
WEB SERVICES

Complete Guide Shruti Gupta
June, 2014

Advantages

Web Services have certain advantages over other technologies:

 Web Services are platform-independent and language-
independent, since they use standard XML languages. This means
that my client program can be programmed in C++ and running
under Windows, while the Web Service is programmed in Java
and running under Linux.

 Most Web Services use HTTP for transmitting messages (such as the
service request and response). This is a major advantage if you
want to build an Internet-scale application, since most of the
Internet's proxies and firewalls won't mess with HTTP traffic (unlike
CORBA, which usually has trouble with firewalls).

Disadvantage

Of course, Web Services also have some disadvantages:

 Overhead. Transmitting all your data in XML is obviously not as efficient as
using a proprietary binary code. What you win in portability, you lose in
efficiency. Even so, this overhead is usually acceptable for most
applications, but you will probably never find a critical real-time
application that uses Web Services.

 Lack of versatility. Currently, Web Services are not very versatile, since they
only allow for some very basic forms of service invocation. CORBA, for
example, offers programmers a lot of supporting services (such as
persistency, notifications, lifecycle management, transactions, etc.) In fact, in
the next page we'll see that Grid Services actually make up for this lack of
versatility.

However, there is one important characteristic that distinguishes Web

Services. While technologies such as CORBA and EJB are geared

towards highly coupled distributed systems, where the client and the

server are very dependent on each other, Web Services are more

adequate for loosely coupled systems, where the client might have no

prior knowledge of the Web Service until it actually invokes it. Highly

coupled systems are ideal for intranet applications, but perform poorly

on an Internet scale. Web Services, however, are better suited to meet

the demands of an Internet-wide application, such as grid-oriented

applications.

A Typical Web Service invocation

High level overview..

Web Service Architecture

High Level Design..

Architecture Description

 Service Processes: Discovery belongs in this part of the architecture, since it allows us to locate
one particular service from among a collection of Web services.

 Service Description: Web Services is that they are self-describing. This means that, once you've
located a Web Service, you can ask it to 'describe itself' and tell you what operations it supports
and how to invoke it. This is handled by the Web Services Description Language (WSDL).

 Service Invocation: Invoking a Web Service (and, in general, any kind of distributed service such
as a CORBA object or an Enterprise Java Bean) involves passing messages between the client
and the server. SOAP (Simple Object Access Protocol) specifies how we should format requests to
the server, and how the server should format its responses. In theory, we could use other service
invocation languages (such as XML-RPC, or even some ad hoc XML language). However, SOAP is
by far the most popular choice for Web Services.

 Transport: Finally, all these messages must be transmitted somehow between the server and the
client. The protocol of choice for this part of the architecture is HTTP (HyperText Transfer
Protocol), the same protocol used to access conventional web pages on the Internet. Again, in
theory we could be able to use other protocols, but HTTP is currently the most used one.

Web Service Addressing

 Addressed as URIs (Uniform Resource Identifier)

rather than URL. You cannot type it in the regular

address bar of the browser, it will return an error.

 URIs are supposed to be fed by a client (software)

application, rather than manually by humans.

Web Service Invocation (detailed..)

 Once we've reached a point where our client application needs to invoke a Web

Service, we delegate that task on a piece of software called a stub. The good news

is that there are plenty of tools available that will generate stubs automatically for

us, usually based on the WSDL description of the Web Service.

 So, let's suppose that we've already located the Web Service we want to use (either

because we consulted a discovery service, or because the Web service URI was

given to us), and we've generated the client stubs from the WSDL description. What

exactly happens when we want to invoke a Web service operation from a

program?

Web Service Invocation (detailed..)

 Whenever the client application needs to invoke the Web Service, it will really call the client
stub. The client stub will turn this 'local invocation' into a proper SOAP request. This is often
called the marshaling or serializing process.

 The SOAP request is sent over a network using the HTTP protocol. The server receives the
SOAP requests and hands it to the server stub. The server stub will convert the SOAP request
into something the service implementation can understand (this is usually called unmarshaling or
deserializing)

 Once the SOAP request has been deserialized, the server stub invokes the service
implementation, which then carries out the work it has been asked to do.

 The result of the requested operation is handed to the server stub, which will turn it into a
SOAP response.

 The SOAP response is sent over a network using the HTTP protocol. The client stub receives the
SOAP response and turns it into something the client application can understand.

 Finally the application receives the result of the Web Service invocation and uses it.

Web Service Invocation (detailed..)

 Web service: First and foremost, we have our Web service. As we have

seen, this is basically a piece of software that exposes a set of

operations. For example, if we are implementing our Web service in

Java, our service will be a Java class (and the operations will be

implemented as Java methods). Obviously, we want a set of clients to be

able to invoke those operations. However, our Web service

implementation knows nothing about how to interpret SOAP requests and

how to create SOAP responses. That's why we need a...

 SOAP engine: This is a piece of software that knows how to handle SOAP

requests and responses. In practice, it is more common to use a generic

SOAP engine than to actually generate server stubs for each individual

Web service (note, however, that we still need client stubs for the client).

One good example of a SOAP engine is Apache Axis. However, the

functionality of the SOAP engine is usually limited to manipulating SOAP.

To actually function as a server that can receive requests from different

clients, the SOAP engine usually runs within an...Application server

Server Side Design..

http://ws.apache.org/axis/
http://ws.apache.org/axis/
http://ws.apache.org/axis/

