
ASP.NET
State Management

lecture2

Madhuri Sawant

madhuri sawant

PostBack
• What is PostBack ?

• Postback is actually sending all the information from client to web
server, then web server process all those contents and returns back
to client.

• A postback originates from the client side browser. When the web
page and its contents are sent to the web server for processing
some information and then, the web server posts the same page
back to the client browser.

madhuri sawant

PostBack
• What is AutoPostBack ?

• Then, what is AutoPostBack, Autopostback is the mechanism, by which
the page will be posted back to the server automatically based on some
events in the web controls. In some of the web controls, the property
called auto post back, which if set to true, will send the request to the
server when an event happens in the control

• Eg DropDown box (ComboBox) has the property autopostback .If we set
the property to true ,when ever the user selects a different value in the
combobox ,and event will be fired in the server , a request will be send to
the server.

madhuri sawant

PostBack
• Whenever we set autopostback attribute to true in any of the controls, the

.net framework will automatically insert few code in to the HTML
generated to implement this functionality.

• a. A Java script method with name __doPostBack (eventtarget,
eventargument)
b. Two Hidden variables with name __EVENTTARGET and
__EVENTARGUMENT
c. OnChange JavaScript event to the control

madhuri sawant

PostBack
• a. __EVENTTARGET and __EVENTARGUMENT

The __EVENTTARGET hidden variable will tell the server ,which control
actually does the server side event firing so that the framework can fire
the server side event for that control.

The __ EVENTARGUMENT variable is used to provide additional event
information if needed by the application, which can be accessed in the
server.

madhuri sawant

PostBack
• b. __doPostBack (eventtarget, eventargument)

• This method is inserted to the HTML source to implement the
autopostback functionality. This method will submit the form, when ever
called. The two parameters in this method i.e. eventtarget and
eventargument do the actual work of selecting the control to fire the
event.

• This method will set the value of the __EVENTTARGET hidden variable
with the eventtarget parameter and __ EVENTARGUMENT value with the
eventargument parameter.

• The next activity is to submit the form, so that in the server side, the
framework will check for the name of the control in the __EVENTTARGET
hidden variable and will fire the appropriate event.

madhuri sawant

PostBack
• c. OnChange event.

This event is added by the framework to any of the control where
autopostback is set to true, this method will fire the client side OnChange
event and calls the __doPostBack event with the name of the control
where the OnChange event is happened

madhuri sawant

PostBack
• What is IsPostBack ?

• IsPostBack property is used by the Page to determine whether the page is
posted back from the client. If IsPostBack property is false, then the page
is loading for the first time, and if true, then the request is because of
some event generated by web controls.

• IsPostBack is used when we want to load some information when the page
loads,

madhuri sawant

State Management

o State Management :- How you store information over the lifetime
of your application

o View State :- One of the most common ways to store information is
in view state

o View State uses a hidden field that ASP.NET automatically inserts in
the final, rendered HTML of a web page.

o It’s a perfect place to store information that’s used for multiple
postbacks in a single web page.

madhuri sawant

View State
• View State is an ASP.NET feature that provides for retaining the

values of page and control properties that change from one
execution of a page to another.

• Before ASP.NET sends a page back to the client, it determines what
changes the program has made to the properties of the page and
its controls. These changes are encoded into a string that’s
assigned to the value of a hidden input field named _VIEWSTATE .

• When the page is posted back to the server ,the _VIEWSTATE field is
sent back to the server along with the HTTP request. Then ,ASP.NET
retrieves the property values from the _VIEWSTATE field and uses
them to restore the page and control properties .

