkbits;

i blksize;

i wversion;

i blocks;

i _bytes;

i lock;
i_mutex;
i_alloc_sem;

struct inode_operations *i_op;

struct file_operations
struct super_block
struct file_lock
struct address_space
struct address_space
struct dguot
struct list_head
struct pipe_inode_info
struct block_device
struct cdev
int
_ a3z
unsigned long
struct dnotify_struct
struct list_head
struct semaphore
unsigned long
unsigned long
unsigned int
atomic_t
void
union {

void
Powg
seqcount_t

;|

UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

*i_fop;
*i_sh;

*i_ flock;
*i_mapping;
i_data;

*i_dguot [MAXQUOTAS] ;

i_devices;
*i_pipe;
*i_bdev;
*i_cdev;
i_cindex;
i_generation;
i_dnotify mask;
*i_dnotify;
inotify watches;
inotify_sem;
i_state;
dirtied_when;
i_flags;
i_writecount;
*i_security;

*generic_ip;

i_size_seqcount;

d

Inode Operations

struct inode_operations {

int {(*create) {(struct inode *,struct dentry *,int, struct nameidata *);

struct dentry * {(*lookup) {(struct inode *, struct dentry *,

struct nameidata *);

int {*link) ({(struct dentry *, struct inode *, struct dentry *);

int {*unlink) {(struct inode *, struct dentry *);

int {*symlink) ({struct inode *,struct dentry *,const char *);

int {*mkdir) (struct inode *, struct dentry *,int);
int {*rmdir) (struct inode *, struct dentry *);

int (*mknod) (struct inode *, struct dentry *,int,dev_t);

int {*rename) {(struct inode *, struct dentry *,
struct inode *, struct dentry *);
int (*readlink) (struct dentry *, char _ user *,int);

void * (*follow_link) ({(struct dentry *, struct nameidata *);
volid *);

void (*put_link) (struct dentry *, struct nameidata *,
volid {(*truncate) (struct inode *);

int {(*permission) {(struct inode *, int, struct nameidata *);

int {(*setattr) ({(struct dentry *, struct iattr *);
int {*getattr) (struct wvismount *mnt, struct dentry *,

struct kstat *);

int (*setxattr) (struct dentry *, const char *,const void *,size t,int);

ssize t (*getxattr) (struct dentry *, const char *, woid *,

ssize_t (*listxattr) (struct dentry *, char *, size t);
int {*removexattr) (struct dentry *, const char *);
void {(*truncate_range) (struct inode *, loff £, loff t);

I

size t);

* Inode Operations describe the set of operations that are implemented

by the file system and are accessed via VFS

Slide based on R. Love: Linux Kernel Development

UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

d

Dentry Objects

e Unix directories are handled like files

* The path /bin/vi contains the
directories / and bin as well as the
file vi

e Resolution of paths requires
introduction of dentry objects

 Each partofapathisdentry
object

* VFS creates dentry objects on the
fly

* No equivalent on disk drive

 Are stored in dentry cache (handled
by OS)

— Frontend of Inode cache

Slide based on R. Love: Linux Kernel Development

struct dentry {

atomic_t d_count;

unsigned int d_flags; /* protected by d_lock */
spinlock_t d_lock; /* per dentry lock */
struct inode *d_inode; /* Where the name belongs to - NULL is

* negative */

J*

* The next three fields are touched by _ d_lockup. Place them here

* 3o they all fit in a cache line.

*/

struct hlist node d_hash;
struct dentry *d_parent;
struct gstr d_name;

/* lookup hash list */
/* parent directory */

struct list head d_lru; /* LRU list */

i+
* d_child and d_rcu can share memory
*f
union {
struct list_head d_child; /* child of parent list */
struct rcu head d_rcu;
Pod_w;
struct list head d_subdirs; /* our children */
struct list head d_alias; /* inode alias list */
unsigned long d_time; /* used by d_revalidate */
struct dentry_operations *d_op;
struct super_block *d_sh; /* The root of the dentry tree */
void *d_fsdata; /* fs-specific data */

#ifdef CONFIG_PROFILING

struct deookie_struct *d_cookie; /* cookie, if any */

int d_mounted;

unsigned char d_iname[DNAME INLINE_LEN_ MIN]; /* small names */

UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

d

File Object

* File object represents open file
* Interface to applications
* |screated as reply to open () system call

* Isremovedonclose ()

* Different processes can open a file srruet Eile
multiple times =» different file objects struct list_head fu_list;
struct rcu head fu rcuhead;
. . . . o O£ u;

The file object is an in-memory Lerinl dentry N

data structure Of the OS struct wvfsmount *f wvismnt;
struct file operations *f_op;
atomic_t f count;
unsigned int f flags;
mode_t f mode;
loff t f pos;
struct fown struct f owner;
unsigned int f uid, £ gid;
struct file_ra_state f ra;
unsigned long f version;
void *f security;
void *private_data;
struct list head f ep links;
spinlock_t f ep lock;
struct address_space *f mapping;

1i
Slide based on R. Love: Linux Kernel Development UNIVERSITAT PADERBORN i
Die Universitdt der Informationsgesellschaft IJ

File operations

* NOTE:

* read, write, poll, fsyne, readv, writev, unlocked ioctl and compat_ioctl

* can be called without the big kernel lock held in all filesystems.

*/

struct file operations {
struct module *owner;
loff t (*1llseek) (struct file *, loff t, int);
ssize t (*read) (struct file *, char _ user *, size t, loff t *);
ssize t (*alo_read) (struct kioch *, char _ user *, size t, loff_t);
ssize t (*write) (struct file *, const char _ user *, size t, loff t *);
ssize t (*alo_write) (struct kioch *, const char _ user *, size t, loff t);
int (*readdir) (struct file *, wvoid *, filldir_t);
unsigned int {(*poll) (struct file *, struct poll table_struct *);
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
long (*compat ioctl) (struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct wvm_area_ struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);
int (*release) (struct inode *, struct file *);
int (*fsyne) (struct file *, struct dentry *, int datasyne);
int (*aio_fsyne) (struct kioch *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file lock *);
ssize t (*readv) (struct file *, const struct iovec *, unsigned long, loff t *);
ssize_t (*writev) (struct file *, const struct iovee *, unsigned long, loff_t *);
ssize_t (*sendfile) (struct file *, loff t *, size t, read actor_t, wvoid *);
ssize_t (*sendpage) (struct file *, struct page *, int, size t, loff t *, int);
unsigned long (*get unmapped_area) (struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
int (*check_flags) (int);
int (*dir_notify) (struct file *filp, unsigned long arg);
int (*flock) (struct file *, int, struct file lock *);

#idefine HAVE FOP_OPEN_EXEC

int (*open_exec) (struct inode *);

bi

UNIVERSITAT PADERBORN 'L‘
(LN

Die Universitdt der Informationsgesellschaft

File systems in Linux - EXT 2

e First linux file system has been derived from Minix
e Limitations of Minix-FS couldn‘t be tolerated for long

— Only 14 characters for file names

— Paritions had to be smaller 64 Mbyte

— No symbolic links
* Minix-FS has been the file system under linux until the introduction of EXT
* EXT has been influenced by the Fast File System from the BSD world
e Aims of EXT2

— Variable block sizes to better support big AND small files

— Fast symbolic links

— Extending the file system without reformatting

— Decrease the harm of crashes (fsck)

— Introduction of unchangable files

Slide based on W. Maurer: Linux Kernelarchitektur UNIVERSITAT PADERBORN 'A‘

Die Universitdt der Informationsgesellschaft

Physical Architecture

* Block based devices have sectors as smallest addressable unit
 EXT2is block based file system that partitions the hard disk into blocks (clusters) of

the same size
 Blocks are used for metadata and data
* Blocks lead to internal fragmentation

Optimale Packungsdichte
A
Datei A
Datei B
Datei C
N— S
—

Datenverteilung in EXT 2
Slide based on W. Maurer: Linux Kernelarchitektur UNIVE RS|TAT PADERBORN 'A‘

Die Universitdt der Informationsgesellschaft

Structural Architecture of EXT 2

e EXT2 divides storage system into block groups

Boot-
block

Block Group 1

Block Group 2

Block Group n

* Boot block is equivalent to first sector on hard disk

* Block group is basic component, which contains further file system components

Data blocks

Super- Group Data | Inode Inode
block Descriptor [Bitmapbitmap Tables
1 block k blocks 1 block 1 block n blocks

Slide based on W. Maurer: Linux Kernelarchitektur

m blocks

UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

d

/ Metadata

e Superblock: Central structure, which contains number of free and
allocated blocks, state of the file system, used block size, ...