• View State is not used to restore data entered by a user into a
textbox or any other input control unless the control responds to
change events.

madhuri sawant

ViewState
• To add own data to view state ,store the data in a view state object that’s

created from the StateBag class

Property Description

Item(name) The value of the view state item with the specified name.

count The number of items in the view state collection

Keys A collection of keys for all of the items in the view state
collection

values A collection of values for all of the items in the view state
collection

madhuri sawant

View State
Partial Class _Default

Inherits System.Web.UI.Page

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Button1.Click
Dim count As Integer
If ViewState("count") Is Nothing Then

count = 1
Else

count = CType(ViewState("count"), Integer) + 1
End If
ViewState("count") = count
Label1.Text = "Counter:" & count.ToString

End Sub
End Class

madhuri sawant

madhuri sawant

ASP.NET page life cycle

madhuri sawant

ASP.NET page life cycle

madhuri sawant

ASP.NET page life cycle
• Stage 0 - Instantiation
• The life cycle of the ASP.NET page begins with instantiation of the class

that represents the requested ASP.NET Web page .

• The ASP.NET engine converts the HTML portion from its free-form text
representation into a series of programmatically-created Web controls.

• When an ASP.NET Web page is visited for the first time after a change has
been made to the HTML markup or Web control syntax in the .aspx page,
the ASP.NET engine auto-generates a class.

• this autogenerated class, along with a compiled instance of the class, is
stored

• The purpose of this autogenerated class is to programmatically create the
page's control hierarchy.

madhuri sawant

ASP.NET page life cycle
• Stage 1 - Initialization

• After the control hierarchy has been built, the Page, along with all of the
controls in its control hierarchy, enter the initialization stage. This stage is
marked by having the Page and controls fire their Init events. At this point
in the page life cycle, the control hierarchy has been constructed, and the
Web control properties that are specified in the declarative syntax have
been assigned.

• Stage 2 - Load View State

• The load view state stage only happens when the page has been posted
back. During this stage, the view state data that had been saved from the
previous page visit is loaded and recursively populated into the control
hierarchy of the Page. It is during this stage that the view state is
validated.

madhuri sawant

ASP.NET page life cycle
• Stage 3 - Load Postback Data

• The load postback data stage also only happens when the page has been
posted back. A server control can indicate that it is interested in examining
the posted back data by implementing the IPostBackDataHandler
interface. In this stage in the page life cycle, the Page class enumerates the
posted back form fields, and searches for the corresponding server
control. If it finds the control, it checks to see if the control implements
the IPostBackDataHandler interface. If it does, it hands off the appropriate
postback data to the server control by calling the control's LoadPostData()
method. The server control would then update its state based on this
postback data.

madhuri sawant

ASP.NET page life cycle
• Stage 4 - Load

• When the Load event fires, the view state has been loaded (from stage 2,
Load View State), along with the postback data (from stage 3, Load
Postback Data). If the page has been posted back, when the Load event
fires we know that the page has been restored to its state from the
previous page visit.

• Stage 5 - Raise Postback Event

• Certain server controls raise events with respect to changes that occurred
between postbacks. Eg if the Web Form was posted back due to a Button
Web control being clicked, the Button's Click event is fired during this
stage.

• Stage 6 :PreRendering

• Associated value of the control is assigned. This is the last time changes of
objects to save into the viewstate. After the execution of the method,
controls value is locked for the viewstate.

madhuri sawant

ASP.NET page life cycle
• Stage 7- Save View State

• In the save view state stage, the Page class constructs the page's view
state, which represents the state that must persist across postbacks. The
page accomplishes this by recursively calling the SaveViewState() method
of the controls in its control hierarchy. This combined, saved state is then
serialized into a base-64 encoded string. In stage 7, when the page's Web
Form is rendered, the view state is persisted in the page as a hidden form
field.

• Stage 8 - Render

• In the render stage the HTML that is emitted to the client requesting the
page is generated. The Page class accomplishes this by recursively invoking
the RenderControl() method of each of the controls in its hierarchy.

• Stage 9:Unload .

• the rendered page is sent to the client and page properties

madhuri sawant

ASP.NET page life cycle

madhuri sawant

Cross Page Posting
 A cross-page postback is a technique that extends the postback

mechanism so that one page can send the user to another page ,complete
with all the information for that page.