e Group descriptor contains the state, number of free blocks and

inodes in each block group. Each block group contains group
descriptor!

e Data bitmap: 1/0 allocation representation for data blocks

* |node bitmap: 1/0 allocation representation for inode blocks
* Inode table stores all inodes for this block group

 Data blocks store user data

Slide based on W. Maurer: Linux Kernelarchitektur UNIVERSITAT PADERBORN 'A‘

Die Universitdt der Informationsgesellschaft

Data Structures

 EXT2 stores metadata in each block group

* Basicidea:
— If a system crash corrupts the superblock, then there are enough redundant

copies of it
— Distance between metadata and data is small =» fewer head movements

* Implementations work differently:

— Kernel only works with in RAM copy of the first superblock, which is written
back to redundant super blocks during file system checks

— Later versions of EXT2 include Sparse Superblock option, where superblocks
are only stored in group 0O, 1 as well in groups, which are a power of 3, 5, or 7

UNIVERSITAT PADERBORN

Slide based on W. Maurer: Linux Kernelarchitektur i‘
Die Universitdt der Informationsgesellschaft (L

Limitations

e Size of afile is restricted by the number of block entries in an inode

* Assumption:
— 700 Mbyte file size and 4 Kbyte block size
=>» 179.200 block entries are necessary and each entry needs 32 / 64 Bit
=» 700 KByte storage space within one Inode are necessary

=>» If the inode size is fixed, the you

also need 700 KByte inodes for o __
. Indirektionsblécke Datenblocke
4 Kbyte files Inode N

e EXT2 supports direct and -
indirect blocks H
 There is one pointer each for — |
one-time, tweo-time, and T |
three-time indirect blocks 12 direide \ —
—

Slide based on W. Maurer: Linux Kernelarchitektur UNIVERSITAT PADERBORN 'A‘

Die Universitdt der Informationsgesellschaft

Calculation of maximum file site

BlockgrofRe / Kbyte

Blocke erste Stufe 12 12 12

Blocke Uber erste Indirektion 256 512 1.024

Blocke uber zweite Indirektion 65.536 262.144 1.048.576

Blocke Uber dritte Indirektion 16.777.216 134.217.728 1.073.741.824 8.589.934.592
Maximal darstellbare Zahl 4.294.967.296 4.294.967.296 4.294.967.296 4.294.967.296
max. Dateigrofie / Gbyte 16 257 4.100 32.768

* Increasing the block size increases maximum file size quadratically
* High file capacities are mostly ensured by third level of indirection
 Most applications only work with files up to 2 Thyte

* 64 bit addressing only works with half as much pointers per block, but
helps to overcome 2 Tbyte limit

UNIVERSITAT PADERBORN 'L‘
(LN

Die Universitdt der Informationsgesellschaft

EXT 2-Superbl

struct extZ_super_bhlock {

* Readinusingext2 read super()

* Meaning is typically part of the
name ...

* s log block size storessize of a
block in Kbyte as its logarithm

* s blocks per group defines
number of blocks per group

* s magic stores magic value for
EXT2

* s feature compat, .. define
compatibility requirements

Slide based on W. Maurer: Linux Kernelarchitektur

_ 1le32 s_inodes_count;
_1le32 s _blocks_count;
_1le32 s_r_blocks_count;

_ 1le32 s_free blocks count;
_ le3z s_free_inodes_count;
_ 1le32 s_first _data_block;
_ le32 s_log_block_size;
_1e32 s_log_frag_size;
_le32 s_blocks_per_group;
_le32 s_frags_per_group;

_ 1e32 s_inodes_per_group;
_ le32 s_mtime;

_1le32 s_wtime;

_lelé s mnt_count;

_lelé s_max mnt count;
__lelé s_magic;

_lelée s_state;

_lelé s_errors;

_lels s_minor_rev_level;
_1le32 s_lastcheck;

_ le32 s_checkinterval;

_ le32 s _creator_os;

_le32 s_rev_ level;

__lelée s_def resuid;

_lelé s _def resgid;

_le32 s_first ino;

_ lelé s_inode_size;
_lelé s _block_group_nr;

_ le32 s_feature_ compat;

_ 1le32 s_feature_incompat;
_1le32 s_feature_ro_compat;
_u8 s_uuid[16];

char s_volume name[l6];
char s_last_mounted[64];
_ le3dz

_us s_prealloc_blocks;
_us s_prealloc_dir_blocks;
__ulé s_paddingl;