 To use cross page posting ,you specify the URL of another page in the
PostBackUrl property of a button control.

 Then when the user clicks the button,an HTTP Post message that contains
the URL specified by the PostBackUrl property is sent back to the server.

 As a result ,the page with that URL is loaded and executed instead of the
page that was orginally displayed.

madhuri sawant

Crosspage1.aspx
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="CrossPage1.aspx.vb"

Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

<title>Cross Page1</title>
</head>
<body>

<form id="form1" runat="server">
<div>

<asp:Button ID="Button1" runat="server" PostBacKUrl="CrossPage2.aspx"
Text="Cross-Page Postback" />

</div>
</form>

</body>
</html>

madhuri sawant

Crosspage2.aspx.vb
Partial Class Default2

Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Me.Load

If PreviousPage IsNot Nothing Then

Label1.Text = "You came from a page titled::::" &
PreviousPage.Title

End If

End Sub

End Class

madhuri sawant

Query String
• http://www.google.ca/search?q=organic+gardening
• The query string is the portion of the URL after the question mark.
• It defines a single variable named q,which contains the string
organic +gardening
• When using URL encoding, a query string that consists of

attribute/value pairs is added to the end of a URL
• Query strings are frequently used in Anchor tags and hyperlinks to

pass information from one page of an application to another or to
display different information on the same page.

• Eq Two url with query string
• Order.aspx?cat=costumes
• Order.aspx?cat=props&prod=rat01

madhuri sawant

http://www.google.ca/search?q=organic+gardening

Query String

• Page1.aspx.vb

Partial Class _Default

Inherits System.Web.UI.Page

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Button1.Click

Dim url As String = "page2.aspx?no=" & TextBox1.Text &
"&name=" & TextBox2.Text

Response.Redirect(url)

End Sub

End Class

madhuri sawant

Query String
Page2.aspx.vb

Partial Class page2

Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Me.Load

Label1.Text = "no:" & Request.QueryString("no") & " name:" &
Request.QueryString("name")

End Sub

End Class

madhuri sawant

Query String
o The advantage of the query string is that its lightweight and doesn’t exert

any kind of burden on the server.

o Limitations

o Information is limited to simple strings

o Contain URL-legal characters

o Information is clearly visible to the user

o The user might decide to modify the query string and supply new values

o Cant place large amount of information in the query string

o Not compatible with most browsers

madhuri sawant

Cookies
o A cookie is a name/value pair that’s stored in the user’s browser or on the

user’s disk

o A web application sends a cookie to a browser via an HTTP response. Then
each time the browser sends an HTTP request to the server, it attaches
any cookies that are associated with that server.

o Retrieve cookies from the request object, and set cookies using the
Response object.

o Advantage :- they work transparently without the user being aware that
information needs to be stored.

o helping the Web site remember users.

o Can be easily used by any page in application

o Retained between visits , which allows for truly long –term storage.

o Disadvantage :- poor choice for complex or private information or large
amounts of data

madhuri sawant

Cookies

• Two ways to create a cookie

• New HttpCookie(name)

• New HttpCookie(name,value)

• Common properties of the HttpCookie class

Property Description

Expires A DateTime value that indicates when the cookie should expire

Name The cookie’s name

Secure A boolean value that indicates whether the cookie should be sent
only when a secure connection is used.

value The string value assigned to the cookie

madhuri sawant

• Code that creates a session cookie

Dim nameCookie as new HttpCookie(“UserName”,userName)

Code that creates a persistant cookie

Dim nameCookie as new HttpCookie(“UserName”)

nameCookie.Value=userName

nameCookie.Expires=Now.AddYears(1)

madhuri sawant

Cookies
Partial Class cookiedemo

Inherits System.Web.UI.Page
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles

Me.Load
Dim cook As HttpCookie = Request.Cookies("demo")
If cook Is Nothing Then

Label1.Text = "Cookie found"
Else

Label1.Text = "Welcome " & cook("Name")
End If

End Sub
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles

Button1.Click
Dim cook As HttpCookie = Request.Cookies("demo")
If cook Is Nothing Then

cook = New HttpCookie("demo")
End If
cook("Name") = TextBox1.Text
cook.Expires = DateAndTime.Now.AddYears(1)
Response.Cookies.Add(cook)
Label1.Text = "Cookie created

"
Label1.Text &= cook("name")

End Sub
End Class madhuri sawant

Session State
o ASP.NET uses session state to track the state of each user of an application

To do that it creates a session state object

o The session state object includes a Session ID that’s sent back to the
browser as a cookie. Then the browser automatically returns the session
ID cookie to the server with each request so the server can associate the
browser with an existing session state object.

o Use the session state object to store and retrieve items across executions
of an application.

o Because session state sends only the session ID to the browser, it doesn’t
slow response item.

o Session state objects are maintained in server memory.

o Every client that access the application has a different session and a
distinct collection of information.

madhuri sawant

Session State

madhuri sawant

Session State
o Session Tracking :-

o ASP.NET tracks each session using a unique 120-bit identifier.

o This ID is the only piece of session relation information that is transmitted
between the web server and the client.

o When the client presents the session ID,ASP.NET looks up the
corresponding session ,retrieves the objects you stored previously ,and
places them into a special collection so they can be accessed in your code.
This process takes place automatically.

o The client must present the appropriate session ID with each request.

o This can be accomplished in two ways :

o Using cookies

o Using modified URLS

madhuri sawant

HttpSessionState class
Property Description

SessionID The uniqueID of the session

Item(name) The value of the session state item with the specified name .

Count The number of items in the session state collection

Method Description

Add(name,value) Adds an item to the session state collection

Clear() Removes all items from the session state collection

Remove(name) Removes the item with the specified name from the session
state collection

madhuri sawant

• A statement that adds or updates a session state item

Session(“EMail”)=email

• A statement that retrieves the value of a session state item

Dim email as String=Session(“EMail”).ToString

• A statement that removes an item from session state

Session.Remove(“EMail”)

madhuri sawant

Session State
Partial Class _Default

Inherits System.Web.UI.Page
Dim clickcount As Integer
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

If Session("clickcount") Is Nothing Then
clickcount = 0

Else
clickcount = CInt(Session("clickcount"))

End If
End Sub

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles
Button1.Click
clickcount += 1
Label1.Text = "you have clicked the button " & clickcount & " times"

End Sub

Protected Sub Page_PreRender(ByVal sender As Object, ByVal e As System.EventArgs) Handles
Me.PreRender
Session("clickcount") = clickcount

End Sub
End Class

madhuri sawant

Session State

madhuri sawant

Application State
o An ASP.NET application is the collection of pages , code and other files

within a single directory on a web server. An ASP.NET application
corresponds to a single Visual Studio web project.

o The first time a user requests a page that resides in an application’s
directory , ASP.NET initializes the application.

o During that process , ASP.NET creates an application object from the
HttpApplication class.

o This object is represented by a special class file named global.asax

o The application object can be accessed by any of the application’s pages.

o Each time ASP.NET starts an application and creates an application object ,
it also creates an application state object from the HttpApplicationState
class

o Use this object to store data in server memory that can be accessed by
any page that’s part of the application.

madhuri sawant

HttpApplicationState class
Property Description

Item(name) The value of the application state item with the specified name

Count The number of items in the application state collection

Method Description

Add(name,value) Adds an item to the application state collection

Clear() Removes all items from the application state collection

Remove(name) Removes the item with the specified name from the
application state collection

Lock() Locks the application state collection so only the current user
can access it.

UnLock() Unlocks the application state collection so other users can
acces it

madhuri sawant

Application State
Partial Class _Default

Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Me.Load

Application.Lock()

Dim clickcount As Integer = CInt(Application("clickcount"))

clickcount += 1

Application("clickcount") = clickcount

Application.UnLock()

Label1.Text = clickcount.ToString

End Sub

End Class

madhuri sawant