_ a3z s_journal_inum;
_u32 s_journal_dev;

_u3z s_last orphan;

_ w3z s_hash_seed[4];

_u8 s_def_hash version;
_us s_reserved_char_pad;
_ule s_reserved_word_pad;
_1e32 s_default mount opts;
_ 1le32 s_first _meta_bg;

_ a3z s_reserved[190];

i*
/*
/*
i*
/*
/*
i*
/*
I*
i*
/*
I*
i*
/*
i*
/*
/*
i*
/*
/*
i*
/*
I*
i*
/‘*
I*
/*
/*
i*
/*
/*
i*
/*
/*

/*
/*

/‘*
i*
/*
/*
i*

/*
/*

Inodes count */

Blocks count */

Reserved blocks count */

Free blocks count */

Free inodes count */

First Data Block */

Block size */

Fragment size */

Blocks per group */

Fragments per group */

Inodes per group */

Mount time */

Write time */

Mount count */

Maximal mount count */

Magic signature */

File system state */

Behaviour when detecting errors */
minor revision lewvel */

time of last check */

max. time between checks */

o8 */

Revision level */

Default uid for reserved bhlocks */
Default gid for reserved blocks */
First non-reserved inode */

size of inode structure */

block group # of this superblock */
compatible feature set */
incompatible feature set */
readonly-compatible feature set */
128-bit uuid for wvolume */

volume nawme */

directory where last mounted */

s_algorithm usage_bitmap; /* For compression */

Nr of blocks to try to preallocate*/
Nr to preallocate for dirs */

inode number of journal file */
device number of journal file */
start of list of inodes to delete */
HTREE hash seed */

Default hash version to use */

First metablock block group */
Padding to the end of the block */

UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

d

EXT 2-Superblock-Info

* VFS-superblock gets pointer to file system

specific elementsvia *s fs info struct ext2_sb_info

* Datais read from superblock and/or
created from the file system

* Most important:
— s _mount opt: Mount options
— s _mount state: Current state
— s dir count: Number of directories

3

Slide based on W. Maurer: Linux Kernelarchitektur

unsigned long s_frag size; /* Size of a fragment in bytes */
unsigned long s_frags_per block;/* Number of fragments per block */
unsigned long s_inodes_per block:/* Number of inodes per block */
unsigned long s_frags_per_group;/* Number of fragments in a group */
unsigned long s_blocks_per _group:/* Number of blocks in a group */
unsigned long s_inodes_per_group;/* Number of inodes in a group */

unsigned long s_itb_per_group; /% Number of inode table blocks per group */

unsigned long s_gdb_count; /* Number of group descriptor blocks

*

unsigned long s_desc_per_block; /% Number of group descriptors per block */

unsigned long S_groups_count; /* Number of groups in the fs %/
struct buffer head * s_sbh; /% Buffer containing the super block
struct extZ_super_block * s_es; /* Pointer to the super block in the
struct buffer_head ** s_group_desc’

unsigned long S_mount_opt;

uid_t s_resuid;

gid t s_resgid:

unsigned short s_mount_state;

unsigned short s_pad:

int 3_addr_per_block_bits;

int s_desc_per_block_bits;

int 3_inode_size;

int s_first_ino;

spinlock_t s_next_gen lock;

u3Z s_next_generation;

unsigned long s_dir_count;

ud *s_debts;

struct percpu_counter s_freeblocks_counter;

struct percpu_counter s_freeinodes_counter;

struct percpu_counter s_dirs_counter;

struct blockgroup_lock s_blockgroup_lock;

*
buffer */

UNIVERSITAT PADERBORN 'L‘
(LN

Die Universitdt der Informationsgesellschaft

’.f'ﬁ'

* Mount flags

*f
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

EXTZ_MOUNT_CHECK
EXT2_MOUNT OLDALLOC
EXTZ_MOUNT_GRPID
EXTZ_MOUNT DEEUG
EXTZ_MOUNT_ERRORS_CONT
EXTZ_MOUNT_ERRORS_RO
EXTZ_MOUNT_ERRORS_PANIC
EXTZ_MOUNT MINIX_DF
EXT2_MOUNT NOEH
EXTZ_MOUNT_NO_UID32
EXTZ_MOUNT XATTR_USER
EXTZ_MOUNT_POSIX_ACL
EXTZ_MOUNT _XIP
EXTZ_MOUNT_USRQUOTA
EXTZ_MOUNT GRPQUOTA

0x000001
0x000002
0x000004
0x000008
0x000010
0x000020
0x000040
0x000030
0x000100
0x000200
0x004000
0x0038000
0x010000

’.f'ﬁ‘
f.*
’J‘?-‘
f.*
Fd
f'&‘
A
’.f'ﬁ'
/1:
’.f'ﬁ‘
f.*
’J‘?-‘
f.*

EXT 2 Mount Options

Do mount-time checks */

Don't use the new Orlov allocator +/
Create files with directory's group */
Some debugging messages */

Continue on errors +/

Remount fs ro on errors %/

Panic on errors */

Mimics the Minix statfs */

No buffer_heads */

Disable 32-bit UIDs */

Extended user attributes */

POSIX Access Control Lists */
Execute in place */

0x020000 /% user cquota */
0x040000 /% group cquota */

UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

d

Group descriptor

One copy of the descriptor for each struct ext2 group desc
block group in the kernel {
. 1le32 bg block bitmap;
Block descriptor for each block group " 1e32 bg inode bitmap;
in each block group _1e32 bhg inode table;
. __lelé bg free blocks count;
=» Bitmaps can be accessed from " lelf bg free incdes count;
everywhere __lelé bg used dirs count;
Pointer to bitmaps with allocation _1elE B3 pad;
P __1le32 bg reserved[3];

information of blocks and inodes s

=» Number of blocks in each block group
restricted by block size

Position of free blocks can be directly
calculated from position in bitmap

Counter for free structures

Slide based on W. Maurer: Linux Kernelarchitektur

UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

d

EXT2 Inodes

struct extZ_inode {

° i_mode stores access le16 i_mode; /* File mode */

:leléi i_uid; /* Low 16 bits of Owner Uid */
. o . _le32 i_size; /* 8ize in bytes */
le3z i irme; /* i */
permissions for and type of file e e
_1e32 i_mtime; /* Modification time */
° S I . _1le32 i_dtime; /* Deletion Time */
lelé i id; /* 16 bi £ d */
eve ra tl me Sta m pS :l:lﬁ 1:ginks_count; /* i:io.:ks cc:xﬁf: S/ srow
__1e32 i_blocks; /* Blocks count */
' ' ' _.'!.832 i_flags; /* File flags */
* i sizeandi blocks store CEN

_1e32 1_i reservedl;

size in bytes, resp. blocks } Bned
} hurdl; €32 h i translator;

* 1 block contains pointer to i RN

} masixl;

[] [] [] [] ; / /
direct and indirect block links (oI Al s oA

m_i_reservedl;

__1le32 1i_generation; /* File version (for NFg) */
\ \ _le3z i_file_ acl; /* File ACL */
1le32 1 dir acl; /* Directory ACL */
° l l l n k S C Oun t Cou nts ha rd :1932 i:fadar; P Fragmentyaddress L
— — union {
I' k struct {
In S us 1 i frag; /* Fragment number */
ug 1 i fsize; /* Fragment size */

ulé i_padl;

lelé 1_i_uid_high; /* these 2 fields */
lelé 1_i_gid_high; /* were reservedZ[0] */
u3z 1 i reservedZ;

} linux2;
struct {

} hurdZ;
struct {

} masix2;
} osd2; /* 0% dependent 2 */

Slide based on W. Maurer: Linux Kernelarchitektur UNIVERSITAT PADERBORN 'A‘

Die Universitdt der Informationsgesellschaft

How does OS find an Inode?

static struct extiZ_inode *extZ_get_ inode(struct super_block *sb, ino_t ino,
struct buffer_head **p)
{
struct buffer_head * bh;
unsigned long block_group;
unsigmed long block:
unsigned long offset;
struct extiZ_group_desc * gdp;

Is it a valid Inode address?

*p = NULL;
if ({ino != EXT2_ROOT_INO && ino < EXTZ_FIRST_INO(sb)) ||
ino > le32_to_cpu(EXTZ_SEB(sb)->s_es->s_inodes_count))
goto Einwal;

block_group = (ino - 1) / EXTZ_INODES_PER_GROUP(sb):
gdp = extZ_get_group_desc(sb, block_group, &bh); ‘1-__—_____‘_""—————-—_.___________________
if ('gdp)

goto Egdp;

In which group resides Inode

/R
* Figure out the offset within the block group inode table
*/
offset = ({ino - 1) % EXTZ_INODES_PER_GROUP(sb)) * EXTZ_INODE_SIZE(sb): .
block = le32_to_cpuigdp->bg_inode_table) + Informatlon abOUt the grOUp

{offset >»> EXTZ_BLOCK_SIZE_BITS(sb)):
if {!{bh = sb_breadisb, block)))
goto Eio;

*p = bh;
offset &= (EXTZ_BLOCK_SIZE(sb) - 1):
return (struct extZ_inode *) (bh->b_data + offset):;

Offset within the group

Einval:
extZ_error(sb, "extiZ_get_inode"”, "bad inode number: %lu"”,
unsigned lon ino): .
SR ooy et sl Read data from disk / from Cache
Eio:
extZ_error(sb, "extiZ_get_inode”,
"unable to read inode block - inode=%lu, block=%1lu",
(unsigned long) ino, block):;
Egdp:

return ERR_PTR(-EIOD);

UNIVERSITAT PADERBORN 'L‘

Die Universitdt der Informationsgesellschaft

Directory entries in EXT2

 Directories are handled as standard inodes

* ext2 dir entry marks directory entry

* Tnode contains associated inode number

* name len stores length of directory name

— Has to be multiple of four
— Can be filled with /0

* rec len pointsto next entry

struct extZ _dir entry 2 {
1le32 inode;
lelé rec_len;

:u8 name len;
8 file type;
char name [EXTZ NAME LEN];

|

Slide based on W. Maurer: Linux Kernelarchitektur

/*
’/*
f*

/’*

Inode number */
Directory entry length */
Name length */

File name */

UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

d

Directory entries in EXT2

inode rec len name len file type name
12 1 2]. \O \O \O
12 2 2].) \O \O
16 8 41h a r d d i S k
32 5 71 i n u X \O \O \O
16 6 2|d e I d [r \O \O
16 6 1]s a m p I e \0 |\O
16 7 2|s o) u r C e \O \O
Corresponds to the following directory:
drwxr—xr—-x 3 brinkman users 4096 Dec 10 19:44
AdrwXrwxrwx 13 brinkman users 8192 Dec 10 19:44 ..
brw-r—r-- 1 brinkman users 3, 0 Dec 10 19:44 harddisk
lrwXrwxrwx 1 brinkman users 14 Dec 10 19:44 linux->/usr/src/linux
—rw-—r—--r—- 1 brinkman users 13 Dec 10 19:44 sample
drwxr—-xr-x 2 brinkman users 4090 Dec 10 19:44 source

Slide based on W. Maurer: Linux Kernelarchitektur

UNIVERSITAT PADERBORN 'L‘
(LN

Die Universitdt der Informationsgesellschaft

How does the os find a file?

Example: Opening the file /home/user/.profile:

- / isalways stored in Inode 2 of the root file system
— (Exception: Process was chroot 'ed)

* Open Inode 2, read data of Inode, lookup entry home and read its inode number

* Open Inode for home, read its data, lookup entry for user and read its inode
number

 Open Inode for user, read its data, lookup entry for .profile and read itsinode
number

* Open lnode for .profile, read its data, create a struct file
* A pointer to the file is added to the file pointer table of the OS

=>» The file descriptor table of the calling process is updated with the new pointer

Slide based on presentation from M. J. Dominus UNIVERSITAT PADERBORN 'A‘

Die Universitdt der Informationsgesellschaft

Allocation of data blocks

* Allocation of data blocks always necessary if the file becomes bigger
* Aim: Map successive addresses sequentially to the storage system

* Approachof ex2 get block()

— If there is a logical block directly before address of current block = take next physical
block

— Else take physical block number of the block with the logical block number directly
before the logical block number of the current block

— Else take block number of first block in block group, where inode is stored
* Target block can be already occupied

— Taskof ext2 alloc branch () : Allocate nearby block based on goal-block
* ext2 alloc block() includes options for the preallocation of blocks

e Orlov-Allokator: typically no relationship between subdirectories in root
directory =» if there a new subdirectory is created in the root directory, just
place it somewhere

UNIVERSITAT PADERBORN 'L‘
(LN

Die Universitdt der Informationsgesellschaft

Journaling File Systems

 “Ajournaling file system is a file system that logs changes to a
journal (usually a circular log in a specially-allocated area) before
actually writing them to the main file system”

* Problem description without Journaling:

— A crashed computer or file system might lead to inconsistent data on a file
system

— Full file system needs to be checked and repaired
=>» This process might take multiple hours!

=» ldea:

— Write all data to a journal first, then to its final destination on disk
— On acrash, only the journal has to be checked for unfinished transactions
— Operations can be executed atomically

Slide based on Wikipedia UNIVERSITAT PADERBORN 'L‘
(LA

Die Universitdt der Informationsgesellschaft

Journaling File Systems

« Full Journaling” writes all data twice
=>» degraded performance
* |dea of ,Metadata Journaling”:

— Only write metadata of a file to the journal, actual file data is directly
written to disk

 File data should be written before the metadata is committed to
the journal to prevent file inconsistencies

 Example
1. Resize file in Inode
2. Allocate space for file extension in the free space map

3. Write data to the newly allocated area

What happens if the computer
crashes after step 27

Slide based on Wikipedia UNIVERSITAT PADERBORN 'L‘
(LN

Die Universitdt der Informationsgesellschaft

EXT 3 Journaling File System

* EXT 3 extends EXT 2 by journaling
e Journalis stored as a file on the file system but may also be stored on a separate partition

* Journalis implemented as a ring buffer. If the operations are committed to disk, the journal is

reused
CYLINDER GROUP1 OTHER GROUPS

IB DB | INODE | 58 200 0 000 el 000

IB = Inode Bitmap, DB = Data Bitmap, JS = Journal Superblock, JD = Journal Descriptor Block, JC = Journal Commit Block
e Journal superblock stores information like block size and pointers to the beginning
and the end of the journal

* Journal descriptor block marks the beginning of a transaction and contains
information about following blocks, i.e. their storage location

e Journal commit block is written to the end of a transaction. If the JCB was written, the
transaction can be recovered without data loss

Slide based on V. Prabhakaran et al.: Analysis and Evolution of Journaling File Systems UNIVE RSITAT PADERBORN 'A‘

Die Universitdt der Informationsgesellschaft

EXT 3 Journaling Modes

EXT 3 provides three different journaling modes
* Write-back

— Only the metadata is written to the journal

— Data blocks are directly written to disk

— No clear ordering of writes of data blocks or the journal
— A crash may lead to an inconsistent state

e QOrdered

— Only metadata is written to the journal

— Data blocks are written to disk, before metadata is written to the journal

— If metadata write commits, then the data is consistent after crash

* Data

— Data and metadata are written to the journal

Slide based on V. Prabhakaran et al.: Analysis and Evolution of Journaling File Systems

UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

d

In writeback mode, data write can happen at any time

EXT 3 Journaling Modes

WRITEBACK ORDERED DATA
: Fixed (Data) : [Fixed (Data)
¢ Sync
Journal (Inode) Journal (Inode) [Journal (Inode+Data)j Journal Write
i Sync i Sync l Sync
Journal (Commit) Journal (Commit) Journal (Commit) Journal Commit
T Yo \ '
i Fixed (Data) .) ;
» » »
[Fixed (Inode) j [Fixed (Inode) j (Fixed (Inode+Data)] Checkpoint Write
o ¥
— Fixed (Data) ,

UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

d

EXT 3 Transactions

e Transactions

— EXT 3 groups multiple file system updates into a single
transaction

— Goal: Performance improvement if a structure is updated
multiple times

— Example: Free space bitmap is updated regularly
* Checkpointing

— Flushes journaling information to be written to their destination
blocks

— Triggered by a timer, if file system buffers become to small, or
the journal reaches its maximum size

UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft li‘

Reservation of Blocks in EXT3

e Pre-allocation of blocks helps to
reduce fragmentation of files Ext3 (before)

+ X3 supports reservanon oL
areas in the main memory
e Each Inode has its own

reservation window
— Windows do not overlap

— Windows can grow and shrink Ext3 (After)
dynamically
— Windows are removed if the file is W_ﬂ”“h
closed
=» Improved throughput Otile Btile Ofile Hfile
1 2 3 4

UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft IA‘

Files

- T r-T7-- -5 -Aa=-ss=s==7 -
| |/ 7/

disk blocl§s i y \ \'I' v

UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft lg‘

/ R TS ~
o B (64, Ty
- -
\

